PPS / Scripts /sdxllorapps.py
TheLastBen's picture
Upload sdxllorapps.py
c698a10
raw
history blame
39.1 kB
from IPython.display import clear_output
from subprocess import call, getoutput, Popen
from IPython.display import display
import ipywidgets as widgets
import io
from PIL import Image, ImageDraw
import fileinput
import time
import os
from os import listdir
from os.path import isfile
import random
import sys
from io import BytesIO
import requests
from collections import defaultdict
from math import log, sqrt
import numpy as np
import sys
import fileinput
from subprocess import check_output
import six
import base64
from urllib.parse import urlparse, parse_qs, unquote
import urllib.request
from urllib.request import urlopen, Request
import tempfile
from tqdm import tqdm
def Deps(force_reinstall):
if not force_reinstall and os.path.exists('/usr/local/lib/python3.9/dist-packages/safetensors'):
ntbk()
call('pip install --root-user-action=ignore --disable-pip-version-check -qq diffusers -U', shell=True, stdout=open('/dev/null', 'w'))
print('Modules and notebooks updated, dependencies already installed')
else:
call("pip install --root-user-action=ignore --no-deps -q accelerate==0.12.0", shell=True, stdout=open('/dev/null', 'w'))
if not os.path.exists('/usr/local/lib/python3.9/dist-packages/safetensors'):
os.chdir('/usr/local/lib/python3.9/dist-packages')
call("rm -r torch torch-1.12.1+cu116.dist-info torchaudio* torchvision* PIL Pillow* transformers* numpy* gdown*", shell=True, stdout=open('/dev/null', 'w'))
ntbk()
if not os.path.exists('/models'):
call('mkdir /models', shell=True)
if not os.path.exists('/notebooks/models'):
call('ln -s /models /notebooks', shell=True)
if os.path.exists('/deps'):
call("rm -r /deps", shell=True)
call('mkdir /deps', shell=True)
if not os.path.exists('cache'):
call('mkdir cache', shell=True)
os.chdir('/deps')
call('wget -q -i https://raw.githubusercontent.com/TheLastBen/fast-stable-diffusion/main/Dependencies/aptdeps.txt', shell=True)
call('dpkg -i *.deb', shell=True, stdout=open('/dev/null', 'w'))
depsinst("https://huggingface.co/TheLastBen/dependencies/resolve/main/ppsdeps.tar.zst", "/deps/ppsdeps.tar.zst")
call('tar -C / --zstd -xf ppsdeps.tar.zst', shell=True, stdout=open('/dev/null', 'w'))
call("sed -i 's@~/.cache@/notebooks/cache@' /usr/local/lib/python3.9/dist-packages/transformers/utils/hub.py", shell=True)
os.chdir('/notebooks')
call('pip install --root-user-action=ignore --disable-pip-version-check -qq diffusers -U', shell=True, stdout=open('/dev/null', 'w'))
call("git clone --depth 1 -q --branch main https://github.com/TheLastBen/diffusers /diffusers", shell=True, stdout=open('/dev/null', 'w'), stderr=open('/dev/null', 'w'))
call('pip install --root-user-action=ignore --disable-pip-version-check -qq tomesd gradio==3.32', shell=True, stdout=open('/dev/null', 'w'))
if not os.path.exists('/notebooks/diffusers'):
call('ln -s /diffusers /notebooks', shell=True)
call("rm -r /deps", shell=True)
os.chdir('/notebooks')
clear_output()
done()
def depsinst(url, dst):
file_size = None
req = Request(url, headers={"User-Agent": "torch.hub"})
u = urlopen(req)
meta = u.info()
if hasattr(meta, 'getheaders'):
content_length = meta.getheaders("Content-Length")
else:
content_length = meta.get_all("Content-Length")
if content_length is not None and len(content_length) > 0:
file_size = int(content_length[0])
with tqdm(total=file_size, disable=False, mininterval=0.5,
bar_format='Installing dependencies |{bar:20}| {percentage:3.0f}%') as pbar:
with open(dst, "wb") as f:
while True:
buffer = u.read(8192)
if len(buffer) == 0:
break
f.write(buffer)
pbar.update(len(buffer))
f.close()
def ntbk():
os.chdir('/notebooks')
if not os.path.exists('Latest_Notebooks'):
call('mkdir Latest_Notebooks', shell=True)
else:
call('rm -r Latest_Notebooks', shell=True)
call('mkdir Latest_Notebooks', shell=True)
os.chdir('/notebooks/Latest_Notebooks')
call('wget -q -i https://huggingface.co/datasets/TheLastBen/PPS/raw/main/Notebooks.txt', shell=True)
