|
from IPython.display import clear_output |
|
from subprocess import call, getoutput |
|
from IPython.display import display |
|
import ipywidgets as widgets |
|
import io |
|
from PIL import Image, ImageDraw |
|
import fileinput |
|
import time |
|
import os |
|
from os import listdir |
|
from os.path import isfile |
|
from tqdm import tqdm |
|
import gdown |
|
import random |
|
import sys |
|
import cv2 |
|
from io import BytesIO |
|
import requests |
|
from collections import defaultdict |
|
from math import log, sqrt |
|
import numpy as np |
|
|
|
|
|
|
|
def Deps(force_reinstall): |
|
|
|
if not force_reinstall and os.path.exists('/usr/local/lib/python3.9/dist-packages/safetensors'): |
|
print('[1;32mModules updated, dependencies already installed') |
|
else: |
|
print('[1;32mInstalling the dependencies...') |
|
call("pip install --root-user-action=ignore --no-deps -q accelerate==0.12.0", shell=True, stdout=open('/dev/null', 'w')) |
|
if not os.path.exists('/usr/local/lib/python3.9/dist-packages/safetensors'): |
|
os.chdir('/usr/local/lib/python3.9/dist-packages') |
|
call("rm -r torch torch-1.12.0+cu116.dist-info torchaudio* torchvision* PIL Pillow* transformers* numpy* gdown*", shell=True, stdout=open('/dev/null', 'w')) |
|
os.chdir('/notebooks') |
|
if not os.path.exists('/models'): |
|
call('mkdir /models', shell=True) |
|
if not os.path.exists('/notebooks/models'): |
|
call('ln -s /models /notebooks', shell=True) |
|
if os.path.exists('/deps'): |
|
call("rm -r /deps", shell=True) |
|
call('mkdir /deps', shell=True) |
|
if not os.path.exists('cache'): |
|
call('mkdir cache', shell=True) |
|
os.chdir('/deps') |
|
call('wget -q -i https://raw.githubusercontent.com/TheLastBen/fast-stable-diffusion/main/Dependencies/aptdeps.txt', shell=True) |
|
call('dpkg -i *.deb', shell=True, stdout=open('/dev/null', 'w')) |
|
call('wget -q https://huggingface.co/TheLastBen/dependencies/resolve/main/pps.tar.zst', shell=True, stdout=open('/dev/null', 'w')) |
|
call('tar -C / --zstd -xf pps.tar.zst', shell=True, stdout=open('/dev/null', 'w')) |
|
call("sed -i 's@~/.cache@/notebooks/cache@' /usr/local/lib/python3.9/dist-packages/transformers/utils/hub.py", shell=True) |
|
os.chdir('/notebooks') |
|
call("git clone --depth 1 -q --branch updt https://github.com/TheLastBen/diffusers /diffusers", shell=True, stdout=open('/dev/null', 'w')) |
|
if not os.path.exists('/notebooks/diffusers'): |
|
call('ln -s /diffusers /notebooks', shell=True) |
|
call("rm -r /deps", shell=True) |
|
os.chdir('/notebooks') |
|
clear_output() |
|
|
|
done() |
|
|
|
|
|
|
|
def downloadmodel_hfv2(Path_to_HuggingFace): |
|
import wget |
|
|
|
if os.path.exists('/models/stable-diffusion-custom'): |
|
call("rm -r /models/stable-diffusion-custom", shell=True) |
|
clear_output() |
|
|
|
if os.path.exists('/notebooks/Fast-Dreambooth/token.txt'): |
|
with open("/notebooks/Fast-Dreambooth/token.txt") as f: |
|
token = f.read() |
|
authe=f'https://USER:{token}@' |
|
else: |
|
authe="https://" |
|
|
|
clear_output() |
