fix: images rotation
Browse files- README.md +24 -0
- face_masks.py +5 -5
README.md
CHANGED
@@ -7,6 +7,30 @@ language:
|
|
7 |
tags:
|
8 |
- finance
|
9 |
- code
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
---
|
11 |
# Face Mask Detection
|
12 |
Dataset includes 250 000 images, 4 types of mask worn on 28 000 unique faces. All images were collected using the Toloka.ai crowdsourcing service and validated by TrainingData.pro
|
|
|
7 |
tags:
|
8 |
- finance
|
9 |
- code
|
10 |
+
dataset_info:
|
11 |
+
features:
|
12 |
+
- name: photo_1
|
13 |
+
dtype: image
|
14 |
+
- name: photo_2
|
15 |
+
dtype: image
|
16 |
+
- name: photo_3
|
17 |
+
dtype: image
|
18 |
+
- name: photo_4
|
19 |
+
dtype: image
|
20 |
+
- name: worker_id
|
21 |
+
dtype: string
|
22 |
+
- name: age
|
23 |
+
dtype: int8
|
24 |
+
- name: country
|
25 |
+
dtype: string
|
26 |
+
- name: sex
|
27 |
+
dtype: string
|
28 |
+
splits:
|
29 |
+
- name: train
|
30 |
+
num_bytes: 341007536
|
31 |
+
num_examples: 10
|
32 |
+
download_size: 100871449
|
33 |
+
dataset_size: 341007536
|
34 |
---
|
35 |
# Face Mask Detection
|
36 |
Dataset includes 250 000 images, 4 types of mask worn on 28 000 unique faces. All images were collected using the Toloka.ai crowdsourcing service and validated by TrainingData.pro
|
face_masks.py
CHANGED
@@ -118,7 +118,7 @@ class FaceMasks(datasets.GeneratorBasedBuilder):
|
|
118 |
|
119 |
def _generate_examples(self, images, annotations):
|
120 |
annotations_df = pd.read_csv(annotations, sep=',')
|
121 |
-
images_data = pd.DataFrame(columns=['Link', '
|
122 |
for idx, image_path in enumerate(images):
|
123 |
images_data.loc[idx] = {
|
124 |
'Link': '/'.join(image_path.split('/')[-2:]),
|
@@ -138,12 +138,12 @@ class FaceMasks(datasets.GeneratorBasedBuilder):
|
|
138 |
for row in annotation.itertuples()
|
139 |
}
|
140 |
|
141 |
-
age = annotation.loc[annotation['Type'] ==
|
142 |
country = annotation.loc[annotation['Type'] ==
|
143 |
-
|
144 |
-
sex = annotation.loc[annotation['Type'] ==
|
145 |
|
146 |
-
data['
|
147 |
data['age'] = age
|
148 |
data['country'] = country
|
149 |
data['sex'] = sex
|
|
|
118 |
|
119 |
def _generate_examples(self, images, annotations):
|
120 |
annotations_df = pd.read_csv(annotations, sep=',')
|
121 |
+
images_data = pd.DataFrame(columns=['Link', 'Path'])
|
122 |
for idx, image_path in enumerate(images):
|
123 |
images_data.loc[idx] = {
|
124 |
'Link': '/'.join(image_path.split('/')[-2:]),
|
|
|
138 |
for row in annotation.itertuples()
|
139 |
}
|
140 |
|
141 |
+
age = annotation.loc[annotation['Type'] == 1]['Age'].values[0]
|
142 |
country = annotation.loc[annotation['Type'] ==
|
143 |
+
1]['Country'].values[0]
|
144 |
+
sex = annotation.loc[annotation['Type'] == 1]['Sex'].values[0]
|
145 |
|
146 |
+
data['worker_id'] = worker_id
|
147 |
data['age'] = age
|
148 |
data['country'] = country
|
149 |
data['sex'] = sex
|