call('rm Notebooks.txt', shell=True)
os.chdir('/notebooks')
def dwn2(url, dst, msg, auth):
if auth!="":
credentials = base64.b64encode(f"USER:{auth}".encode('utf-8')).decode('utf-8')
req = Request(url, headers={"User-Agent": "torch.hub", 'Authorization': f'Basic {credentials}'})
file_size = None
u = urlopen(req)
meta = u.info()
if hasattr(meta, 'getheaders'):
content_length = meta.getheaders("Content-Length")
else:
content_length = meta.get_all("Content-Length")
if content_length is not None and len(content_length) > 0:
file_size = int(content_length[0])
with tqdm(total=file_size, disable=False, mininterval=0.5,
bar_format=msg+' |{bar:20}| {percentage:3.0f}%') as pbar:
with open(dst, "wb") as f:
while True:
buffer = u.read(8192)
if len(buffer) == 0:
break
f.write(buffer)
pbar.update(len(buffer))
f.close()
def ntbks():
os.chdir('/notebooks')
if not os.path.exists('Latest_Notebooks'):
call('mkdir Latest_Notebooks', shell=True)
else:
call('rm -r Latest_Notebooks', shell=True)
call('mkdir Latest_Notebooks', shell=True)
os.chdir('/notebooks/Latest_Notebooks')
call('wget -q -i https://huggingface.co/datasets/TheLastBen/RNPD/raw/main/Notebooks.txt', shell=True)
call('rm Notebooks.txt', shell=True)
os.chdir('/notebooks')
def done():
done = widgets.Button(
description='Done!',
disabled=True,
button_style='success',
tooltip='',
icon='check'
)
display(done)
def mdlvxl(Huggingface_token):
os.chdir('/notebooks')
if os.path.exists('stable-diffusion-XL') and not os.path.exists('/notebooks/stable-diffusion-XL/unet/diffusion_pytorch_model.bin'):
call('rm -r stable-diffusion-XL', shell=True)
if not os.path.exists('stable-diffusion-XL'):
print('Downlading SDXL model...')
call('mkdir stable-diffusion-XL', shell=True)
os.chdir('stable-diffusion-XL')
call('git init', shell=True, stdout=open('/dev/null', 'w'), stderr=open('/dev/null', 'w'))
call('git lfs install --system --skip-repo', shell=True, stdout=open('/dev/null', 'w'), stderr=open('/dev/null', 'w'))
call('git remote add -f origin https://USER:'+Huggingface_token+'@huggingface.co/stabilityai/stable-diffusion-xl-base-0.9', shell=True, stdout=open('/dev/null', 'w'), stderr=open('/dev/null', 'w'))
call('git config core.sparsecheckout true', shell=True, stdout=open('/dev/null', 'w'), stderr=open('/dev/null', 'w'))
call('echo -e "\nscheduler\ntext_encoder\ntext_encoder_2\ntokenizer\ntokenizer_2\nunet\nvae\nfeature_extractor\nmodel_index.json\n!*.safetensors\n!diffusion_pytorch_model.bin\n!pytorch_model.bin\n!*.fp16.bin" > .git/info/sparse-checkout', shell=True, stdout=open('/dev/null', 'w'), stderr=open('/dev/null', 'w'))
call('git pull origin main', shell=True, stdout=open('/dev/null', 'w'), stderr=open('/dev/null', 'w'))
dwn2('https://huggingface.co/stabilityai/stable-diffusion-xl-base-0.9/resolve/main/text_encoder/pytorch_model.bin', 'text_encoder/pytorch_model.bin', '1/4', Huggingface_token)
dwn2('https://huggingface.co/stabilityai/stable-diffusion-xl-base-0.9/resolve/main/text_encoder_2/pytorch_model.bin', 'text_encoder_2/pytorch_model.bin', '2/4', Huggingface_token)
dwn2('https://huggingface.co/stabilityai/stable-diffusion-xl-base-0.9/resolve/main/vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.bin', '3/4', Huggingface_token)
dwn2('https://huggingface.co/stabilityai/stable-diffusion-xl-base-0.9/resolve/main/unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.bin', '4/4', Huggingface_token)
call('rm -r .git', shell=True, stdout=open('/dev/null', 'w'), stderr=open('/dev/null', 'w'))
os.chdir('/notebooks')
clear_output()
while not os.path.exists('/notebooks/stable-diffusion-XL/unet/diffusion_pytorch_model.bin'):
print('Invalid HF token, make sure you have access to the model')
time.sleep(8)
if os.path.exists('/notebooks/stable-diffusion-XL/unet/diffusion_pytorch_model.bin'):
print('Using SDXL model')
else:
print('Using SDXL model')
def downloadmodel_hfxl(Path_to_HuggingFace):
os.chdir('/notebooks')