|
call("mkdir /models/stable-diffusion-custom", shell=True) |
|
os.chdir("/models/stable-diffusion-custom") |
|
call("git init", shell=True) |
|
call("git lfs install --system --skip-repo", shell=True) |
|
call('git remote add -f origin '+authe+'huggingface.co/'+Path_to_HuggingFace, shell=True) |
|
call("git config core.sparsecheckout true", shell=True) |
|
call('echo -e "\nscheduler\ntext_encoder\ntokenizer\nunet\nvae\nfeature_extractor\nmodel_index.json\n!*.safetensors" > .git/info/sparse-checkout', shell=True) |
|
call("git pull origin main", shell=True) |
|
if os.path.exists('unet/diffusion_pytorch_model.bin'): |
|
call("rm -r .git", shell=True) |
|
os.chdir('/notebooks') |
|
clear_output() |
|
done() |
|
while not os.path.exists('/models/stable-diffusion-custom/unet/diffusion_pytorch_model.bin'): |
|
print('[1;31mCheck the link you provided') |
|
os.chdir('/notebooks') |
|
time.sleep(5) |
|
|
|
|
|
|
|
|
|
def downloadmodel_pthv2(CKPT_Path, Custom_Model_Version): |
|
import wget |
|
os.chdir('/models') |
|
clear_output() |
|
if os.path.exists(str(CKPT_Path)): |
|
if Custom_Model_Version=='512': |
|
wget.download('https://raw.githubusercontent.com/TheLastBen/fast-stable-diffusion/main/Dreambooth/convertodiffv2.py') |
|
clear_output() |
|
call('python convertodiff.py '+CKPT_Path+' stable-diffusion-custom --v2 --reference_model stabilityai/stable-diffusion-2-1-base', shell=True) |
|
elif Custom_Model_Version=='768': |
|
wget.download('https://raw.githubusercontent.com/TheLastBen/fast-stable-diffusion/main/Dreambooth/convertodiffv2.py') |
|
clear_output() |
|
call('python convertodiff.py '+CKPT_Path+' stable-diffusion-custom --v2 --reference_model stabilityai/stable-diffusion-2-1', shell=True) |
|
call('rm convertodiff.py', shell=True) |
|
if os.path.exists('stable-diffusion-custom/unet/diffusion_pytorch_model.bin'): |
|
os.chdir('/notebooks') |
|
clear_output() |
|
done() |
|
while not os.path.exists('stable-diffusion-custom/unet/diffusion_pytorch_model.bin'): |
|
print('[1;31mConversion error') |
|
os.chdir('/notebooks') |
|
time.sleep(5) |
|
|
|
else: |
|
while not os.path.exists(str(CKPT_Path)): |
|
print('[1;31mWrong path, use the colab file explorer to copy the path') |
|
os.chdir('/notebooks') |
|
time.sleep(5) |
|
|
|
|
|
|
|
|
|
def downloadmodel_lnkv2(CKPT_Link, Custom_Model_Version): |
|
import wget |
|
os.chdir('/models') |
|
call("gdown --fuzzy " +CKPT_Link+ " -O model.ckpt", shell=True) |
|
|
|
if os.path.exists('model.ckpt'): |
|
if os.path.getsize("model.ckpt") > 1810671599: |
|
wget.download('https://raw.githubusercontent.com/TheLastBen/fast-stable-diffusion/main/Dreambooth/convertodiffv2.py') |
|
if Custom_Model_Version=='512': |
|
call('python convertodiffv2.py model.ckpt stable-diffusion-custom --v2 --reference_model stabilityai/stable-diffusion-2-1-base', shell=True) |
|
elif Custom_Model_Version=='768': |
|
call('python convertodiffv2.py model.ckpt stable-diffusion-custom --v2 --reference_model stabilityai/stable-diffusion-2-1', shell=True) |
