Theivaprakasham commited on
Commit
05f68a2
·
1 Parent(s): 4968963

Delete wildreceipt-layoutlmv3.py

Browse files
Files changed (1) hide show
  1. wildreceipt-layoutlmv3.py +0 -133
wildreceipt-layoutlmv3.py DELETED
@@ -1,133 +0,0 @@
1
- import json
2
- import os
3
- from pathlib import Path
4
- import datasets
5
- from PIL import Image
6
- import pandas as pd
7
-
8
- logger = datasets.logging.get_logger(__name__)
9
- _CITATION = """\
10
- @article{Sun2021SpatialDG,
11
- title={Spatial Dual-Modality Graph Reasoning for Key Information Extraction},
12
- author={Hongbin Sun and Zhanghui Kuang and Xiaoyu Yue and Chenhao Lin and Wayne Zhang},
13
- journal={ArXiv},
14
- year={2021},
15
- volume={abs/2103.14470}
16
- }
17
- """
18
- _DESCRIPTION = """\
19
- WildReceipt is a collection of receipts. It contains, for each photo, a list of OCRs - with the bounding box, text, and class. It contains 1765 photos, with 25 classes, and 50000 text boxes. The goal is to benchmark "key information extraction" - extracting key information from documents
20
- https://arxiv.org/abs/2103.14470
21
-
22
- """
23
-
24
- def load_image(image_path):
25
- image = Image.open(image_path)
26
- w, h = image.size
27
- return image, (w,h)
28
-
29
- def normalize_bbox(bbox, size):
30
- return [
31
- int(1000 * bbox[0] / size[0]),
32
- int(1000 * bbox[1] / size[1]),
33
- int(1000 * bbox[2] / size[0]),
34
- int(1000 * bbox[3] / size[1]),
35
- ]
36
-
37
-
38
- _URLS = ["https://download.openmmlab.com/mmocr/data/wildreceipt.tar"]
39
-
40
- class DatasetConfig(datasets.BuilderConfig):
41
- """BuilderConfig for WildReceipt Dataset"""
42
- def __init__(self, **kwargs):
43
- """BuilderConfig for WildReceipt Dataset.
44
- Args:
45
- **kwargs: keyword arguments forwarded to super.
46
- """
47
- super(DatasetConfig, self).__init__(**kwargs)
48
-
49
-
50
- class WildReceipt(datasets.GeneratorBasedBuilder):
51
- BUILDER_CONFIGS = [
52
- DatasetConfig(name="WildReceipt", version=datasets.Version("1.0.0"), description="WildReceipt dataset"),
53
- ]
54
-
55
- def _info(self):
56
- return datasets.DatasetInfo(
57
- description=_DESCRIPTION,
58
- features=datasets.Features(
59
- {
60
- "id": datasets.Value("string"),
61
- "words": datasets.Sequence(datasets.Value("string")),
62
- "bboxes": datasets.Sequence(datasets.Sequence(datasets.Value("int64"))),
63
- "ner_tags": datasets.Sequence(
64
- datasets.features.ClassLabel(
65
- names = ['Ignore', 'Store_name_value', 'Store_name_key', 'Store_addr_value', 'Store_addr_key', 'Tel_value', 'Tel_key', 'Date_value', 'Date_key', 'Time_value', 'Time_key', 'Prod_item_value', 'Prod_item_key', 'Prod_quantity_value', 'Prod_quantity_key', 'Prod_price_value', 'Prod_price_key', 'Subtotal_value', 'Subtotal_key', 'Tax_value', 'Tax_key', 'Tips_value', 'Tips_key', 'Total_value', 'Total_key', 'Others']
66
- )
67
- ),
68
- "image_path": datasets.Value("string"),
69
- }
70
- ),
71
- supervised_keys=None,
72
- citation=_CITATION,
73
- homepage="",
74
- )
75
-
76
-
77
-
78
-
79
- def _split_generators(self, dl_manager):
80
- """Returns SplitGenerators."""
81
- """Uses local files located with data_dir"""
82
- downloaded_file = dl_manager.download_and_extract(_URLS)
83
- dest = Path(downloaded_file[0])/'wildreceipt'
84
-
85
- return [
86
- datasets.SplitGenerator(
87
- name=datasets.Split.TRAIN, gen_kwargs={"filepath": dest/"train.txt", "dest": dest}
88
- ),
89
- datasets.SplitGenerator(
90
- name=datasets.Split.TEST, gen_kwargs={"filepath": dest/"test.txt", "dest": dest}
91
- ),
92
- ]
93
-
94
- def _generate_examples(self, filepath, dest):
95
-
96
- df = pd.read_csv(dest/'class_list.txt', delimiter='\s', header=None)
97
- id2labels = dict(zip(df[0].tolist(), df[1].tolist()))
98
-
99
-
100
- logger.info("⏳ Generating examples from = %s", filepath)
101
-
102
- item_list = []
103
- with open(filepath, 'r') as f:
104
- for line in f:
105
- item_list.append(line.rstrip('\n\r'))
106
-
107
- for guid, fname in enumerate(item_list):
108
-
109
- data = json.loads(fname)
110
- image_path = dest/data['file_name']
111
- image, size = load_image(image_path)
112
- boxes = [[i['box'][6], i['box'][7], i['box'][2], i['box'][3]] for i in data['annotations']]
113
-
114
- text = [i['text'] for i in data['annotations']]
115
- label = [id2labels[i['label']] for i in data['annotations']]
116
-
117
- #print(boxes)
118
- #for i in boxes:
119
- # print(i)
120
- boxes = [normalize_bbox(box, size) for box in boxes]
121
-
122
- flag=0
123
- #print(image_path)
124
- for i in boxes:
125
- #print(i)
126
- for j in i:
127
- if j>1000:
128
- flag+=1
129
- #print(j)
130
- pass
131
- if flag>0: print(image_path)
132
-
133
- yield guid, {"id": str(guid), "words": text, "bboxes": boxes, "ner_tags": label, "image_path": image_path}