if os.path.exists('stable-diffusion-custom'):
call("rm -r stable-diffusion-custom", shell=True)
clear_output()
if os.path.exists('Fast-Dreambooth/token.txt'):
with open("Fast-Dreambooth/token.txt") as f:
token = f.read()
authe=f'https://USER:{token}@'
else:
authe="https://"
clear_output()
call("mkdir stable-diffusion-custom", shell=True)
os.chdir("stable-diffusion-custom")
call("git init", shell=True)
call("git lfs install --system --skip-repo", shell=True)
call('git remote add -f origin '+authe+'huggingface.co/'+Path_to_HuggingFace, shell=True)
call("git config core.sparsecheckout true", shell=True)
call('echo -e "\nscheduler\ntext_encoder\ntokenizer\nunet\nvae\nfeature_extractor\nmodel_index.json\n!*.safetensors\n!*.fp16.bin" > .git/info/sparse-checkout', shell=True)
call("git pull origin main", shell=True)
if os.path.exists('unet/diffusion_pytorch_model.bin'):
call("rm -r .git", shell=True)
os.chdir('/notebooks')
clear_output()
done()
while not os.path.exists('/notebooks/stable-diffusion-custom/unet/diffusion_pytorch_model.bin'):
print('Check the link you provided')
os.chdir('/notebooks')
time.sleep(5)
def downloadmodel_link_xl(MODEL_LINK, Huggingface_token):
import wget
import gdown
from gdown.download import get_url_from_gdrive_confirmation
def getsrc(url):
parsed_url = urlparse(url)
if parsed_url.netloc == 'civitai.com':
src='civitai'
elif parsed_url.netloc == 'drive.google.com':
src='gdrive'
elif parsed_url.netloc == 'huggingface.co':
src='huggingface'
else:
src='others'
return src
src=getsrc(MODEL_LINK)
def get_name(url, gdrive):
if not gdrive:
response = requests.get(url, allow_redirects=False)
if "Location" in response.headers:
redirected_url = response.headers["Location"]
quer = parse_qs(urlparse(redirected_url).query)
if "response-content-disposition" in quer:
disp_val = quer["response-content-disposition"][0].split(";")
for vals in disp_val:
if vals.strip().startswith("filename="):
filenm=unquote(vals.split("=", 1)[1].strip())
return filenm.replace("\"","")
else:
headers = {"User-Agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_10_1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/39.0.2171.95 Safari/537.36"}
lnk="https://drive.google.com/uc?id={id}&export=download".format(id=url[url.find("/d/")+3:url.find("/view")])
res = requests.session().get(lnk, headers=headers, stream=True, verify=True)
res = requests.session().get(get_url_from_gdrive_confirmation(res.text), headers=headers, stream=True, verify=True)
content_disposition = six.moves.urllib_parse.unquote(res.headers["Content-Disposition"])
filenm = re.search(r"filename\*=UTF-8''(.*)", content_disposition).groups()[0].replace(os.path.sep, "_")
return filenm
if src=='civitai':
modelname=get_name(MODEL_LINK, False)
elif src=='gdrive':
modelname=get_name(MODEL_LINK, True)
else:
modelname=os.path.basename(MODEL_LINK)
os.chdir('/notebooks')
if src=='huggingface':
dwn2(MODEL_LINK, modelname,'Downloading the Model', Huggingface_token)
else:
call("gdown --fuzzy " +MODEL_LINK+ " -O "+modelname, shell=True)
if os.path.exists(modelname):
if os.path.getsize(modelname) > 1810671599:
print('Converting to diffusers...')
call('python /notebooks/diffusers/scripts/convert_original_stable_diffusion_to_diffusers.py --checkpoint_path '+modelname+' --dump_path stable-diffusion-custom --from_safetensors', shell=True, stdout=open('/dev/null', 'w'), stderr=open('/dev/null', 'w'))
if os.path.exists('stable-diffusion-custom/unet/diffusion_pytorch_model.bin'):
os.chdir('/notebooks')
clear_output()
done()
else:
while not os.path.exists('stable-diffusion-custom/unet/diffusion_pytorch_model.bin'):
print('Conversion error')
os.chdir('/notebooks')
time.sleep(5)
else:
while os.path.getsize(modelname) < 1810671599:
print('Wrong link, check that the link is valid')
os.chdir('/notebooks')
time.sleep(5)
def downloadmodel_path_xl(MODEL_PATH):
import wget
os.chdir('/notebooks')
clear_output()
if os.path.exists(str(MODEL_PATH)):
print('Converting to diffusers...')
