TheLastBen
commited on
Commit
·
152e69f
1
Parent(s):
d74b49a
Create mainpaperspacev2.py
Browse files- mainpaperspacev2.py +1255 -0
mainpaperspacev2.py
ADDED
@@ -0,0 +1,1255 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from IPython.display import clear_output
|
2 |
+
from subprocess import call, getoutput
|
3 |
+
from IPython.display import display
|
4 |
+
import ipywidgets as widgets
|
5 |
+
import io
|
6 |
+
from PIL import Image, ImageDraw
|
7 |
+
import fileinput
|
8 |
+
import time
|
9 |
+
import os
|
10 |
+
from os import listdir
|
11 |
+
from os.path import isfile
|
12 |
+
from tqdm import tqdm
|
13 |
+
import random
|
14 |
+
import sys
|
15 |
+
import cv2
|
16 |
+
from io import BytesIO
|
17 |
+
import requests
|
18 |
+
from collections import defaultdict
|
19 |
+
from math import log, sqrt
|
20 |
+
import numpy as np
|
21 |
+
|
22 |
+
|
23 |
+
|
24 |
+
def Deps(force_reinstall):
|
25 |
+
|
26 |
+
if not force_reinstall and os.path.exists('/usr/local/lib/python3.9/dist-packages/safetensors'):
|
27 |
+
print('[1;32mDependencies already installed')
|
28 |
+
else:
|
29 |
+
print('[1;32mInstalling the dependencies...')
|
30 |
+
call("pip install --root-user-action=ignore --no-deps -q accelerate==0.12.0", shell=True, stdout=open('/dev/null', 'w'))
|
31 |
+
if not os.path.exists('/usr/local/lib/python3.9/dist-packages/safetensors'):
|
32 |
+
os.chdir('/usr/local/lib/python3.9/dist-packages')
|
33 |
+
call("rm -r torch torch-1.12.0+cu116.dist-info torchaudio* torchvision* PIL Pillow* transformers* numpy* gdown*", shell=True, stdout=open('/dev/null', 'w'))
|
34 |
+
os.chdir('/notebooks')
|
35 |
+
if not os.path.exists('/models'):
|
36 |
+
call('mkdir /models', shell=True)
|
37 |
+
if not os.path.exists('/notebooks/models'):
|
38 |
+
call('ln -s /models /notebooks', shell=True)
|
39 |
+
if os.path.exists('/deps'):
|
40 |
+
call("rm -r /deps", shell=True)
|
41 |
+
call('mkdir /deps', shell=True)
|
42 |
+
if not os.path.exists('cache'):
|
43 |
+
call('mkdir cache', shell=True)
|
44 |
+
os.chdir('/deps')
|
45 |
+
call('wget -q -i https://raw.githubusercontent.com/TheLastBen/fast-stable-diffusion/main/Dependencies/aptdeps.txt', shell=True)
|
46 |
+
call('dpkg -i *.deb', shell=True, stdout=open('/dev/null', 'w'))
|
47 |
+
call('wget -q https://huggingface.co/TheLastBen/dependencies/resolve/main/pps.tar.zst', shell=True, stdout=open('/dev/null', 'w'))
|
48 |
+
call('tar -C / --zstd -xf pps.tar.zst', shell=True, stdout=open('/dev/null', 'w'))
|
49 |
+
call("sed -i 's@~/.cache@/notebooks/cache@' /usr/local/lib/python3.9/dist-packages/transformers/utils/hub.py", shell=True)
|
50 |
+
os.chdir('/notebooks')
|
51 |
+
call("git clone --depth 1 -q --branch updt https://github.com/TheLastBen/diffusers /diffusers", shell=True, stdout=open('/dev/null', 'w'))
|
52 |
+
if not os.path.exists('/notebooks/diffusers'):
|
53 |
+
call('ln -s /diffusers /notebooks', shell=True)
|
54 |
+
call("rm -r /deps", shell=True)
|
55 |
+
os.chdir('/notebooks')
|
56 |
+
clear_output()
|
57 |
+
|
58 |
+
done()
|
59 |
+
|
60 |
+
|
61 |
+
|
62 |
+
def downloadmodel_hfv2(Path_to_HuggingFace):
|
63 |
+
import wget
|
64 |
+
os.chdir('/models')
|
65 |
+
if os.path.exists('stable-diffusion-custom'):
|
66 |
+
call("rm -r stable-diffusion-custom", shell=True)
|
67 |
+
|
68 |
+
if os.path.exists('/content/gdrive/MyDrive/Fast-Dreambooth/token.txt'):
|
69 |
+
with open("/content/gdrive/MyDrive/Fast-Dreambooth/token.txt") as f:
|
70 |
+
token = f.read()
|
71 |
+
authe=f'https://USER:{token}@'
|
72 |
+
else:
|
73 |
+
authe="https://"
|
74 |
+
|
75 |
+
call("mkdir stable-diffusion-custom", shell=True)
|
76 |
+
os.chdir("stable-diffusion-custom")
|
77 |
+
call("git init", shell=True)
|
78 |
+
call("git lfs install --system --skip-repo", shell=True)
|
79 |
+
call('git remote add -f origin '+authe+'huggingface.co/'+Path_to_HuggingFace, shell=True)
|
80 |
+
call("git config core.sparsecheckout true", shell=True)
|
81 |
+
call('echo -e "\nscheduler\ntext_encoder\ntokenizer\nunet\nvae\nfeature_extractor\nmodel_index.json\n!*.safetensors" > .git/info/sparse-checkout', shell=True)
|
82 |
+
call("git pull origin main", shell=True)
|
83 |
+
if os.path.exists('stable-diffusion-custom/unet/diffusion_pytorch_model.bin'):
|
84 |
+
call("rm -r stable-diffusion-custom/.git", shell=True)
|
85 |
+
clear_output()
|
86 |
+
done()
|
87 |
+
else:
|
88 |
+
while not os.path.exists('stable-diffusion-custom/unet/diffusion_pytorch_model.bin'):
|
89 |
+
print('[1;31mCheck the link you provided')
|
90 |
+
time.sleep(5)
|
91 |
+
os.chdir('/notebooks')
|
92 |
+
|
93 |
+
|
94 |
+
|
95 |
+
def downloadmodel_pthv2(CKPT_Path, Custom_Model_Version):
|
96 |
+
import wget
|
97 |
+
os.chdir('/models')
|
98 |
+
clear_output()
|
99 |
+
if os.path.exists(str(CKPT_Path)):
|
100 |
+
if Custom_Model_Version=='512':
|
101 |
+
wget.download('https://raw.githubusercontent.com/TheLastBen/fast-stable-diffusion/main/Dreambooth/convertodiffv2.py')
|
102 |
+
clear_output()
|
103 |
+
call('python convertodiff.py '+CKPT_Path+' stable-diffusion-custom --v2 --reference_model stabilityai/stable-diffusion-2-1-base', shell=True)
|
104 |
+
elif Custom_Model_Version=='768':
|
105 |
+
wget.download('https://raw.githubusercontent.com/TheLastBen/fast-stable-diffusion/main/Dreambooth/convertodiffv2.py')
|
106 |
+
clear_output()
|
107 |
+
call('python convertodiff.py '+CKPT_Path+' stable-diffusion-custom --v2 --reference_model stabilityai/stable-diffusion-2-1', shell=True)
|
108 |
+
call('rm convertodiff.py', shell=True)
|
109 |
+
if os.path.exists('stable-diffusion-custom/unet/diffusion_pytorch_model.bin'):
|
110 |
+
clear_output()
|
111 |
+
done()
|
112 |
+
else:
|
113 |
+
call('rm -r stable-diffusion-custom', shell=True)
|
114 |
+
while not os.path.exists('stable-diffusion-custom/unet/diffusion_pytorch_model.bin'):
|
115 |
+
print('[1;31mConversion error')
|
116 |
+
time.sleep(5)
|
117 |
+
else:
|
118 |
+
while not os.path.exists(str(CKPT_Path)):
|
119 |
+
print('[1;31mWrong path, use the colab file explorer to copy the path')
|
120 |
+
time.sleep(5)
|
121 |
+
os.chdir('/notebooks')
|
122 |
+
|
123 |
+
|
124 |
+
|
125 |
+
def downloadmodel_lnkv2(CKPT_Link, Custom_Model_Version):
|
126 |
+
import wget
|
127 |
+
os.chdir('/models')
|
128 |
+
call("gdown --fuzzy " +CKPT_Link+ " -O model.ckpt", shell=True)
|
129 |
+
gdown.download(url=CKPT_Link, output="model.ckpt", quiet=False, fuzzy=True)
|
130 |
+
|
131 |
+
if os.path.exists('model.ckpt'):
|
132 |
+
if os.path.getsize("model.ckpt") > 1810671599:
|
133 |
+
if Custom_Model_Version=='512':
|
134 |
+
