TobiTob commited on
Commit
db1e627
1 Parent(s): fd3caf5

Upload 2 files

Browse files
Files changed (2) hide show
  1. check_data_structure.py +65 -0
  2. data_generation.py +171 -0
check_data_structure.py ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import pickle
3
+
4
+ if __name__ == '__main__':
5
+
6
+ file = "s_month.pkl"
7
+ with open(file, "rb") as f:
8
+ data = pickle.load(f)
9
+
10
+ print("data ", type(data), "length: ", len(data))
11
+ dict0 = data[0]
12
+ print("data[0] ", type(dict0), "length: ", len(dict0))
13
+ print("data[0].keys() ", dict0.keys())
14
+ print()
15
+ observations = dict0['observations']
16
+ print("observations ", type(observations), "length: ", len(observations))
17
+ observations0 = observations[0]
18
+ print("observations[0] ", type(observations0), "length: ", len(observations0))
19
+ observations00 = observations[0][0]
20
+ print("observations[0][0] ", type(observations00))
21
+ print()
22
+ next_observations = dict0['next_observations']
23
+ print("next_observations ", type(next_observations), "length: ", len(next_observations))
24
+ next_observations0 = next_observations[0]
25
+ print("next_observations[0] ", type(next_observations0), "length: ", len(next_observations0))
26
+ next_observations00 = next_observations[0][0]
27
+ print("next_observations[0][0] ", type(next_observations00))
28
+ print()
29
+ actions = dict0['actions']
30
+ print("actions ", type(actions), "length: ", len(actions))
31
+ actions0 = actions[0]
32
+ print("actions[0] ", type(actions0), "length: ", len(actions0))
33
+ actions00 = actions[0][0]
34
+ print("actions[0][0] ", type(actions00))
35
+ print()
36
+ rewards = dict0['rewards']
37
+ print("rewards ", type(rewards), "length: ", len(rewards))
38
+ rewards0 = rewards[0]
39
+ print("rewards[0] ", type(rewards0))
40
+ print()
41
+ terminals = dict0['terminals']
42
+ print("terminals ", type(terminals), "length: ", len(terminals))
43
+ terminals0 = terminals[0]
44
+ print("terminals[0] ", type(terminals0))
45
+ print()
46
+ print("========================= Data Size =============================")
47
+ length = 0
48
+ for d in data:
49
+ if len(d["observations"]) > length:
50
+ length = len(d["observations"])
51
+
52
+ print("Amount Of Sequences: ", len(data))
53
+ print("Longest Sequence: ", length)
54
+
55
+ file_size = os.stat(file).st_size
56
+ if file_size > 1e+6:
57
+ string_byte = "(" + str(round(file_size / 1e+6)) + " MB)"
58
+ else:
59
+ string_byte = "(" + str(round(file_size / 1e+3)) + " kB)"
60
+ print(file, string_byte)
61
+
62
+ print(data[0]["observations"][0][:3])
63
+
64
+
65
+
data_generation.py ADDED
@@ -0,0 +1,171 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from ast import Raise
2
+ from re import S
3
+ import re
4
+ import gym
5
+
6
+ import matplotlib.pyplot as plt
7
+
8
+ from citylearn.citylearn import CityLearnEnv
9
+ import numpy as np
10
+ import pandas as pd
11
+ import os
12
+
13
+ from collections import deque
14
+ import argparse
15
+ import random
16
+ # import logger
17
+ import logging
18
+ from sys import stdout
19
+ from copy import deepcopy
20
+
21
+
22
+ class Constants:
23
+ episodes = 3
24
+ schema_path = '/home/aicrowd/data/citylearn_challenge_2022_phase_1/schema.json'
25
+ variables_to_forecast = ['solar_generation', 'non_shiftable_load', 'electricity_pricing', 'carbon_intensity', "electricity_consumption_crude",
26
+ 'hour', 'month']
27
+
28
+ additional_variable = ['hour', "month"]
29
+
30
+
31
+ # create env from citylearn
32
+ env = CityLearnEnv(schema=Constants.schema_path)
33
+
34
+ def action_space_to_dict(aspace):
35
+ """ Only for box space """
36
+ return { "high": aspace.high,
37
+ "low": aspace.low,
38
+ "shape": aspace.shape,
39
+ "dtype": str(aspace.dtype)
40
+ }
41
+
42
+ def env_reset(env):
43
+ observations = env.reset()
44
+ action_space = env.action_space
45
+ observation_space = env.observation_space
46
+ building_info = env.get_building_information()
47
+ building_info = list(building_info.values())
48
+ action_space_dicts = [action_space_to_dict(asp) for asp in action_space]
49
+ observation_space_dicts = [action_space_to_dict(osp) for osp in observation_space]
50
+ obs_dict = {"action_space": action_space_dicts,
51
+ "observation_space": observation_space_dicts,
52
+ "building_info": building_info,
53
+ "observation": observations }
54
+ return obs_dict
55
+
56
+ ## env wrapper for stable baselines
57
+ class EnvCityGym(gym.Env):
58
+ """
59
+ Env wrapper coming from the gym library.