call('python /notebooks/diffusers/scripts/convert_original_stable_diffusion_to_diffusers.py --checkpoint_path '+MODEL_PATH+' --dump_path stable-diffusion-custom --from_safetensors', shell=True, stdout=open('/dev/null', 'w'), stderr=open('/dev/null', 'w'))
if os.path.exists('stable-diffusion-custom/unet/diffusion_pytorch_model.bin'):
clear_output()
done()
while not os.path.exists('stable-diffusion-custom/unet/diffusion_pytorch_model.bin'):
print('Conversion error')
os.chdir('/notebooks')
time.sleep(5)
else:
while not os.path.exists(str(MODEL_PATH)):
print('Wrong path, use the file explorer to copy the path')
os.chdir('/notebooks')
time.sleep(5)
def dls_xl(Huggingface_token, Path_to_HuggingFace, MODEL_PATH, MODEL_LINK):
os.chdir('/notebooks')
if Path_to_HuggingFace != "":
downloadmodel_hfxl(Path_to_HuggingFace)
MODEL_NAMExl="/notebooks/stable-diffusion-custom"
elif MODEL_PATH !="":
downloadmodel_path_xl(MODEL_PATH)
MODEL_NAMExl="/notebooks/stable-diffusion-custom"
elif MODEL_LINK !="":
downloadmodel_link_xl(MODEL_LINK, Huggingface_token)
MODEL_NAMExl="/notebooks/stable-diffusion-custom"
else:
if not os.path.exists('stable-diffusion-XL/unet/diffusion_pytorch_model.bin'):
if Huggingface_token=="":
Huggingface_token=input('Your Huggingface Token: ')
mdlvxl(Huggingface_token)
MODEL_NAMExl="/notebooks/stable-diffusion-XL"
else:
mdlvxl('')
MODEL_NAMExl="/notebooks/stable-diffusion-XL"
return MODEL_NAMExl
def sess_xl(Session_Name, MODEL_NAMExl):
import gdown
import wget
os.chdir('/notebooks')
PT=""
while Session_Name=="":
print('Input the Session Name:')
Session_Name=input("")
Session_Name=Session_Name.replace(" ","_")
WORKSPACE='/notebooks/Fast-Dreambooth'
INSTANCE_NAME=Session_Name
OUTPUT_DIR="/notebooks/models/"+Session_Name
SESSION_DIR=WORKSPACE+"/Sessions/"+Session_Name
INSTANCE_DIR=SESSION_DIR+"/instance_images"
CAPTIONS_DIR=SESSION_DIR+'/captions'
MDLPTH=str(SESSION_DIR+"/"+Session_Name+'.safetensors')
if os.path.exists(str(SESSION_DIR)) and not os.path.exists(MDLPTH):
print('Loading session with no previous LoRa model')
if MODEL_NAMExl=="":
print('No model found, use the "Model Download" cell to download a model.')
else:
print('Session Loaded, proceed')
elif not os.path.exists(str(SESSION_DIR)):
call('mkdir -p '+INSTANCE_DIR, shell=True)
print('Creating session...')
if MODEL_NAMExl=="":
print('No model found, use the "Model Download" cell to download a model.')
else:
print('Session created, proceed to uploading instance images')
if MODEL_NAMExl=="":
print('No model found, use the "Model Download" cell to download a model.')
else:
print('Session Loaded, proceed')
return WORKSPACE, Session_Name, INSTANCE_NAME, OUTPUT_DIR, SESSION_DIR, INSTANCE_DIR, CAPTIONS_DIR, MDLPTH, MODEL_NAMExl
def uplder(Remove_existing_instance_images, Crop_images, Crop_size, IMAGES_FOLDER_OPTIONAL, INSTANCE_DIR, CAPTIONS_DIR):
if os.path.exists(INSTANCE_DIR+"/.ipynb_checkpoints"):
call('rm -r '+INSTANCE_DIR+'/.ipynb_checkpoints', shell=True)
uploader = widgets.FileUpload(description="Choose images",accept='image/*, .txt', multiple=True)
Upload = widgets.Button(
description='Upload',
disabled=False,
button_style='info',
tooltip='Click to upload the chosen instance images',
icon=''
)
def up(Upload):
with out:
uploader.close()
Upload.close()
upld(Remove_existing_instance_images, Crop_images, Crop_size, IMAGES_FOLDER_OPTIONAL, INSTANCE_DIR, CAPTIONS_DIR, uploader)
done()
out=widgets.Output()
if IMAGES_FOLDER_OPTIONAL=="":
Upload.on_click(up)
display(uploader, Upload, out)
else:
upld(Remove_existing_instance_images, Crop_images, Crop_size, IMAGES_FOLDER_OPTIONAL, INSTANCE_DIR, CAPTIONS_DIR, uploader)
done()
def upld(Remove_existing_instance_images, Crop_images, Crop_size, IMAGES_FOLDER_OPTIONAL, INSTANCE_DIR, CAPTIONS_DIR, uploader):
from tqdm import tqdm
if Remove_existing_instance_images:
if os.path.exists(str(INSTANCE_DIR)):