wget.download('https://raw.githubusercontent.com/TheLastBen/fast-stable-diffusion/main/Dreambooth/convertodiffv2.py')
|
135 |
+
clear_output()
|
136 |
+
call('python convertodiff.py '+CKPT_Path+' stable-diffusion-custom --v2 --reference_model stabilityai/stable-diffusion-2-1-base', shell=True)
|
137 |
+
elif Custom_Model_Version=='768':
|
138 |
+
wget.download('https://raw.githubusercontent.com/TheLastBen/fast-stable-diffusion/main/Dreambooth/convertodiffv2.py')
|
139 |
+
clear_output()
|
140 |
+
call('python convertodiff.py '+CKPT_Path+' stable-diffusion-custom --v2 --reference_model stabilityai/stable-diffusion-2-1', shell=True)
|
141 |
+
call('rm convertodiff.py', shell=True)
|
142 |
+
call('rm model.ckpt', shell=True)
|
143 |
+
if os.path.exists('stable-diffusion-custom/unet/diffusion_pytorch_model.bin'):
|
144 |
+
clear_output()
|
145 |
+
done()
|
146 |
+
else:
|
147 |
+
call('rm -r stable-diffusion-custom', shell=True)
|
148 |
+
while not os.path.exists('stable-diffusion-custom/unet/diffusion_pytorch_model.bin'):
|
149 |
+
print('[1;31mConversion error')
|
150 |
+
time.sleep(5)
|
151 |
+
else:
|
152 |
+
while os.path.getsize('model.ckpt') < 1810671599:
|
153 |
+
print('[1;31mWrong link, check that the link is valid')
|
154 |
+
time.sleep(5)
|
155 |
+
os.chdir('/notebooks')
|
156 |
+
|
157 |
+
|
158 |
+
def dlv2(Path_to_HuggingFace, CKPT_Path, CKPT_Link, Model_Version, Custom_Model_Version):
|
159 |
+
|
160 |
+
if Path_to_HuggingFace != "":
|
161 |
+
downloadmodel_hfv2(Path_to_HuggingFace)
|
162 |
+
MODEL_NAMEv2="/models/stable-diffusion-custom"
|
163 |
+
elif CKPT_Path !="":
|
164 |
+
downloadmodel_pthv2(CKPT_Path, Custom_Model_Version)
|
165 |
+
MODEL_NAMEv2="/models/stable-diffusion-custom"
|
166 |
+
elif CKPT_Link !="":
|
167 |
+
downloadmodel_lnkv2(CKPT_Link, Custom_Model_Version)
|
168 |
+
MODEL_NAMEv2="/models/stable-diffusion-custom"
|
169 |
+
else:
|
170 |
+
if Model_Version=="512":
|
171 |
+
MODEL_NAMEv2="dataset"
|
172 |
+
print('[1;32mUsing the original V2-512 model')
|
173 |
+
elif Model_Version=="768":
|
174 |
+
MODEL_NAMEv2="dataset"
|
175 |
+
print('[1;32mUsing the original V2-768 model')
|
176 |
+
else:
|
177 |
+
MODEL_NAMEv2=""
|
178 |
+
print('[1;31mWrong model version')
|
179 |
+
|
180 |
+
return MODEL_NAMEv2
|
181 |
+
|
182 |
+
|
183 |
+
def sessv2(Session_Name, Session_Link_optional, Model_Version, MODEL_NAMEv2):
|
184 |
+
|
185 |
+
os.chdir('/notebooks')
|
186 |
+
PT=""
|
187 |
+
|
188 |
+
while Session_Name=="":
|
189 |
+
print('[1;31mInput the Session Name:')
|
190 |
+
Session_Name=input("")
|
191 |
+
Session_Name=Session_Name.replace(" ","_")
|
192 |
+
|
193 |
+
WORKSPACE='/notebooks/Fast-Dreambooth'
|
194 |
+
|
195 |
+
if Session_Link_optional !="":
|
196 |
+
print('[1;32mDownloading session...')
|
197 |
+
|
198 |
+
if Session_Link_optional != "":
|
199 |
+
if not os.path.exists(str(WORKSPACE+'/Sessions')):
|
200 |
+
call("mkdir -p " +WORKSPACE+ "/Sessions", shell=True)
|
201 |
+
time.sleep(1)
|
202 |
+
os.chdir(WORKSPACE+'/Sessions')
|
203 |
+
gdown.download_folder(url=Session_Link_optional, output=Session_Name, quiet=True, remaining_ok=True, use_cookies=False)
|
204 |
+
os.chdir(Session_Name)
|
205 |
+
call("rm -r " +instance_images, shell=True)
|
206 |
+
call("unzip " +instance_images.zip, shell=True, stdout=open('/dev/null', 'w'))
|
207 |
+
call("rm -r " +concept_images, shell=True)
|
208 |
+
call("unzip " +concept_images.zip, shell=True, stdout=open('/dev/null', 'w'))
|
209 |
+
call("rm -r " +captions, shell=True)
|
210 |
+
call("unzip " +captions.zip, shell=True, stdout=open('/dev/null', 'w'))
|
211 |
+
os.chdir('/notebooks')
|
212 |
+
clear_output()
|
213 |
+
|
214 |
+
INSTANCE_NAME=Session_Name
|
215 |
+
OUTPUT_DIR="/models/"+Session_Name
|
216 |
+
SESSION_DIR=WORKSPACE+"/Sessions/"+Session_Name
|
217 |
+
CONCEPT_DIR=SESSION_DIR+"/concept_images"
|
218 |
+
INSTANCE_DIR=SESSION_DIR+"/instance_images"
|
219 |
+
CAPTIONS_DIR=SESSION_DIR+'/captions'
|
220 |
+
MDLPTH=str(SESSION_DIR+"/"+Session_Name+'.ckpt')
|
221 |
+
resumev2=False
|
222 |
+
|
223 |
+
if os.path.exists(str(SESSION_DIR)):
|
224 |
+
mdls=[ckpt for ckpt in listdir(SESSION_DIR) if ckpt.split(".")[-1]=="ckpt"]
|
225 |
+
if not os.path.exists(MDLPTH) and '.ckpt' in str(mdls):
|
226 |
+
|
227 |
+
def f(n):
|
228 |
+
k=0
|
229 |
+
for i in mdls:
|
230 |
+
if k==n:
|
231 |
+
call('mv '+SESSION_DIR+'/'+i+' '+MDLPTH, shell=True)
|
232 |
+
k=k+1
|
233 |
+
|
234 |
+
k=0
|
235 |
+
print('[1;33mNo final checkpoint model found, select which intermediary checkpoint to use, enter only the number, (000 to skip):\n[1;34m')
|
236 |
+
|
237 |
+
for i in mdls:
|
238 |
+
print(str(k)+'- '+i)
|
239 |
+
k=k+1
|
240 |
+
n=input()
|
241 |
+
while int(n)>k-1:
|
242 |
+
n=input()
|
243 |
+
if n!="000":
|
244 |
+
f(int(n))
|
245 |
+
print('[1;32mUsing the model '+ mdls[int(n)]+" ...")
|
246 |
+
time.sleep(8)
|
247 |
+
else:
|
248 |
+
print('[1;32mSkipping the intermediary checkpoints.')
|
249 |
+
|
250 |
+
|
251 |
+
if os.path.exists(str(SESSION_DIR)) and not os.path.exists(MDLPTH):
|
252 |
+
print('[1;32mLoading session with no previous model, using the original model or the custom downloaded model')
|
253 |
+
if MODEL_NAMEv2=="":
|
254 |
+
print('[1;31mNo model found, use the "Model Download" cell to download a model.')
|
255 |
+
else:
|
256 |
+
print('[1;32mSession Loaded, proceed to uploading instance images')
|
257 |
+
|
258 |
+
elif os.path.exists(MDLPTH):
|
259 |
+
print('[1;32mSession found, loading the trained model ...')
|
260 |
+
if Model_Version=='512':
|
261 |
+
call("wget -q -O convertodiff.py https://raw.githubusercontent.com/TheLastBen/fast-stable-diffusion/main/Dreambooth/convertodiffv2.py", shell=True)
|
262 |
+
clear_output()
|
263 |
+
print('[1;32mSession found, loading the trained model ...')
|
264 |
+
call('python /notebooks/convertodiff.py '+MDLPTH+' '+OUTPUT_DIR+' --v2 --reference_model stabilityai/stable-diffusion-2-1-base', shell=True)
|
265 |
+
|
266 |
+
elif Model_Version=='768':
|
267 |
+
call('wget -q -O convertodiff.py https://raw.githubusercontent.com/TheLastBen/fast-stable-diffusion/main/Dreambooth/convertodiffv2.py', shell=True)
|
268 |
+
clear_output()
|
269 |
+
print('[1;32mSession found, loading the trained model ...')
|
270 |
+
call('python /notebooks/convertodiff.py '+MDLPTH+' '+OUTPUT_DIR+' --v2 --reference_model stabilityai/stable-diffusion-2-1', shell=True)
|
271 |
+
|
272 |
+
call('rm /notebooks/convertodiff.py', shell=True)
|
273 |
+
|
274 |
+
if os.path.exists(OUTPUT_DIR+'/unet/diffusion_pytorch_model.bin'):
|
275 |
+
resumev2=True
|
276 |
+
clear_output()
|
277 |
+
print('[1;32mSession loaded.')