60
+ """
61
+ def __init__(self, env):
62
+ self.env = env
63
+
64
+ # get the number of buildings
65
+ self.num_buildings = len(env.action_space)
66
+ print("num_buildings: ", self.num_buildings)
67
+
68
+ self.action_space = gym.spaces.Box(low=np.array([-0.2]), high=np.array([0.2]), dtype=np.float32)
69
+
70
+ self.observation_space = gym.spaces.MultiDiscrete(np.array([25, 13]))
71
+
72
+ def reset(self):
73
+ obs_dict = env_reset(self.env)
74
+ obs = self.env.reset()
75
+
76
+ observation = [o for o in obs]
77
+
78
+ return observation
79
+
80
+ def step(self, action):
81
+ """
82
+ we apply the same action for all the buildings
83
+ """
84
+ obs, reward, done, info = self.env.step(action)
85
+
86
+ observation = [o for o in obs]
87
+
88
+ return observation, reward, done, info
89
+
90
+ def render(self, mode='human'):
91
+ return self.env.render(mode)
92
+
93
+
94
+
95
+
96
+ def env_run_without_action(actions_all=None):
97
+ """
98
+ This function is used to run the environment without applying any action.
99
+ and return the dataset
100
+ """
101
+ # create env from citylearn
102
+ env = CityLearnEnv(schema=Constants.schema_path)
103
+
104
+ # get the number of buildings
105
+ num_buildings = len(env.action_space)
106
+ print("num_buildings: ", num_buildings)
107
+
108
+ # create env wrapper
109
+ env = EnvCityGym(env)
110
+
111
+ # reset the environment
112
+ obs = env.reset()
113
+
114
+ infos = []
115
+
116
+ for id_building in range(num_buildings):
117
+ # run the environment
118
+ obs = env.reset()
119
+
120
+ for i in range(8759):
121
+
122
+ info_tmp = env.env.buildings[id_building].observations.copy()
123
+
124
+ if actions_all is not None:
125
+
126
+ action = [[actions_all[i + 8759 * b]] for b in range(num_buildings)]
127
+
128
+ else:
129
+ # we get the action
130
+ action = np.zeros((5, )) # 5 is the number of buildings
131
+
132
+ # reshape action into form like [[0], [0], [0], [0], [0]]
133
+ action = [[a] for a in action]
134
+
135
+ #print(action)
136
+
137
+ obs, reward, done, info = env.step(action)
138
+
139
+ info_tmp['reward'] = reward[id_building]
140
+ info_tmp['building_id'] = id_building
141
+ infos.append(info_tmp)
142
+
143
+ if done:
144
+ obs = env.reset()
145
+
146
+ # create the data
147
+ data_pd = {}
148
+
149
+ for info in infos:
150
+ for i, v in info.items():
151
+ try:
152
+ data_pd[i].append(v)
153
+ except:
154
+ data_pd[i] = [v]
155
+
156
+ data = pd.DataFrame(infos)
157
+
158
+ return data
159
+
160
+ if __name__ == "__main__":
161
+
162
+ # data generation
163
+ data = env_run_without_action()
164
+
165
+ # we only normalize month and hour
166
+ data['hour'] = data['hour']/24
167
+ data['month'] = data['month']/12
168
+
169
+ # save the data into the data_histo folder into parquet format
170
+ data.to_parquet("data_histo/data.parquet")
171
+