call("rm -r " +INSTANCE_DIR, shell=True)
if os.path.exists(str(CAPTIONS_DIR)):
call("rm -r " +CAPTIONS_DIR, shell=True)
if not os.path.exists(str(INSTANCE_DIR)):
call("mkdir -p " +INSTANCE_DIR, shell=True)
if not os.path.exists(str(CAPTIONS_DIR)):
call("mkdir -p " +CAPTIONS_DIR, shell=True)
if IMAGES_FOLDER_OPTIONAL !="":
if os.path.exists(IMAGES_FOLDER_OPTIONAL+"/.ipynb_checkpoints"):
call('rm -r '+IMAGES_FOLDER_OPTIONAL+'/.ipynb_checkpoints', shell=True)
if any(file.endswith('.{}'.format('txt')) for file in os.listdir(IMAGES_FOLDER_OPTIONAL)):
call('mv '+IMAGES_FOLDER_OPTIONAL+'/*.txt '+CAPTIONS_DIR, shell=True)
if Crop_images:
os.chdir(str(IMAGES_FOLDER_OPTIONAL))
call('find . -name "* *" -type f | rename ' "'s/ /-/g'", shell=True)
os.chdir('/notebooks')
for filename in tqdm(os.listdir(IMAGES_FOLDER_OPTIONAL), bar_format=' |{bar:15}| {n_fmt}/{total_fmt} Uploaded'):
extension = filename.split(".")[-1]
identifier=filename.split(".")[0]
new_path_with_file = os.path.join(INSTANCE_DIR, filename)
file = Image.open(IMAGES_FOLDER_OPTIONAL+"/"+filename)
width, height = file.size
image = file
if file.size !=(Crop_size, Crop_size):
image=crop_image(file, Crop_size)
if extension.upper()=="JPG" or extension.upper()=="jpg":
image[0] = image[0].convert("RGB")
image[0].save(new_path_with_file, format="JPEG", quality = 100)
else:
image[0].save(new_path_with_file, format=extension.upper())
else:
call("cp \'"+IMAGES_FOLDER_OPTIONAL+"/"+filename+"\' "+INSTANCE_DIR, shell=True)
else:
for filename in tqdm(os.listdir(IMAGES_FOLDER_OPTIONAL), bar_format=' |{bar:15}| {n_fmt}/{total_fmt} Uploaded'):
call("cp -r " +IMAGES_FOLDER_OPTIONAL+"/. " +INSTANCE_DIR, shell=True)
elif IMAGES_FOLDER_OPTIONAL =="":
up=""
for file in uploader.value:
filename = file['name']
if filename.split(".")[-1]=="txt":
with open(CAPTIONS_DIR+'/'+filename, 'w') as f:
f.write(bytes(file['content']).decode())
up=[file for file in uploader.value if not file['name'].endswith('.txt')]
if Crop_images:
for file in tqdm(up, bar_format=' |{bar:15}| {n_fmt}/{total_fmt} Uploaded'):
filename = file['name']
img = Image.open(io.BytesIO(file['content']))
extension = filename.split(".")[-1]
identifier=filename.split(".")[0]
if extension.upper()=="JPG" or extension.upper()=="jpg":
img=img.convert("RGB")
img.save(INSTANCE_DIR+"/"+filename, format="JPEG", quality = 100)
else:
img.save(INSTANCE_DIR+"/"+filename, format=extension.upper())
new_path_with_file = os.path.join(INSTANCE_DIR, filename)
file = Image.open(new_path_with_file)
width, height = file.size
image = img
if file.size !=(Crop_size, Crop_size):
image=crop_image(file, Crop_size)
if extension.upper()=="JPG" or extension.upper()=="jpg":
image[0].save(new_path_with_file, format="JPEG", quality = 100)
else:
image[0].save(new_path_with_file, format=extension.upper())
else:
for file in tqdm(uploader.value, bar_format=' |{bar:15}| {n_fmt}/{total_fmt} Uploaded'):
filename = file['name']
img = Image.open(io.BytesIO(file['content']))
extension = filename.split(".")[-1]
identifier=filename.split(".")[0]
if extension.upper()=="JPG" or extension.upper()=="jpg":
img=img.convert("RGB")
img.save(INSTANCE_DIR+"/"+filename, format="JPEG", quality = 100)
else:
img.save(INSTANCE_DIR+"/"+filename, format=extension.upper())
os.chdir(INSTANCE_DIR)
call('find . -name "* *" -type f | rename ' "'s/ /-/g'", shell=True)
os.chdir(CAPTIONS_DIR)
call('find . -name "* *" -type f | rename ' "'s/ /-/g'", shell=True)
os.chdir('/notebooks')
def caption(CAPTIONS_DIR, INSTANCE_DIR):
paths=""
out=""
widgets_l=""
clear_output()
def Caption(path):
if path!="Select an instance image to caption":
name = os.path.splitext(os.path.basename(path))[0]
ext=os.path.splitext(os.path.basename(path))[-1][1:]
if ext=="jpg" or "JPG":
ext="JPEG"
if os.path.exists(CAPTIONS_DIR+"/"+name + '.txt'):
with open(CAPTIONS_DIR+"/"+name + '.txt', 'r') as f:
text = f.read()
else:
with open(CAPTIONS_DIR+"/"+name + '.txt', 'w') as f:
f.write("")
with open(CAPTIONS_DIR+"/"+name + '.txt', 'r') as f:
text = f.read()
img=Image.open(os.path.join(INSTANCE_DIR,path))
img=img.convert("RGB")
img=img.resize((420, 420))
image_bytes = BytesIO()
img.save(image_bytes, format=ext, qualiy=10)
image_bytes.seek(0)
image_data = image_bytes.read()
img= image_data
image = widgets.Image(
value=img,
width=420,
height=420
)
text_area = widgets.Textarea(value=text, description='', disabled=False, layout={'width': '300px', 'height': '120px'})
def update_text(text):
with open(CAPTIONS_DIR+"/"+name + '.txt', 'w') as f:
f.write(text)
button = widgets.Button(description='Save', button_style='success')
button.on_click(lambda b: update_text(text_area.value))
return widgets.VBox([widgets.HBox([image, text_area, button])])
paths = os.listdir(INSTANCE_DIR)
widgets_l = widgets.Select(options=["Select an instance image to caption"]+paths, rows=25)
out = widgets.Output()
def click(change):
with out:
out.clear_output()
display(Caption(change.new))
widgets_l.observe(click, names='value')
display(widgets.HBox([widgets_l, out]))
def dbtrainxl(Resume_Training, UNet_Training_Epochs, UNet_Learning_Rate, dim, Offset_Noise, Resolution, MODEL_NAME, SESSION_DIR, INSTANCE_DIR, CAPTIONS_DIR, External_Captions, INSTANCE_NAME, Session_Name, OUTPUT_DIR, ofstnselvl, Save_VRAM):
if os.path.exists(INSTANCE_DIR+"/.ipynb_checkpoints"):
call('rm -r '+INSTANCE_DIR+'/.ipynb_checkpoints', shell=True)
if os.path.exists(CAPTIONS_DIR+"/.ipynb_checkpoints"):
call('rm -r '+CAPTIONS_DIR+'/.ipynb_checkpoints', shell=True)
while not Resume_Training and not os.path.exists(MODEL_NAME+'/unet/diffusion_pytorch_model.bin'):
print('No model found, use the "Model Download" cell to download a model.')
time.sleep(5)
Seed=random.randint(1, 999999)
ofstnse=""
if Offset_Noise:
ofstnse="--offset_noise"
GC=''
if Save_VRAM:
GC='--gradient_checkpointing'
extrnlcptn=""
if External_Captions:
extrnlcptn="--external_captions"
precision="fp16"
resume=""
if Resume_Training and os.path.exists(SESSION_DIR+'/'+Session_Name+'.safetensors'):
resume="--resume"
print('Resuming Training...')
elif Resume_Training and not os.path.exists(SESSION_DIR+'/'+Session_Name+'.safetensors'):
while MODEL_NAME=="":
print('No model found, use the "Model Download" cell to download a model.')
time.sleep(5)
print('Previous model not found, training a new model...')
def train_only_unet(SESSION_DIR, MODEL_NAME, INSTANCE_DIR, OUTPUT_DIR, Seed, Resolution, ofstnse, extrnlcptn, precision, Training_Epochs):
call('accelerate launch /notebooks/diffusers/examples/dreambooth/train_dreambooth_rnpd_sdxl_lora.py \
'+resume+' \
'+ofstnse+' \
'+extrnlcptn+' \
--dim='+str(dim)+' \
--ofstnselvl='+str(ofstnselvl)+' \
--image_captions_filename \
--Session_dir='+SESSION_DIR+' \
--pretrained_model_name_or_path='+MODEL_NAME+' \
--instance_data_dir='+INSTANCE_DIR+' \
--output_dir='+OUTPUT_DIR+' \
--captions_dir='+CAPTIONS_DIR+' \
--seed='+str(Seed)+' \
--resolution='+str(Resolution)+' \
--mixed_precision='+str(precision)+' \
--train_batch_size=1 \
--gradient_accumulation_steps=1 '+GC+ ' \
--use_8bit_adam \
--learning_rate='+str(UNet_Learning_Rate)+' \
--lr_scheduler="cosine" \
--lr_warmup_steps=0 \
--num_train_epochs='+str(Training_Epochs), shell=True)
if UNet_Training_Epochs!=0:
train_only_unet(SESSION_DIR, MODEL_NAME, INSTANCE_DIR, OUTPUT_DIR, Seed, Resolution, ofstnse, extrnlcptn, precision, Training_Epochs=UNet_Training_Epochs)
else :
print('Nothing to do')
if os.path.exists(SESSION_DIR+'/'+Session_Name+'.safetensors'):
clear_output()
print("DONE, the LoRa model is in the session's folder")
else:
print("Something went wrong")
def sdcmf(MDLPTH, Download_SDXL_Model, Huggingface_token):
from slugify import slugify
from huggingface_hub import HfApi, CommitOperationAdd, create_repo
os.chdir('/notebooks')
print('Installing/Updating the repo...')