|
278 |
+
else:
|
279 |
+
if not os.path.exists(OUTPUT_DIR+'/unet/diffusion_pytorch_model.bin'):
|
280 |
+
print('[1;31mConversion error, if the error persists, remove the CKPT file from the current session folder')
|
281 |
+
|
282 |
+
elif not os.path.exists(str(SESSION_DIR)):
|
283 |
+
call('mkdir -p '+INSTANCE_DIR, shell=True)
|
284 |
+
print('[1;32mCreating session...')
|
285 |
+
if MODEL_NAMEv2=="":
|
286 |
+
print('[1;31mNo model found, use the "Model Download" cell to download a model.')
|
287 |
+
else:
|
288 |
+
print('[1;32mSession created, proceed to uploading instance images')
|
289 |
+
|
290 |
+
return PT, WORKSPACE, Session_Name, INSTANCE_NAME, OUTPUT_DIR, SESSION_DIR, CONCEPT_DIR, INSTANCE_DIR, CAPTIONS_DIR, MDLPTH, MODEL_NAMEv2, resumev2
|
291 |
+
|
292 |
+
|
293 |
+
|
294 |
+
def done():
|
295 |
+
done = widgets.Button(
|
296 |
+
description='Done!',
|
297 |
+
disabled=True,
|
298 |
+
button_style='success',
|
299 |
+
tooltip='',
|
300 |
+
icon='check'
|
301 |
+
)
|
302 |
+
display(done)
|
303 |
+
|
304 |
+
|
305 |
+
|
306 |
+
|
307 |
+
def uplder(Remove_existing_instance_images, Crop_images, Crop_size, IMAGES_FOLDER_OPTIONAL, INSTANCE_DIR, CAPTIONS_DIR, ren):
|
308 |
+
|
309 |
+
uploader = widgets.FileUpload(description="Choose images",accept='image/*', multiple=True)
|
310 |
+
Upload = widgets.Button(
|
311 |
+
description='Upload',
|
312 |
+
disabled=False,
|
313 |
+
button_style='info',
|
314 |
+
tooltip='Click to upload the chosen instance images',
|
315 |
+
icon=''
|
316 |
+
)
|
317 |
+
|
318 |
+
|
319 |
+
def up(Upload):
|
320 |
+
with out:
|
321 |
+
uploader.close()
|
322 |
+
Upload.close()
|
323 |
+
upld(Remove_existing_instance_images, Crop_images, Crop_size, IMAGES_FOLDER_OPTIONAL, INSTANCE_DIR, CAPTIONS_DIR, uploader, ren)
|
324 |
+
done()
|
325 |
+
out=widgets.Output()
|
326 |
+
|
327 |
+
if IMAGES_FOLDER_OPTIONAL=="":
|
328 |
+
Upload.on_click(up)
|
329 |
+
display(uploader, Upload, out)
|
330 |
+
else:
|
331 |
+
upld(Remove_existing_instance_images, Crop_images, Crop_size, IMAGES_FOLDER_OPTIONAL, INSTANCE_DIR, CAPTIONS_DIR, uploader, ren)
|
332 |
+
done()
|
333 |
+
|
334 |
+
|
335 |
+
|
336 |
+
|
337 |
+
def upld(Remove_existing_instance_images, Crop_images, Crop_size, IMAGES_FOLDER_OPTIONAL, INSTANCE_DIR, CAPTIONS_DIR, uploader, ren):
|
338 |
+
|
339 |
+
|
340 |
+
if os.path.exists(CAPTIONS_DIR+"off"):
|
341 |
+
call('mv '+CAPTIONS_DIR+"off"+' '+CAPTIONS_DIR, shell=True)
|
342 |
+
time.sleep(2)
|
343 |
+
|
344 |
+
if Remove_existing_instance_images:
|
345 |
+
if os.path.exists(str(INSTANCE_DIR)):
|
346 |
+
call("rm -r " +INSTANCE_DIR, shell=True)
|
347 |
+
if os.path.exists(str(CAPTIONS_DIR)):
|
348 |
+
call("rm -r " +CAPTIONS_DIR, shell=True)
|
349 |
+
|
350 |
+
|
351 |
+
if not os.path.exists(str(INSTANCE_DIR)):
|
352 |
+
call("mkdir -p " +INSTANCE_DIR, shell=True)
|
353 |
+
if not os.path.exists(str(CAPTIONS_DIR)):
|
354 |
+
call("mkdir -p " +CAPTIONS_DIR, shell=True)
|
355 |
+
|
356 |
+
|
357 |
+
if IMAGES_FOLDER_OPTIONAL !="":
|
358 |
+
if any(file.endswith('.{}'.format('txt')) for file in os.listdir(IMAGES_FOLDER_OPTIONAL)):
|
359 |
+
call('mv '+IMAGES_FOLDER_OPTIONAL+'/*.txt '+CAPTIONS_DIR, shell=True)
|
360 |
+
if Crop_images:
|
361 |
+
os.chdir(str(IMAGES_FOLDER_OPTIONAL))
|
362 |
+
call('find . -name "* *" -type f | rename ' "'s/ /-/g'", shell=True)
|
363 |
+
os.chdir('/notebooks')
|
364 |
+
for filename in tqdm(os.listdir(IMAGES_FOLDER_OPTIONAL), bar_format=' |{bar:15}| {n_fmt}/{total_fmt} Uploaded'):
|
365 |
+
extension = filename.split(".")[-1]
|
366 |
+
identifier=filename.split(".")[0]
|
367 |
+
new_path_with_file = os.path.join(INSTANCE_DIR, filename)
|
368 |
+
file = Image.open(IMAGES_FOLDER_OPTIONAL+"/"+filename)
|
369 |
+
width, height = file.size
|
370 |
+
image = file
|
371 |
+
if file.size !=(Crop_size, Crop_size):
|
372 |
+
image=crop_image(file, Crop_size)
|
373 |
+
if (extension.upper() == "JPG" or "jpg"):
|
374 |
+
image[0].save(new_path_with_file, format="JPEG", quality = 100)
|
375 |
+
else:
|
376 |
+
image[0].save(new_path_with_file, format=extension.upper())
|
377 |
+
|
378 |
+
else:
|
379 |
+
call("cp \'"+IMAGES_FOLDER_OPTIONAL+"/"+filename+"\' "+INSTANCE_DIR, shell=True)
|
380 |
+
|
381 |
+
else:
|
382 |
+
for filename in tqdm(os.listdir(IMAGES_FOLDER_OPTIONAL), bar_format=' |{bar:15}| {n_fmt}/{total_fmt} Uploaded'):
|
383 |
+
call("cp -r " +IMAGES_FOLDER_OPTIONAL+"/. " +INSTANCE_DIR, shell=True)
|
384 |
+
|
385 |
+
|
386 |
+
|
387 |
+
elif IMAGES_FOLDER_OPTIONAL =="":
|
388 |
+
up=""
|
389 |
+
for filename, file in uploader.value.items():
|
390 |
+
if filename.split(".")[-1]=="txt":
|
391 |
+
with open(CAPTIONS_DIR+'/'+filename, 'w') as f:
|
392 |
+
f.write(file['content'].decode())
|
393 |
+
up=[(filename, file) for filename, file in uploader.value.items() if filename.split(".")[-1]!="txt"]
|
394 |
+
if Crop_images:
|
395 |
+
for filename, file_info in tqdm(up, bar_format=' |{bar:15}| {n_fmt}/{total_fmt} Uploaded'):
|
396 |
+
img = Image.open(io.BytesIO(file_info['content']))
|
397 |
+
extension = filename.split(".")[-1]
|
398 |
+
identifier=filename.split(".")[0]
|
399 |
+
|
400 |
+
if (extension.upper() == "JPG" or "jpg"):
|
401 |
+
img.save(INSTANCE_DIR+"/"+filename, format="JPEG", quality = 100)
|
402 |
+
else:
|
403 |
+
img.save(INSTANCE_DIR+"/"+filename, format=extension.upper())
|
404 |
+
|
405 |
+
new_path_with_file = os.path.join(INSTANCE_DIR, filename)
|
406 |
+
file = Image.open(new_path_with_file)
|
407 |
+
width, height = file.size
|
408 |
+
image = img
|
409 |
+
if file.size !=(Crop_size, Crop_size):
|
410 |
+
image=crop_image(file, Crop_size)
|
411 |
+
if (extension.upper() == "JPG" or "jpg"):
|
412 |
+
image[0].save(new_path_with_file, format="JPEG", quality = 100)
|
413 |
+
else:
|
414 |
+
image[0].save(new_path_with_file, format=extension.upper())
|
415 |
+
|
416 |
+
else:
|
417 |
+
