TobiTob commited on
Commit
f640d6b
·
1 Parent(s): 9c223b0

Update CityLearn.py

Browse files
Files changed (1) hide show
  1. CityLearn.py +0 -60
CityLearn.py CHANGED
@@ -7,20 +7,8 @@ _DESCRIPTION = """The dataset consists of tuples of (observations, actions, rewa
7
 
8
  _BASE_URL = "https://huggingface.co/datasets/TobiTob/CityLearn/resolve/main"
9
  _URLS = {
10
- "random_230": f"{_BASE_URL}/random_230x5x38.pkl",
11
  "f_230": f"{_BASE_URL}/f_230x5x38.pkl",
12
- "f_24": f"{_BASE_URL}/f_24x5x364.pkl",
13
- "fr_24": f"{_BASE_URL}/fr_24x5x364.pkl",
14
- "fn_24": f"{_BASE_URL}/fn_24x5x3649.pkl",
15
- "fn_230": f"{_BASE_URL}/fnn_230x5x380.pkl",
16
- "rb_24": f"{_BASE_URL}/rb_24x5x364.pkl",
17
- "rb_50": f"{_BASE_URL}/rb_50x5x175.pkl",
18
- "rb_108": f"{_BASE_URL}/rb_108x5x81.pkl",
19
  "rb_230": f"{_BASE_URL}/rb_230x5x38.pkl",
20
- "rb_461": f"{_BASE_URL}/rb_461x5x19.pkl",
21
- "rb_973": f"{_BASE_URL}/rb_973x5x9.pkl",
22
- "rb_2189": f"{_BASE_URL}/rb_2189x5x4.pkl",
23
- "rbn_24": f"{_BASE_URL}/rb_24x5x18247.pkl",
24
  }
25
 
26
 
@@ -29,62 +17,14 @@ class DecisionTransformerCityLearnDataset(datasets.GeneratorBasedBuilder):
29
  # You will be able to load one configuration in the following list with
30
  # data = datasets.load_dataset('TobiTob/CityLearn', 'data_name')
31
  BUILDER_CONFIGS = [
32
- datasets.BuilderConfig(
33
- name="random_230",
34
- description="Random environment interactions. Sequence length = 230, Buildings = 5, Episodes = 1 ",
35
- ),
36
  datasets.BuilderConfig(
37
  name="f_230",
38
  description="Data sampled from an expert LSTM policy. Sequence length = 230, Buildings = 5, Episodes = 1 ",
39
  ),
40
- datasets.BuilderConfig(
41
- name="f_24",
42
- description="Data sampled from an expert LSTM policy. Used the old reward function. Sequence length = 24, Buildings = 5, Episodes = 1 ",
43
- ),
44
- datasets.BuilderConfig(
45
- name="fr_24",
46
- description="Data sampled from an expert LSTM policy. Used the new reward function. Sequence length = 24, Buildings = 5, Episodes = 1 ",
47
- ),
48
- datasets.BuilderConfig(
49
- name="fn_24",
50
- description="Data sampled from an expert LSTM policy, extended with noise. Sequence length = 24, Buildings = 5, Episodes = 10 ",
51
- ),
52
- datasets.BuilderConfig(
53
- name="fn_230",
54
- description="Data sampled from an expert LSTM policy, extended with noise. Sequence length = 230, Buildings = 5, Episodes = 10 ",
55
- ),
56
- datasets.BuilderConfig(
57
- name="rb_24",
58
- description="Data sampled from a simple rule based policy. Used the new reward function. Sequence length = 24, Buildings = 5, Episodes = 1 ",
59
- ),
60
- datasets.BuilderConfig(
61
- name="rb_50",
62
- description="Data sampled from a simple rule based policy. Used the new reward function. Sequence length = 50, Buildings = 5, Episodes = 1 ",
63
- ),
64
- datasets.BuilderConfig(
65
- name="rb_108",
66
- description="Data sampled from a simple rule based policy. Used the new reward function. Sequence length = 108, Buildings = 5, Episodes = 1 ",
67
- ),
68
  datasets.BuilderConfig(
69
  name="rb_230",
70
  description="Data sampled from a simple rule based policy. Used the new reward function. Sequence length = 230, Buildings = 5, Episodes = 1 ",
71
  ),
72
- datasets.BuilderConfig(
73
- name="rb_461",
74
- description="Data sampled from a simple rule based policy. Used the new reward function. Sequence length = 461, Buildings = 5, Episodes = 1 ",
75
- ),
76
- datasets.BuilderConfig(
77
- name="rb_973",
78
- description="Data sampled from a simple rule based policy. Used the new reward function. Sequence length = 973, Buildings = 5, Episodes = 1 ",
79
- ),
80
- datasets.BuilderConfig(
81
- name="rb_2189",
82
- description="Data sampled from a simple rule based policy. Used the new reward function. Sequence length = 2189, Buildings = 5, Episodes = 1 ",
83
- ),
84
- datasets.BuilderConfig(
85
- name="rbn_24",
86
- description="Data sampled from a simple rule based policy. Used the new reward function and changed some interactions with noise. Sequence length = 24, Buildings = 5, Episodes = 50 ",
87
- ),
88
  ]
89
 
90
  def _info(self):
 
7
 
8
  _BASE_URL = "https://huggingface.co/datasets/TobiTob/CityLearn/resolve/main"
9
  _URLS = {
 
10
  "f_230": f"{_BASE_URL}/f_230x5x38.pkl",
 
 
 
 
 
 
 
11
  "rb_230": f"{_BASE_URL}/rb_230x5x38.pkl",
 
 
 
 
12
  }
13
 
14
 
 
17
  # You will be able to load one configuration in the following list with
18
  # data = datasets.load_dataset('TobiTob/CityLearn', 'data_name')
19
  BUILDER_CONFIGS = [
 
 
 
 
20
  datasets.BuilderConfig(
21
  name="f_230",
22
  description="Data sampled from an expert LSTM policy. Sequence length = 230, Buildings = 5, Episodes = 1 ",
23
  ),
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24
  datasets.BuilderConfig(
25
  name="rb_230",
26
  description="Data sampled from a simple rule based policy. Used the new reward function. Sequence length = 230, Buildings = 5, Episodes = 1 ",
27
  ),
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28
  ]
29
 
30
  def _info(self):