if not os.path.exists('ComfyUI'):
call('git clone -q --depth 1 https://github.com/comfyanonymous/ComfyUI', shell=True)
os.chdir('ComfyUI')
call('git reset --hard', shell=True)
print('')
call('git pull', shell=True)
if os.path.exists(MDLPTH):
call('cp '+MDLPTH+' models/loras', shell=True)
if Download_SDXL_Model and not os.path.exists('models/checkpoints/sd_xl_base_0.9.safetensors'):
if Huggingface_token=="":
Huggingface_token=input('Your Huggingface Token: ')
mdllnk= 'https://huggingface.co/stabilityai/stable-diffusion-xl-base-0.9/resolve/main/sd_xl_base_0.9.safetensors'
try:
creds = base64.b64encode(f"USER:{Huggingface_token}".encode('utf-8')).decode('utf-8')
req=urllib.request.Request(mdllnk)
req.add_header('Authorization', f'Basic {creds}')
urllib.request.urlopen(req)
dwn2(mdllnk, 'models/checkpoints/sd_xl_base_0.9.safetensors','Downloading the Model', Huggingface_token)
except urllib.error.HTTPError as e:
print('The token provided has no access to the model, skipping model download...')
else:
print('Model already exists, skipping download...')
localurl="https://tensorboard-"+os.environ.get('PAPERSPACE_FQDN')
call("sed -i 's@print(\"To see the GUI go to: http://{}:{}\".format(address, port))@print(\"\u2714 Connected\")\\n print(\""+localurl+"\")@' /notebooks/ComfyUI/server.py", shell=True)
os.chdir('/notebooks')
def clean():
Sessions=os.listdir("/notebooks/Fast-Dreambooth/Sessions")
s = widgets.Select(
options=Sessions,
rows=5,
description='',
disabled=False
)
out=widgets.Output()
d = widgets.Button(
description='Remove',
disabled=False,
button_style='warning',
tooltip='Removet the selected session',
icon='warning'
)
def rem(d):
with out:
if s.value is not None:
clear_output()
print("THE SESSION "+s.value+" HAS BEEN REMOVED FROM THE STORAGE")
call('rm -r /notebooks/Fast-Dreambooth/Sessions/'+s.value, shell=True)
if os.path.exists('/notebooks/models/'+s.value):
call('rm -r /notebooks/models/'+s.value, shell=True)
s.options=os.listdir("/notebooks/Fast-Dreambooth/Sessions")
else:
d.close()
s.close()
clear_output()
print("NOTHING TO REMOVE")
d.on_click(rem)
if s.value is not None:
display(s,d,out)
else:
print("NOTHING TO REMOVE")
def crop_image(im, size):
import cv2
GREEN = "#0F0"
BLUE = "#00F"
RED = "#F00"
def focal_point(im, settings):
corner_points = image_corner_points(im, settings) if settings.corner_points_weight > 0 else []
entropy_points = image_entropy_points(im, settings) if settings.entropy_points_weight > 0 else []
face_points = image_face_points(im, settings) if settings.face_points_weight > 0 else []
pois = []
weight_pref_total = 0
if len(corner_points) > 0:
weight_pref_total += settings.corner_points_weight
if len(entropy_points) > 0:
weight_pref_total += settings.entropy_points_weight
if len(face_points) > 0:
weight_pref_total += settings.face_points_weight
corner_centroid = None
if len(corner_points) > 0:
corner_centroid = centroid(corner_points)
corner_centroid.weight = settings.corner_points_weight / weight_pref_total
pois.append(corner_centroid)
entropy_centroid = None
if len(entropy_points) > 0:
entropy_centroid = centroid(entropy_points)
entropy_centroid.weight = settings.entropy_points_weight / weight_pref_total
pois.append(entropy_centroid)
face_centroid = None
if len(face_points) > 0:
face_centroid = centroid(face_points)
face_centroid.weight = settings.face_points_weight / weight_pref_total
pois.append(face_centroid)
average_point = poi_average(pois, settings)
return average_point
def image_face_points(im, settings):
np_im = np.array(im)
gray = cv2.cvtColor(np_im, cv2.COLOR_BGR2GRAY)
tries = [
[ f'{cv2.data.haarcascades}haarcascade_eye.xml', 0.01 ],
[ f'{cv2.data.haarcascades}haarcascade_frontalface_default.xml', 0.05 ],
[ f'{cv2.data.haarcascades}haarcascade_profileface.xml', 0.05 ],
[ f'{cv2.data.haarcascades}haarcascade_frontalface_alt.xml', 0.05 ],
[ f'{cv2.data.haarcascades}haarcascade_frontalface_alt2.xml', 0.05 ],
[ f'{cv2.data.haarcascades}haarcascade_frontalface_alt_tree.xml', 0.05 ],
[ f'{cv2.data.haarcascades}haarcascade_eye_tree_eyeglasses.xml', 0.05 ],
[ f'{cv2.data.haarcascades}haarcascade_upperbody.xml', 0.05 ]
]
for t in tries:
classifier = cv2.CascadeClassifier(t[0])
minsize = int(min(im.width, im.height) * t[1]) # at least N percent of the smallest side
try:
faces = classifier.detectMultiScale(gray, scaleFactor=1.1,