for filename, file_info in tqdm(uploader.value.items(), bar_format=' |{bar:15}| {n_fmt}/{total_fmt} Uploaded'):
|
418 |
+
img = Image.open(io.BytesIO(file_info['content']))
|
419 |
+
|
420 |
+
extension = filename.split(".")[-1]
|
421 |
+
identifier=filename.split(".")[0]
|
422 |
+
|
423 |
+
if (extension.upper() == "JPG" or "jpg"):
|
424 |
+
img.save(INSTANCE_DIR+"/"+filename, format="JPEG", quality = 100)
|
425 |
+
else:
|
426 |
+
img.save(INSTANCE_DIR+"/"+filename, format=extension.upper())
|
427 |
+
|
428 |
+
|
429 |
+
if ren:
|
430 |
+
i=0
|
431 |
+
for filename in tqdm(os.listdir(INSTANCE_DIR), bar_format=' |{bar:15}| {n_fmt}/{total_fmt} Renamed'):
|
432 |
+
extension = filename.split(".")[-1]
|
433 |
+
identifier=filename.split(".")[0]
|
434 |
+
new_path_with_file = os.path.join(INSTANCE_DIR, "conceptimagedb"+str(i)+"."+extension)
|
435 |
+
call('mv "'+os.path.join(INSTANCE_DIR,filename)+'" "'+new_path_with_file+'"', shell=True)
|
436 |
+
i=i+1
|
437 |
+
|
438 |
+
os.chdir(INSTANCE_DIR)
|
439 |
+
call('find . -name "* *" -type f | rename ' "'s/ /-/g'", shell=True)
|
440 |
+
os.chdir(CAPTIONS_DIR)
|
441 |
+
call('find . -name "* *" -type f | rename ' "'s/ /-/g'", shell=True)
|
442 |
+
os.chdir('/notebooks')
|
443 |
+
|
444 |
+
|
445 |
+
def caption(CAPTIONS_DIR, INSTANCE_DIR):
|
446 |
+
|
447 |
+
if os.path.exists(CAPTIONS_DIR+"off"):
|
448 |
+
call('mv '+CAPTIONS_DIR+"off"+' '+CAPTIONS_DIR, shell=True)
|
449 |
+
time.sleep(2)
|
450 |
+
|
451 |
+
paths=""
|
452 |
+
out=""
|
453 |
+
widgets_l=""
|
454 |
+
clear_output()
|
455 |
+
def Caption(path):
|
456 |
+
if path!="Select an instance image to caption":
|
457 |
+
|
458 |
+
name = os.path.splitext(os.path.basename(path))[0]
|
459 |
+
ext=os.path.splitext(os.path.basename(path))[-1][1:]
|
460 |
+
if ext=="jpg" or "JPG":
|
461 |
+
ext="JPEG"
|
462 |
+
|
463 |
+
if os.path.exists(CAPTIONS_DIR+"/"+name + '.txt'):
|
464 |
+
with open(CAPTIONS_DIR+"/"+name + '.txt', 'r') as f:
|
465 |
+
text = f.read()
|
466 |
+
else:
|
467 |
+
with open(CAPTIONS_DIR+"/"+name + '.txt', 'w') as f:
|
468 |
+
f.write("")
|
469 |
+
with open(CAPTIONS_DIR+"/"+name + '.txt', 'r') as f:
|
470 |
+
text = f.read()
|
471 |
+
|
472 |
+
img=Image.open(os.path.join(INSTANCE_DIR,path))
|
473 |
+
img=img.resize((420, 420))
|
474 |
+
image_bytes = BytesIO()
|
475 |
+
img.save(image_bytes, format=ext, qualiy=10)
|
476 |
+
image_bytes.seek(0)
|
477 |
+
image_data = image_bytes.read()
|
478 |
+
img= image_data
|
479 |
+
image = widgets.Image(
|
480 |
+
value=img,
|
481 |
+
width=420,
|
482 |
+
height=420
|
483 |
+
)
|
484 |
+
text_area = widgets.Textarea(value=text, description='', disabled=False, layout={'width': '300px', 'height': '120px'})
|
485 |
+
|
486 |
+
|
487 |
+
def update_text(text):
|
488 |
+
with open(CAPTIONS_DIR+"/"+name + '.txt', 'w') as f:
|
489 |
+
f.write(text)
|
490 |
+
|
491 |
+
button = widgets.Button(description='Save', button_style='success')
|
492 |
+
button.on_click(lambda b: update_text(text_area.value))
|
493 |
+
|
494 |
+
return widgets.VBox([widgets.HBox([image, text_area, button])])
|
495 |
+
|
496 |
+
|
497 |
+
paths = os.listdir(INSTANCE_DIR)
|
498 |
+
widgets_l = widgets.Select(options=["Select an instance image to caption"]+paths, rows=25)
|
499 |
+
|
500 |
+
|
501 |
+
out = widgets.Output()
|
502 |
+
|
503 |
+
def click(change):
|
504 |
+
with out:
|
505 |
+
out.clear_output()
|
506 |
+
display(Caption(change.new))
|
507 |
+
|
508 |
+
widgets_l.observe(click, names='value')
|
509 |
+
display(widgets.HBox([widgets_l, out]))
|
510 |
+
|
511 |
+
|
512 |
+
|
513 |
+
|
514 |
+
def dbtrainv2(Resume_Training, UNet_Training_Steps, UNet_Learning_Rate, Text_Encoder_Training_Steps, Text_Encoder_Concept_Training_Steps, Text_Encoder_Learning_Rate, Style_Training, Resolution, MODEL_NAMEv2, SESSION_DIR, INSTANCE_DIR, CONCEPT_DIR, CAPTIONS_DIR, External_Captions, INSTANCE_NAME, Session_Name, OUTPUT_DIR, PT, resumev2, Save_Checkpoint_Every_n_Steps, Start_saving_from_the_step, Save_Checkpoint_Every):
|
515 |
+
|
516 |
+
if resumev2 and not Resume_Training:
|
517 |
+
print('[1;31mOverwrite your previously trained model ?, answering "yes" will train a new model, answering "no" will resumev2 the training of the previous model? yes or no ?[0m')
|
518 |
+
while True:
|
519 |
+
ansres=input('')
|
520 |
+
if ansres=='no':
|
521 |
+
Resume_Training = True
|
522 |
+
break
|
523 |
+
elif ansres=='yes':
|
524 |
+
Resume_Training = False
|
525 |
+
resumev2= False
|
526 |
+
break
|
527 |
+
|
528 |
+
while not Resume_Training and not os.path.exists(MODEL_NAMEv2+'/unet/diffusion_pytorch_model.bin'):
|
529 |
+
print('[1;31mNo model found, use the "Model Download" cell to download a model.')
|
530 |
+
time.sleep(5)
|
531 |
+
|
532 |
+
if os.path.exists(CAPTIONS_DIR+"off"):
|
533 |
+
call('mv '+CAPTIONS_DIR+"off"+' '+CAPTIONS_DIR, shell=True)
|
534 |
+
time.sleep(2)
|
535 |
+
|
536 |
+
MODELT_NAME=MODEL_NAMEv2
|
537 |
+
|
538 |
+
Seed=random.randint(1, 999999)
|
539 |
+
|
540 |
+
Style=""
|
541 |
+
if Style_Training:
|
542 |
+
Style="--Style"
|
543 |
+
|
544 |
+
extrnlcptn=""
|
545 |
+
if External_Captions:
|
546 |
+
extrnlcptn="--external_captions"
|
547 |
+
|
548 |
+
precision="fp16"
|
549 |
+
|
550 |
+
GCUNET="--gradient_checkpointing"
|
551 |
+
if Resolution<=640:
|
552 |
+
GCUNET=""
|
553 |
+
|
554 |
+
resuming=""
|
555 |
+
if Resume_Training and os.path.exists(OUTPUT_DIR+'/unet/diffusion_pytorch_model.bin'):
|
556 |
+
MODELT_NAME=OUTPUT_DIR
|
557 |
+
print('[1;32mResuming Training...[0m')
|
558 |
+
resuming="Yes"
|
559 |
+
elif Resume_Training and not os.path.exists(OUTPUT_DIR+'/unet/diffusion_pytorch_model.bin'):
|
560 |
+
print('[1;31mPrevious model not found, training a new model...[0m')
|
561 |
+
MODELT_NAME=MODEL_NAMEv2
|
562 |
+
while MODEL_NAMEv2=="":
|
563 |
+
print('[1;31mNo model found, use the "Model Download" cell to download a model.')
