|
import io |
|
|
|
import datasets |
|
import pandas as pd |
|
|
|
_CITATION = """\ |
|
@InProceedings{huggingface:dataset, |
|
title = {anti-spoofing_Live}, |
|
author = {TrainingDataPro}, |
|
year = {2023} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
The dataset consists of 40,000 videos and selfies with unique people. |
|
15,000 attack replays from 4,000 unique devices. |
|
""" |
|
_NAME = 'anti-spoofing_Live' |
|
|
|
_HOMEPAGE = f"https://huggingface.co/datasets/TrainingDataPro/{_NAME}" |
|
|
|
_LICENSE = "" |
|
|
|
_DATA = f"https://huggingface.co/datasets/TrainingDataPro/{_NAME}/resolve/main/data/" |
|
|
|
|
|
class PortraitAnd26Photos(datasets.GeneratorBasedBuilder): |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features({ |
|
'phone': datasets.Value('string'), |
|
'selfie': datasets.Image(), |
|
'video': datasets.Value('string'), |
|
'worker_id': datasets.Value('string'), |
|
'age': datasets.Value('int8'), |
|
'country': datasets.Value('string'), |
|
'gender': datasets.Value('string') |
|
}), |
|
supervised_keys=None, |
|
homepage=_HOMEPAGE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
data = dl_manager.download(f"{_DATA}data.tar.gz") |
|
annotations = dl_manager.download(f"{_DATA}{_NAME}.csv") |
|
data = dl_manager.iter_archive(data) |
|
return [ |
|
datasets.SplitGenerator(name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"data": data, |
|
'annotations': annotations |
|
}), |
|
] |
|
|
|
def _generate_examples(self, data, annotations): |
|
annotations_df = pd.read_csv(annotations, sep=',') |
|
for idx, (image_path, image) in enumerate(data): |
|
if image_path.endswith('.jpg'): |
|
yield idx, { |
|
'phone': |
|
annotations_df.loc[ |
|
annotations_df['selfie_link'] == image_path] |
|
['phone'].values[0], |
|
'selfie': { |
|
'path': image_path, |
|
'bytes': image.read() |
|
}, |
|
'video': |
|
annotations_df.loc[ |
|
annotations_df['selfie_link'] == image_path] |
|
['video_link'].values[0], |
|
'worker_id': |
|
annotations_df.loc[ |
|
annotations_df['selfie_link'] == image_path] |
|
['worker_id'].values[0], |
|
'age': |
|
annotations_df.loc[ |
|
annotations_df['selfie_link'] == image_path] |
|
['age'].values[0], |
|
'country': |
|
annotations_df.loc[ |
|
annotations_df['selfie_link'] == image_path] |
|
['country'].values[0], |
|
'gender': |
|
annotations_df.loc[ |
|
annotations_df['selfie_link'] == image_path] |
|
['gender'].values[0], |
|
} |
|
|