minNeighbors=7, minSize=(minsize, minsize), flags=cv2.CASCADE_SCALE_IMAGE)
except:
continue
if len(faces) > 0:
rects = [[f[0], f[1], f[0] + f[2], f[1] + f[3]] for f in faces]
return [PointOfInterest((r[0] +r[2]) // 2, (r[1] + r[3]) // 2, size=abs(r[0]-r[2]), weight=1/len(rects)) for r in rects]
return []
def image_corner_points(im, settings):
grayscale = im.convert("L")
# naive attempt at preventing focal points from collecting at watermarks near the bottom
gd = ImageDraw.Draw(grayscale)
gd.rectangle([0, im.height*.9, im.width, im.height], fill="#999")
np_im = np.array(grayscale)
points = cv2.goodFeaturesToTrack(
np_im,
maxCorners=100,
qualityLevel=0.04,
minDistance=min(grayscale.width, grayscale.height)*0.06,
useHarrisDetector=False,
)
if points is None:
return []
focal_points = []
for point in points:
x, y = point.ravel()
focal_points.append(PointOfInterest(x, y, size=4, weight=1/len(points)))
return focal_points
def image_entropy_points(im, settings):
landscape = im.height < im.width
portrait = im.height > im.width
if landscape:
move_idx = [0, 2]
move_max = im.size[0]
elif portrait:
move_idx = [1, 3]
move_max = im.size[1]
else:
return []
e_max = 0
crop_current = [0, 0, settings.crop_width, settings.crop_height]
crop_best = crop_current
while crop_current[move_idx[1]] < move_max:
crop = im.crop(tuple(crop_current))
e = image_entropy(crop)
if (e > e_max):
e_max = e
crop_best = list(crop_current)
crop_current[move_idx[0]] += 4
crop_current[move_idx[1]] += 4
x_mid = int(crop_best[0] + settings.crop_width/2)
y_mid = int(crop_best[1] + settings.crop_height/2)
return [PointOfInterest(x_mid, y_mid, size=25, weight=1.0)]
def image_entropy(im):
# greyscale image entropy
# band = np.asarray(im.convert("L"))
band = np.asarray(im.convert("1"), dtype=np.uint8)
hist, _ = np.histogram(band, bins=range(0, 256))
hist = hist[hist > 0]
return -np.log2(hist / hist.sum()).sum()
def centroid(pois):
x = [poi.x for poi in pois]
y = [poi.y for poi in pois]
return PointOfInterest(sum(x)/len(pois), sum(y)/len(pois))
def poi_average(pois, settings):
weight = 0.0
x = 0.0
y = 0.0
for poi in pois:
weight += poi.weight
x += poi.x * poi.weight
y += poi.y * poi.weight
avg_x = round(weight and x / weight)
avg_y = round(weight and y / weight)
return PointOfInterest(avg_x, avg_y)
def is_landscape(w, h):
return w > h
def is_portrait(w, h):
return h > w
def is_square(w, h):
return w == h
class PointOfInterest:
def __init__(self, x, y, weight=1.0, size=10):
self.x = x
self.y = y
self.weight = weight
self.size = size
def bounding(self, size):
return [
self.x - size//2,
self.y - size//2,
self.x + size//2,
self.y + size//2
]
class Settings:
def __init__(self, crop_width=512, crop_height=512, corner_points_weight=0.5, entropy_points_weight=0.5, face_points_weight=0.5):
self.crop_width = crop_width
self.crop_height = crop_height
self.corner_points_weight = corner_points_weight
self.entropy_points_weight = entropy_points_weight
self.face_points_weight = face_points_weight
settings = Settings(
crop_width = size,
crop_height = size,
face_points_weight = 0.9,
entropy_points_weight = 0.15,
corner_points_weight = 0.5,
)
scale_by = 1
if is_landscape(im.width, im.height):
scale_by = settings.crop_height / im.height
elif is_portrait(im.width, im.height):
scale_by = settings.crop_width / im.width
elif is_square(im.width, im.height):
if is_square(settings.crop_width, settings.crop_height):
scale_by = settings.crop_width / im.width
elif is_landscape(settings.crop_width, settings.crop_height):
scale_by = settings.crop_width / im.width
elif is_portrait(settings.crop_width, settings.crop_height):
scale_by = settings.crop_height / im.height
im = im.resize((int(im.width * scale_by), int(im.height * scale_by)))
im_debug = im.copy()
focus = focal_point(im_debug, settings)
# take the focal point and turn it into crop coordinates that try to center over the focal
# point but then get adjusted back into the frame
y_half = int(settings.crop_height / 2)
x_half = int(settings.crop_width / 2)
x1 = focus.x - x_half
if x1 < 0:
x1 = 0
elif x1 + settings.crop_width > im.width:
x1 = im.width - settings.crop_width
y1 = focus.y - y_half
if y1 < 0:
y1 = 0
elif y1 + settings.crop_height > im.height:
y1 = im.height - settings.crop_height
x2 = x1 + settings.crop_width
y2 = y1 + settings.crop_height
crop = [x1, y1, x2, y2]
results = []
results.append(im.crop(tuple(crop)))
return results