|
564 |
+
time.sleep(5)
|
565 |
+
|
566 |
+
|
567 |
+
trnonltxt=""
|
568 |
+
if UNet_Training_Steps==0:
|
569 |
+
trnonltxt="--train_only_text_encoder"
|
570 |
+
|
571 |
+
Enable_text_encoder_training= True
|
572 |
+
Enable_Text_Encoder_Concept_Training= True
|
573 |
+
|
574 |
+
|
575 |
+
if Text_Encoder_Training_Steps==0 or External_Captions:
|
576 |
+
Enable_text_encoder_training= False
|
577 |
+
else:
|
578 |
+
stptxt=Text_Encoder_Training_Steps
|
579 |
+
|
580 |
+
if Text_Encoder_Concept_Training_Steps==0:
|
581 |
+
Enable_Text_Encoder_Concept_Training= False
|
582 |
+
else:
|
583 |
+
stptxtc=Text_Encoder_Concept_Training_Steps
|
584 |
+
|
585 |
+
|
586 |
+
if Save_Checkpoint_Every==None:
|
587 |
+
Save_Checkpoint_Every=1
|
588 |
+
stp=0
|
589 |
+
if Start_saving_from_the_step==None:
|
590 |
+
Start_saving_from_the_step=0
|
591 |
+
if (Start_saving_from_the_step < 200):
|
592 |
+
Start_saving_from_the_step=Save_Checkpoint_Every
|
593 |
+
stpsv=Start_saving_from_the_step
|
594 |
+
if Save_Checkpoint_Every_n_Steps:
|
595 |
+
stp=Save_Checkpoint_Every
|
596 |
+
|
597 |
+
|
598 |
+
def dump_only_textenc(trnonltxt, MODELT_NAME, INSTANCE_DIR, OUTPUT_DIR, PT, Seed, precision, Training_Steps):
|
599 |
+
call('accelerate launch /notebooks/diffusers/examples/dreambooth/train_dreambooth_pps.py \
|
600 |
+
'+trnonltxt+' \
|
601 |
+
--train_text_encoder \
|
602 |
+
--image_captions_filename \
|
603 |
+
--dump_only_text_encoder \
|
604 |
+
--pretrained_model_name_or_path='+MODELT_NAME+' \
|
605 |
+
--instance_data_dir='+INSTANCE_DIR+' \
|
606 |
+
--output_dir='+OUTPUT_DIR+' \
|
607 |
+
--instance_prompt='+PT+' \
|
608 |
+
--seed='+str(Seed)+' \
|
609 |
+
--resolution=512 \
|
610 |
+
--mixed_precision='+str(precision)+' \
|
611 |
+
--train_batch_size=1 \
|
612 |
+
--gradient_accumulation_steps=1 --gradient_checkpointing \
|
613 |
+
--use_8bit_adam \
|
614 |
+
--learning_rate='+str(Text_Encoder_Learning_Rate)+' \
|
615 |
+
--lr_scheduler="polynomial" \
|
616 |
+
--lr_warmup_steps=0 \
|
617 |
+
--max_train_steps='+str(Training_Steps), shell=True)
|
618 |
+
|
619 |
+
def train_only_unet(stp, stpsv, SESSION_DIR, MODELT_NAME, INSTANCE_DIR, OUTPUT_DIR, Text_Encoder_Training_Steps, PT, Seed, Resolution, Style, extrnlcptn, precision, Training_Steps):
|
620 |
+
clear_output()
|
621 |
+
if resuming=="Yes":
|
622 |
+
print('[1;32mResuming Training...[0m')
|
623 |
+
print('[1;33mTraining the UNet...[0m')
|
624 |
+
call('accelerate launch /notebooks/diffusers/examples/dreambooth/train_dreambooth_pps.py \
|
625 |
+
'+Style+' \
|
626 |
+
'+extrnlcptn+' \
|
627 |
+
--stop_text_encoder_training='+str(Text_Encoder_Training_Steps)+' \
|
628 |
+
--image_captions_filename \
|
629 |
+
--train_only_unet \
|
630 |
+
--Session_dir='+SESSION_DIR+' \
|
631 |
+
--save_starting_step='+str(stpsv)+' \
|
632 |
+
--save_n_steps='+str(stp)+' \
|
633 |
+
--pretrained_model_name_or_path='+MODELT_NAME+' \
|
634 |
+
--instance_data_dir='+INSTANCE_DIR+' \
|
635 |
+
--output_dir='+OUTPUT_DIR+' \
|
636 |
+
--instance_prompt='+PT+' \
|
637 |
+
--seed='+str(Seed)+' \
|
638 |
+
--resolution='+str(Resolution)+' \
|
639 |
+
--mixed_precision='+str(precision)+' \
|
640 |
+
--train_batch_size=1 \
|
641 |
+
--gradient_accumulation_steps=1 '+GCUNET+' \
|
642 |
+
--use_8bit_adam \
|
643 |
+
--learning_rate='+str(UNet_Learning_Rate)+' \
|
644 |
+
--lr_scheduler="polynomial" \
|
645 |
+
--lr_warmup_steps=0 \
|
646 |
+
--max_train_steps='+str(Training_Steps), shell=True)
|
647 |
+
|
648 |
+
if Enable_text_encoder_training :
|
649 |
+
print('[1;33mTraining the text encoder...[0m')
|
650 |
+
if os.path.exists(OUTPUT_DIR+'/'+'text_encoder_trained'):
|
651 |
+
call('rm -r '+OUTPUT_DIR+'/text_encoder_trained', shell=True)
|
652 |
+
dump_only_textenc(trnonltxt, MODELT_NAME, INSTANCE_DIR, OUTPUT_DIR, PT, Seed, precision, Training_Steps=stptxt)
|
653 |
+
|
654 |
+
if Enable_Text_Encoder_Concept_Training:
|
655 |
+
if os.path.exists(CONCEPT_DIR):
|
656 |
+
if os.listdir(CONCEPT_DIR)!=[]:
|
657 |
+
clear_output()
|
658 |
+
if resuming=="Yes":
|
659 |
+
print('[1;32mResuming Training...[0m')
|
660 |
+
print('[1;33mTraining the text encoder on the concept...[0m')
|
661 |
+
dump_only_textenc(trnonltxt, MODELT_NAME, CONCEPT_DIR, OUTPUT_DIR, PT, Seed, precision, Training_Steps=stptxtc)
|
662 |
+
else:
|
663 |
+
clear_output()
|
664 |
+
if resuming=="Yes":
|
665 |
+
print('[1;32mResuming Training...[0m')
|
666 |
+
print('[1;31mNo concept images found, skipping concept training...')
|
667 |
+
Text_Encoder_Concept_Training_Steps=0
|
668 |
+
time.sleep(8)
|
669 |
+
else:
|
670 |
+
clear_output()
|
671 |
+
if resuming=="Yes":
|
672 |
+
print('[1;32mResuming Training...[0m')
|
673 |
+
print('[1;31mNo concept images found, skipping concept training...')
|
674 |
+
Text_Encoder_Concept_Training_Steps=0
|
675 |
+
time.sleep(8)
|
676 |
+
|
677 |
+
if UNet_Training_Steps!=0:
|
678 |
+
train_only_unet(stp, stpsv, SESSION_DIR, MODELT_NAME, INSTANCE_DIR, OUTPUT_DIR, Text_Encoder_Training_Steps, PT, Seed, Resolution, Style, extrnlcptn, precision, Training_Steps=UNet_Training_Steps)
|
679 |
+
|
680 |
+
if UNet_Training_Steps==0 and Text_Encoder_Concept_Training_Steps==0 and External_Captions :
|
681 |
+
print('[1;32mNothing to do')
|
682 |
+
else:
|
683 |
+
if os.path.exists(OUTPUT_DIR+'/unet/diffusion_pytorch_model.bin'):
|
684 |
+
|
685 |
+
call('python /notebooks/diffusers/scripts/convertosdv2.py --fp16 '+OUTPUT_DIR+' '+SESSION_DIR+'/'+Session_Name+'.ckpt', shell=True)
|
686 |
+
clear_output()
|
687 |
+
if os.path.exists(SESSION_DIR+"/"+INSTANCE_NAME+'.ckpt'):
|
688 |
+
clear_output()
|
689 |
+
print("[1;32mDONE, the CKPT model is in the session's folder")
|
690 |
+
else:
|
691 |
+
print("[1;31mSomething went wrong")
|
692 |
+
|
693 |
+
else:
|
694 |
+
print("[1;31mSomething went wrong")
|
695 |
+
|
696 |
+
return resumev2
|
697 |
+
|
698 |
+
|
699 |
+
def testv2(Custom_Path, Previous_Session_Name, Session_Name, Model_Version, User, Password, Use_localtunnel):
|
700 |
+
|
701 |
+
|
702 |
+
if Previous_Session_Name!="":
|
703 |
+
print("[1;32mLoading a previous session model")
|
704 |
+
mdldir='/notebooks/Fast-Dreambooth/Sessions/'+Previous_Session_Name
|
705 |
+
path_to_trained_model=mdldir+"/"+Previous_Session_Name+'.ckpt'
|
706 |
+
|
707 |
+
|
708 |
+
while not os.path.exists(path_to_trained_model):
|
709 |
+
print("[1;31mThere is no trained model in the previous session")
|
710 |
+
time.sleep(5)
|
711 |
+
|
712 |
+
elif Custom_Path!="":
|
713 |
+
print("[1;32mLoading model from a custom path")
|
714 |
+
path_to_trained_model=Custom_Path
|
715 |
+
|
716 |
+
|
717 |
+
while not os.path.exists(path_to_trained_model):
|
718 |
+
print("[1;31mWrong Path")
|
719 |
+
time.sleep(5)
|
720 |
+
|
721 |
+
else:
|
722 |
+
print("[1;32mLoading the trained model")
