|
import datasets |
|
import pandas as pd |
|
|
|
_CITATION = """\ |
|
@InProceedings{huggingface:dataset, |
|
title = {cows-detection-dataset}, |
|
author = {TrainingDataPro}, |
|
year = {2023} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
The dataset is a collection of images along with corresponding bounding box annotations |
|
that are specifically curated for **detecting cows** in images. The dataset covers |
|
different *cows breeds, sizes, and orientations*, providing a comprehensive |
|
representation of cows appearances and positions. Additionally, the visibility of each |
|
cow is presented in the .xml file. |
|
The cow detection dataset provides a valuable resource for researchers working on |
|
detection tasks. It offers a diverse collection of annotated images, allowing for |
|
comprehensive algorithm development, evaluation, and benchmarking, ultimately aiding |
|
in the development of accurate and robust models. |
|
""" |
|
_NAME = "cows-detection-dataset" |
|
|
|
_HOMEPAGE = f"https://huggingface.co/datasets/TrainingDataPro/{_NAME}" |
|
|
|
_LICENSE = "" |
|
|
|
_DATA = f"https://huggingface.co/datasets/TrainingDataPro/{_NAME}/resolve/main/data/" |
|
|
|
|
|
class CowsDetectionDataset(datasets.GeneratorBasedBuilder): |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"id": datasets.Value("int32"), |
|
"image": datasets.Image(), |
|
"mask": datasets.Image(), |
|
"bboxes": datasets.Value("string"), |
|
} |
|
), |
|
supervised_keys=None, |
|
homepage=_HOMEPAGE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
images = dl_manager.download(f"{_DATA}images.tar.gz") |
|
masks = dl_manager.download(f"{_DATA}boxes.tar.gz") |
|
annotations = dl_manager.download(f"{_DATA}{_NAME}.csv") |
|
images = dl_manager.iter_archive(images) |
|
masks = dl_manager.iter_archive(masks) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"images": images, |
|
"masks": masks, |
|
"annotations": annotations, |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, images, masks, annotations): |
|
annotations_df = pd.read_csv(annotations) |
|
|
|
for idx, ((image_path, image), (mask_path, mask)) in enumerate( |
|
zip(images, masks) |
|
): |
|
yield idx, { |
|
"id": annotations_df["image_id"].iloc[idx], |
|
"image": {"path": image_path, "bytes": image.read()}, |
|
"mask": {"path": mask_path, "bytes": mask.read()}, |
|
"bboxes": annotations_df["annotations"].iloc[idx], |
|
} |
|
|