|
723 |
+
mdldir='/notebooks/Fast-Dreambooth/Sessions/'+Session_Name
|
724 |
+
path_to_trained_model=mdldir+"/"+Session_Name+'.ckpt'
|
725 |
+
|
726 |
+
|
727 |
+
while not os.path.exists(path_to_trained_model):
|
728 |
+
print("[1;31mThere is no trained model in this session")
|
729 |
+
time.sleep(5)
|
730 |
+
|
731 |
+
|
732 |
+
auth=f"--gradio-auth {User}:{Password}"
|
733 |
+
if User =="" or Password=="":
|
734 |
+
auth=""
|
735 |
+
|
736 |
+
os.chdir('/notebooks')
|
737 |
+
if not os.path.exists('sd_db'):
|
738 |
+
call('mkdir sd_db', shell=True)
|
739 |
+
os.chdir('/notebooks/sd_db')
|
740 |
+
call('git clone --depth 1 --branch main https://github.com/Stability-AI/stablediffusion', shell=True)
|
741 |
+
call('git clone --depth 1 --branch Paperspacedb https://github.com/TheLastBen/stable-diffusion-webui', shell=True)
|
742 |
+
clear_output()
|
743 |
+
|
744 |
+
if not os.path.exists('/notebooks/sd_db/stablediffusion/src/k-diffusion/k_diffusion'):
|
745 |
+
call('mkdir /notebooks/sd_db/stablediffusion/src', shell=True)
|
746 |
+
os.chdir('/notebooks/sd_db/stablediffusion/src')
|
747 |
+
call('git clone -q --depth 1 --no-tags https://github.com/TheLastBen/taming-transformers.git', shell=True)
|
748 |
+
call('git clone -q --depth 1 https://github.com/salesforce/BLIP', shell=True)
|
749 |
+
call('git clone -q --depth 1 https://github.com/sczhou/CodeFormer', shell=True)
|
750 |
+
call('git clone -q --depth 1 --branch master https://github.com/crowsonkb/k-diffusion', shell=True)
|
751 |
+
|
752 |
+
|
753 |
+
if not os.path.exists('/usr/lib/node_modules/localtunnel'):
|
754 |
+
call('npm install -g localtunnel --silent', shell=True, stdout=open('/dev/null', 'w'))
|
755 |
+
|
756 |
+
share=''
|
757 |
+
if not Use_localtunnel:
|
758 |
+
share='--share'
|
759 |
+
call('wget -q -O /usr/local/lib/python3.9/dist-packages/gradio/blocks.py https://raw.githubusercontent.com/TheLastBen/fast-stable-diffusion/main/Dreambooth/blocks.py', shell=True)
|
760 |
+
|
761 |
+
else:
|
762 |
+
|
763 |
+
share=''
|
764 |
+
os.chdir('/notebooks')
|
765 |
+
call('nohup lt --port 7860 > srv.txt 2>&1 &', shell=True)
|
766 |
+
time.sleep(2)
|
767 |
+
call("grep -o 'https[^ ]*' /notebooks/srv.txt >srvr.txt", shell=True)
|
768 |
+
time.sleep(2)
|
769 |
+
srv= getoutput('cat /notebooks/srvr.txt')
|
770 |
+
|
771 |
+
for line in fileinput.input('/usr/local/lib/python3.9/dist-packages/gradio/blocks.py', inplace=True):
|
772 |
+
if line.strip().startswith('self.server_name ='):
|
773 |
+
line = f' self.server_name = "{srv[8:]}"\n'
|
774 |
+
if line.strip().startswith('self.server_port ='):
|
775 |
+
line = ' self.server_port = 443\n'
|
776 |
+
if line.strip().startswith('self.protocol = "https"'):
|
777 |
+
line = ' self.protocol = "https"\n'
|
778 |
+
if line.strip().startswith('if self.local_url.startswith("https") or self.is_colab'):
|
779 |
+
line = ''
|
780 |
+
if line.strip().startswith('else "http"'):
|
781 |
+
line = ''
|
782 |
+
sys.stdout.write(line)
|
783 |
+
|
784 |
+
call('rm /notebooks/srv.txt', shell=True)
|
785 |
+
call('rm /notebooks/srvr.txt', shell=True)
|
786 |
+
|
787 |
+
|
788 |
+
|
789 |
+
os.chdir('/notebooks/sd_db/stable-diffusion-webui')
|
790 |
+
print('[1;32m')
|
791 |
+
call('git pull', shell=True)
|
792 |
+
clear_output()
|
793 |
+
|
794 |
+
if Model_Version == "768":
|
795 |
+
configf="--config /notebooks/sd_db/stablediffusion/configs/stable-diffusion/v2-inference-v.yaml --no-half"
|
796 |
+
elif Model_Version == "512":
|
797 |
+
configf="--config /notebooks/sd_db/stablediffusion/configs/stable-diffusion/v2-inference.yaml --no-half"
|
798 |
+
else:
|
799 |
+
configf="--config /notebooks/sd_db/stablediffusion/configs/stable-diffusion/v2-inference-v.yaml --no-half"
|
800 |
+
|
801 |
+
return path_to_trained_model, configf, auth
|
802 |
+
|
803 |
+
|
804 |
+
|
805 |
+
def clean():
|
806 |
+
|
807 |
+
Sessions=os.listdir("/notebooks/Fast-Dreambooth/Sessions")
|
808 |
+
|
809 |
+
s = widgets.Select(
|
810 |
+
options=Sessions,
|
811 |
+
rows=5,
|
812 |
+
description='',
|
813 |
+
disabled=False
|
814 |
+
)
|
815 |
+
|
816 |
+
out=widgets.Output()
|
817 |
+
|
818 |
+
d = widgets.Button(
|
819 |
+
description='Remove',
|
820 |
+
disabled=False,
|
821 |
+
button_style='warning',
|
822 |
+
tooltip='Removet the selected session',
|
823 |
+
icon='warning'
|
824 |
+
)
|
825 |
+
|
826 |
+
def rem(d):
|
827 |
+
with out:
|
828 |
+
if s.value is not None:
|
829 |
+
clear_output()
|
830 |
+
print("[1;33mTHE SESSION [1;31m"+s.value+" [1;33mHAS BEEN REMOVED FROM THE STORAGE")
|
831 |
+
call('rm -r /notebooks/Fast-Dreambooth/Sessions/'+s.value, shell=True)
|
832 |
+
if os.path.exists('/notebooks/models/'+s.value):
|
833 |
+
call('rm -r /notebooks/models/'+s.value, shell=True)
|
834 |
+
s.options=os.listdir("/notebooks/Fast-Dreambooth/Sessions")
|
835 |
+
|
836 |
+
|
837 |
+
else:
|
838 |
+
d.close()
|
839 |
+
s.close()
|
840 |
+
clear_output()
|
841 |
+
print("[1;32mNOTHING TO REMOVE")
|
842 |
+
|
843 |
+
d.on_click(rem)
|
844 |
+
if s.value is not None:
|
845 |
+
display(s,d,out)
|
846 |
+
else:
|
847 |
+
print("[1;32mNOTHING TO REMOVE")
|
848 |
+
|
849 |
+
|
850 |
+
|
851 |
+
def hfv2(Name_of_your_concept, Save_concept_to, hf_token_write, INSTANCE_NAME, OUTPUT_DIR, Session_Name, MDLPTH):
|
852 |
+
|
853 |
+
from slugify import slugify
|
854 |
+
from huggingface_hub import HfApi, HfFolder, CommitOperationAdd
|
855 |
+
from huggingface_hub import create_repo
|
856 |
+
from IPython.display import display_markdown
|
857 |
+
|
858 |
+
if(Name_of_your_concept == ""):
|
859 |
+
Name_of_your_concept = Session_Name
|
860 |
+
Name_of_your_concept=Name_of_your_concept.replace(" ","-")
|
861 |
+
|
862 |
+
|
863 |
+
|
864 |
+
if hf_token_write =="":
|
865 |
+
print('[1;32mYour Hugging Face write access token : ')
|
866 |
+
hf_token_write=input()
|
867 |
+
|
868 |
+
hf_token = hf_token_write
|
869 |
+
|
870 |
+
api = HfApi()
|
871 |
+
your_username = api.whoami(token=hf_token)["name"]
|
872 |
+
|
873 |
+
if(Save_concept_to == "Public_Library"):
|
874 |
+
repo_id = f"sd-dreambooth-library/{slugify(Name_of_your_concept)}"
|
875 |
+
#Join the Concepts Library organization if you aren't part of it already
|
876 |
+
call("curl -X POST -H 'Authorization: Bearer '"+hf_token+" -H 'Content-Type: application/json' https://huggingface.co/organizations/sd-dreambooth-library/share/SSeOwppVCscfTEzFGQaqpfcjukVeNrKNHX", shell=True)
|
877 |
+
else:
|
878 |
+
repo_id = f"{your_username}/{slugify(Name_of_your_concept)}"
|
879 |
+
output_dir = f'/notebooks/models/'+INSTANCE_NAME
|
880 |
+
|
881 |
+
def bar(prg):
|
882 |
+
br="[1;33mUploading to HuggingFace : " '[0m|'+'█' * prg + ' ' * (25-prg)+'| ' +str(prg*4)+ "%"
|
883 |
+
return br
|
884 |
+
|
885 |
+
print("[1;32mLoading...")
|
886 |
+
|
887 |
+
os.chdir(OUTPUT_DIR)
|
888 |
+
call('rm -r feature_extractor .git', shell=True)
|
889 |
+
clear_output()
|
890 |
+
call('git init', shell=True)
|
891 |
+
call('git lfs install --system --skip-repo', shell=True)
|
892 |
+
call('git remote add -f origin "https://USER:'+hf_token+'@huggingface.co/stabilityai/stable-diffusion-2-1"', shell=True)
|
893 |
+
call('git config core.sparsecheckout true', shell=True)
|
894 |
+
call('echo -e "\nfeature_extractor" > .git/info/sparse-checkout', shell=True)
|
895 |
+
call('git pull origin main', shell=True)
|
896 |
+
call('rm -r .git', shell=True)
|
897 |
+
os.chdir('/notebooks')
|
898 |
+
clear_output()
|
899 |
+
|
900 |
+
print(bar(1))
|
901 |
+
|
902 |
+
readme_text = f'''---
|
903 |
+
license: creativeml-openrail-m
|
904 |
+
tags:
|
905 |
+
- text-to-image
|
906 |
+
- stable-diffusion
|
907 |
+
---
|
908 |
+
### {Name_of_your_concept} Dreambooth model trained by {api.whoami(token=hf_token)["name"]} with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook
|
909 |
+
|
910 |
+
Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb)
|
911 |
+
'''
|
912 |
+
#Save the readme to a file
|
913 |
+
readme_file = open("README.md", "w")
|
914 |
+
readme_file.write(readme_text)
|
915 |
+
readme_file.close()
|
916 |
+
|
917 |
+
operations = [
|
918 |
+
CommitOperationAdd(path_in_repo="README.md", path_or_fileobj="README.md"),
|
919 |
+
CommitOperationAdd(path_in_repo=f"{Session_Name}.ckpt",path_or_fileobj=MDLPTH)
|
920 |
+
|
921 |
+
]
|
922 |
+
create_repo(repo_id,private=True, token=hf_token)
|
923 |
+
|
924 |
+
api.create_commit(
|
925 |
+
repo_id=repo_id,
|
926 |
+
operations=operations,
|
927 |
+
commit_message=f"Upload the concept {Name_of_your_concept} embeds and token",
|
928 |
+
token=hf_token
|
929 |
+
)
|
930 |
+
|
931 |
+
api.upload_folder(
|
932 |
+
folder_path=OUTPUT_DIR+"/feature_extractor",
|
933 |
+
path_in_repo="feature_extractor",
|
934 |
+
repo_id=repo_id,
|
935 |
+
token=hf_token
|
936 |
+
)
|
937 |
+
|
938 |
+
clear_output()
|
939 |
+
print(bar(8))
|
940 |
+
|
941 |
+
api.upload_folder(
|
942 |
+
folder_path=OUTPUT_DIR+"/scheduler",
|
943 |
+
path_in_repo="scheduler",
|
944 |
+
repo_id=repo_id,
|
945 |
+
token=hf_token
|
946 |
+
)
|
947 |
+
|
948 |
+
clear_output()
|
949 |
+
print(bar(9))
|
950 |
+
|
951 |
+
api.upload_folder(
|
952 |
+
folder_path=OUTPUT_DIR+"/text_encoder",
|
953 |
+
path_in_repo="text_encoder",
|
954 |
+
repo_id=repo_id,
|
955 |
+
token=hf_token
|
956 |
+
)
|
957 |
+
|
958 |
+
clear_output()
|
959 |
+
print(bar(12))
|
960 |
+
|
961 |
+
api.upload_folder(
|
962 |
+
folder_path=OUTPUT_DIR+"/tokenizer",
|
963 |
+
path_in_repo="tokenizer",
|
964 |
+
repo_id=repo_id,
|
965 |
+
token=hf_token
|
966 |
+
)
|
967 |
+
|
968 |
+
clear_output()
|
969 |
+
print(bar(13))
|
970 |
+
|
971 |
+
api.upload_folder(
|
972 |
+
folder_path=OUTPUT_DIR+"/unet",
|
973 |
+
path_in_repo="unet",
|
974 |
+
repo_id=repo_id,
|
975 |
+
token=hf_token
|
976 |
+
)
|
977 |
+
|
978 |
+
clear_output()
|
979 |
+
print(bar(21))
|
980 |
+
|
981 |
+
api.upload_folder(
|
982 |
+
folder_path=OUTPUT_DIR+"/vae",
|
983 |
+
path_in_repo="vae",
|
984 |
+
repo_id=repo_id,
|
985 |
+
token=hf_token
|
986 |
+
)
|
987 |
+
|
988 |
+
clear_output()
|
989 |
+
print(bar(23))
|
990 |
+
|
991 |
+
api.upload_file(
|
992 |
+
path_or_fileobj=OUTPUT_DIR+"/model_index.json",
|
993 |
+
path_in_repo="model_index.json",
|
994 |
+
repo_id=repo_id,
|
995 |
+
token=hf_token
|
996 |
+
)
|
997 |
+
|
998 |
+
clear_output()
|
999 |
+
print(bar(25))
|
1000 |
+
|
1001 |
+
print("[1;32mYour concept was saved successfully at https://huggingface.co/"+repo_id)
|
1002 |
+
done()
|
1003 |
+
|
1004 |
+
|
1005 |
+
|
1006 |
+
def crop_image(im, size):
|
1007 |
+
|
1008 |
+
GREEN = "#0F0"
|
1009 |
+
BLUE = "#00F"
|
1010 |
+
RED = "#F00"
|
1011 |
+
|
1012 |
+
def focal_point(im, settings):
|
1013 |
+
corner_points = image_corner_points(im, settings) if settings.corner_points_weight > 0 else []
|
1014 |
+
entropy_points = image_entropy_points(im, settings) if settings.entropy_points_weight > 0 else []
|
1015 |
+
face_points = image_face_points(im, settings) if settings.face_points_weight > 0 else []
|
1016 |
+
|
1017 |
+
pois = []
|
1018 |
+
|
1019 |
+
weight_pref_total = 0
|
1020 |
+
if len(corner_points) > 0:
|
1021 |
+
weight_pref_total += settings.corner_points_weight
|
1022 |
+
if len(entropy_points) > 0:
|
1023 |
+
weight_pref_total += settings.entropy_points_weight
|
1024 |
+
if len(face_points) > 0:
|
1025 |
+
weight_pref_total += settings.face_points_weight
|
1026 |
+
|
1027 |
+
corner_centroid = None
|
1028 |
+
if len(corner_points) > 0:
|
1029 |
+
corner_centroid = centroid(corner_points)
|
1030 |
+
corner_centroid.weight = settings.corner_points_weight / weight_pref_total
|
1031 |
+
pois.append(corner_centroid)
|
1032 |
+
|
1033 |
+
entropy_centroid = None
|
1034 |
+
if len(entropy_points) > 0:
|
1035 |
+
entropy_centroid = centroid(entropy_points)
|
1036 |
+
entropy_centroid.weight = settings.entropy_points_weight / weight_pref_total
|
1037 |
+
pois.append(entropy_centroid)
|
1038 |
+
|
1039 |
+
face_centroid = None
|
1040 |
+
if len(face_points) > 0:
|
1041 |
+
face_centroid = centroid(face_points)
|
1042 |
+
face_centroid.weight = settings.face_points_weight / weight_pref_total
|
1043 |
+
pois.append(face_centroid)
|
1044 |
+
|
1045 |
+
average_point = poi_average(pois, settings)
|
1046 |
+
|
1047 |
+
return average_point
|
1048 |
+
|
1049 |
+
|
1050 |
+
def image_face_points(im, settings):
|
1051 |
+
|
1052 |
+
np_im = np.array(im)
|
1053 |
+
gray = cv2.cvtColor(np_im, cv2.COLOR_BGR2GRAY)
|
1054 |
+
|
1055 |
+
tries = [
|
1056 |
+
[ f'{cv2.data.haarcascades}haarcascade_eye.xml', 0.01 ],
|
1057 |
+
[ f'{cv2.data.haarcascades}haarcascade_frontalface_default.xml', 0.05 ],
|
1058 |
+
[ f'{cv2.data.haarcascades}haarcascade_profileface.xml', 0.05 ],
|
1059 |
+
[ f'{cv2.data.haarcascades}haarcascade_frontalface_alt.xml', 0.05 ],
|
1060 |
+
[ f'{cv2.data.haarcascades}haarcascade_frontalface_alt2.xml', 0.05 ],
|
1061 |
+
[ f'{cv2.data.haarcascades}haarcascade_frontalface_alt_tree.xml', 0.05 ],
|
1062 |
+
[ f'{cv2.data.haarcascades}haarcascade_eye_tree_eyeglasses.xml', 0.05 ],
|
1063 |
+
[ f'{cv2.data.haarcascades}haarcascade_upperbody.xml', 0.05 ]
|
1064 |
+
]
|
1065 |
+
for t in tries:
|
1066 |
+
classifier = cv2.CascadeClassifier(t[0])
|
1067 |
+
minsize = int(min(im.width, im.height) * t[1]) # at least N percent of the smallest side
|
1068 |
+
try:
|
1069 |
+
faces = classifier.detectMultiScale(gray, scaleFactor=1.1,
|
1070 |
+
minNeighbors=7, minSize=(minsize, minsize), flags=cv2.CASCADE_SCALE_IMAGE)
|
1071 |
+
except:
|
1072 |
+
continue
|
1073 |
+
|
1074 |
+
if len(faces) > 0:
|
1075 |
+
rects = [[f[0], f[1], f[0] + f[2], f[1] + f[3]] for f in faces]
|
1076 |
+
return [PointOfInterest((r[0] +r[2]) // 2, (r[1] + r[3]) // 2, size=abs(r[0]-r[2]), weight=1/len(rects)) for r in rects]
|
1077 |
+
return []
|
1078 |
+
|
1079 |
+
|
1080 |
+
def image_corner_points(im, settings):
|
1081 |
+
grayscale = im.convert("L")
|
1082 |
+
|
1083 |
+
|
1084 |
+
gd = ImageDraw.Draw(grayscale)
|
1085 |
+
gd.rectangle([0, im.height*.9, im.width, im.height], fill="#999")
|
1086 |
+
|
1087 |
+
np_im = np.array(grayscale)
|
1088 |
+
|
1089 |
+
points = cv2.goodFeaturesToTrack(
|
1090 |
+
np_im,
|
1091 |
+
maxCorners=100,
|
1092 |
+
qualityLevel=0.04,
|
1093 |
+
minDistance=min(grayscale.width, grayscale.height)*0.06,
|
1094 |
+
useHarrisDetector=False,
|
1095 |
+
)
|
1096 |
+
|
1097 |
+
if points is None:
|
1098 |
+
return []
|
1099 |
+
|
1100 |
+
focal_points = []
|
1101 |
+
for point in points:
|
1102 |
+
x, y = point.ravel()
|
1103 |
+
focal_points.append(PointOfInterest(x, y, size=4, weight=1/len(points)))
|
1104 |
+
|
1105 |
+
return focal_points
|
1106 |
+
|
1107 |
+
|
1108 |
+
def image_entropy_points(im, settings):
|
1109 |
+
landscape = im.height < im.width
|
1110 |
+
portrait = im.height > im.width
|
1111 |
+
if landscape:
|
1112 |
+
move_idx = [0, 2]
|
1113 |
+
move_max = im.size[0]
|
1114 |
+
elif portrait:
|
1115 |
+
move_idx = [1, 3]
|
1116 |
+
move_max = im.size[1]
|
1117 |
+
else:
|
1118 |
+
return []
|
1119 |
+
|
1120 |
+
e_max = 0
|
1121 |
+
crop_current = [0, 0, settings.crop_width, settings.crop_height]
|
1122 |
+
crop_best = crop_current
|
1123 |
+
while crop_current[move_idx[1]] < move_max:
|
1124 |
+
crop = im.crop(tuple(crop_current))
|
1125 |
+
e = image_entropy(crop)
|
1126 |
+
|
1127 |
+
if (e > e_max):
|
1128 |
+
e_max = e
|
1129 |
+
crop_best = list(crop_current)
|
1130 |
+
|
1131 |
+
crop_current[move_idx[0]] += 4
|
1132 |
+
crop_current[move_idx[1]] += 4
|
1133 |
+
|
1134 |
+
x_mid = int(crop_best[0] + settings.crop_width/2)
|
1135 |
+
y_mid = int(crop_best[1] + settings.crop_height/2)
|
1136 |
+
|
1137 |
+
return [PointOfInterest(x_mid, y_mid, size=25, weight=1.0)]
|
1138 |
+
|
1139 |
+
|
1140 |
+
def image_entropy(im):
|
1141 |
+
# greyscale image entropy
|
1142 |
+
# band = np.asarray(im.convert("L"))
|
1143 |
+
band = np.asarray(im.convert("1"), dtype=np.uint8)
|
1144 |
+
hist, _ = np.histogram(band, bins=range(0, 256))
|
1145 |
+
hist = hist[hist > 0]
|
1146 |
+
return -np.log2(hist / hist.sum()).sum()
|
1147 |
+
|
1148 |
+
def centroid(pois):
|
1149 |
+
x = [poi.x for poi in pois]
|
1150 |
+
y = [poi.y for poi in pois]
|
1151 |
+
return PointOfInterest(sum(x)/len(pois), sum(y)/len(pois))
|
1152 |
+
|
1153 |
+
|
1154 |
+
def poi_average(pois, settings):
|
1155 |
+
weight = 0.0
|
1156 |
+
x = 0.0
|
1157 |
+
y = 0.0
|
1158 |
+
for poi in pois:
|
1159 |
+
weight += poi.weight
|
1160 |
+
x += poi.x * poi.weight
|
1161 |
+
y += poi.y * poi.weight
|
1162 |
+
avg_x = round(weight and x / weight)
|
1163 |
+
avg_y = round(weight and y / weight)
|
1164 |
+
|
1165 |
+
return PointOfInterest(avg_x, avg_y)
|
1166 |
+
|
1167 |
+
|
1168 |
+
def is_landscape(w, h):
|
1169 |
+
return w > h
|
1170 |
+
|
1171 |
+
|
1172 |
+
def is_portrait(w, h):
|
1173 |
+
return h > w
|
1174 |
+
|
1175 |
+
|
1176 |
+
def is_square(w, h):
|
1177 |
+
return w == h
|
1178 |
+
|
1179 |
+
|
1180 |
+
class PointOfInterest:
|
1181 |
+
def __init__(self, x, y, weight=1.0, size=10):
|
1182 |
+
self.x = x
|
1183 |
+
self.y = y
|
1184 |
+
self.weight = weight
|
1185 |
+
self.size = size
|
1186 |
+
|
1187 |
+
def bounding(self, size):
|
1188 |
+
return [
|
1189 |
+
self.x - size//2,
|
1190 |
+
self.y - size//2,
|
1191 |
+
self.x + size//2,
|
1192 |
+
self.y + size//2
|
1193 |
+
]
|
1194 |
+
|
1195 |
+
class Settings:
|
1196 |
+
def __init__(self, crop_width=512, crop_height=512, corner_points_weight=0.5, entropy_points_weight=0.5, face_points_weight=0.5):
|
1197 |
+
self.crop_width = crop_width
|
1198 |
+
self.crop_height = crop_height
|
1199 |
+
self.corner_points_weight = corner_points_weight
|
1200 |
+
self.entropy_points_weight = entropy_points_weight
|
1201 |
+
self.face_points_weight = face_points_weight
|
1202 |
+
|
1203 |
+
settings = Settings(
|
1204 |
+
crop_width = size,
|
1205 |
+
crop_height = size,
|
1206 |
+
face_points_weight = 0.9,
|
1207 |
+
entropy_points_weight = 0.15,
|
1208 |
+
corner_points_weight = 0.5,
|
1209 |
+
)
|
1210 |
+
|
1211 |
+
scale_by = 1
|
1212 |
+
if is_landscape(im.width, im.height):
|
1213 |
+
scale_by = settings.crop_height / im.height
|
1214 |
+
elif is_portrait(im.width, im.height):
|
1215 |
+
scale_by = settings.crop_width / im.width
|
1216 |
+
elif is_square(im.width, im.height):
|
1217 |
+
if is_square(settings.crop_width, settings.crop_height):
|
1218 |
+
scale_by = settings.crop_width / im.width
|
1219 |
+
elif is_landscape(settings.crop_width, settings.crop_height):
|
1220 |
+
scale_by = settings.crop_width / im.width
|
1221 |
+
elif is_portrait(settings.crop_width, settings.crop_height):
|
1222 |
+
scale_by = settings.crop_height / im.height
|
1223 |
+
|
1224 |
+
im = im.resize((int(im.width * scale_by), int(im.height * scale_by)))
|
1225 |
+
im_debug = im.copy()
|
1226 |
+
|
1227 |
+
focus = focal_point(im_debug, settings)
|
1228 |
+
|
1229 |
+
# take the focal point and turn it into crop coordinates that try to center over the focal
|
1230 |
+
# point but then get adjusted back into the frame
|
1231 |
+
y_half = int(settings.crop_height / 2)
|
1232 |
+
x_half = int(settings.crop_width / 2)
|
1233 |
+
|
1234 |
+
x1 = focus.x - x_half
|
1235 |
+
if x1 < 0:
|
1236 |
+
x1 = 0
|
1237 |
+
elif x1 + settings.crop_width > im.width:
|
1238 |
+
x1 = im.width - settings.crop_width
|
1239 |
+
|
1240 |
+
y1 = focus.y - y_half
|
1241 |
+
if y1 < 0:
|
1242 |
+
y1 = 0
|
1243 |
+
elif y1 + settings.crop_height > im.height:
|
1244 |
+
y1 = im.height - settings.crop_height
|
1245 |
+
|
1246 |
+
x2 = x1 + settings.crop_width
|
1247 |
+
y2 = y1 + settings.crop_height
|
1248 |
+
|
1249 |
+
crop = [x1, y1, x2, y2]
|
1250 |
+
|
1251 |
+
results = []
|
1252 |
+
|
1253 |
+
results.append(im.crop(tuple(crop)))
|
1254 |
+
|
1255 |
+
return results
|