|
call('rm convertodiffv2.py', shell=True) |
|
if os.path.exists('stable-diffusion-custom/unet/diffusion_pytorch_model.bin'): |
|
call('rm model.ckpt', shell=True) |
|
os.chdir('/notebooks') |
|
clear_output() |
|
done() |
|
else: |
|
while not os.path.exists('/models/stable-diffusion-custom/unet/diffusion_pytorch_model.bin'): |
|
print('[1;31mConversion error') |
|
os.chdir('/notebooks') |
|
time.sleep(5) |
|
else: |
|
while os.path.getsize('/models/model.ckpt') < 1810671599: |
|
print('[1;31mWrong link, check that the link is valid') |
|
os.chdir('/notebooks') |
|
time.sleep(5) |
|
|
|
|
|
|
|
|
|
def dlv2(Path_to_HuggingFace, CKPT_Path, CKPT_Link, Model_Version, Custom_Model_Version): |
|
|
|
if Path_to_HuggingFace != "": |
|
downloadmodel_hfv2(Path_to_HuggingFace) |
|
MODEL_NAMEv2="/models/stable-diffusion-custom" |
|
elif CKPT_Path !="": |
|
downloadmodel_pthv2(CKPT_Path, Custom_Model_Version) |
|
MODEL_NAMEv2="/models/stable-diffusion-custom" |
|
elif CKPT_Link !="": |
|
downloadmodel_lnkv2(CKPT_Link, Custom_Model_Version) |
|
MODEL_NAMEv2="/models/stable-diffusion-custom" |
|
else: |
|
if Model_Version=="512": |
|
MODEL_NAMEv2="dataset" |
|
print('[1;32mUsing the original V2-512 model') |
|
elif Model_Version=="768": |
|
MODEL_NAMEv2="/datasets/stable-diffusion-v2-1/stable-diffusion-2-1" |
|
print('[1;32mUsing the original V2-768 model') |
|
else: |
|
MODEL_NAMEv2="" |
|
print('[1;31mWrong model version') |
|
|
|
return MODEL_NAMEv2 |
|
|
|
|
|
def sessv2(Session_Name, Session_Link_optional, Model_Version, MODEL_NAMEv2): |
|
import gdown |
|
os.chdir('/notebooks') |
|
PT="" |
|
|
|
while Session_Name=="": |
|
print('[1;31mInput the Session Name:') |
|
Session_Name=input("") |
|
Session_Name=Session_Name.replace(" ","_") |
|
|
|
WORKSPACE='/notebooks/Fast-Dreambooth' |
|
|
|
if Session_Link_optional !="": |
|
print('[1;32mDownloading session...') |
|
|
|
if Session_Link_optional != "": |
|
if not os.path.exists(str(WORKSPACE+'/Sessions')): |
|
call("mkdir -p " +WORKSPACE+ "/Sessions", shell=True) |
|
time.sleep(1) |
|
os.chdir(WORKSPACE+'/Sessions') |
|
gdown.download_folder(url=Session_Link_optional, output=Session_Name, quiet=True, remaining_ok=True, use_cookies=False) |
|
os.chdir(Session_Name) |
|
call("rm -r " +instance_images, shell=True) |
|
call("unzip " +instance_images.zip, shell=True, stdout=open('/dev/null', 'w')) |
|
call("rm -r " +concept_images, shell=True) |
|
call("unzip " +concept_images.zip, shell=True, stdout=open('/dev/null', 'w')) |
|
call("rm -r " +captions, shell=True) |
|
call("unzip " +captions.zip, shell=True, stdout=open('/dev/null', 'w')) |
|
os.chdir('/notebooks') |
|
clear_output() |
|
|
|
INSTANCE_NAME=Session_Name |
|
OUTPUT_DIR="/models/"+Session_Name |
|
SESSION_DIR=WORKSPACE+"/Sessions/"+Session_Name |
|
CONCEPT_DIR=SESSION_DIR+"/concept_images" |
|
INSTANCE_DIR=SESSION_DIR+"/instance_images" |
|
CAPTIONS_DIR=SESSION_DIR+'/captions' |
|
MDLPTH=str(SESSION_DIR+"/"+Session_Name+'.ckpt') |
|
resumev2=False |
|
|
|
if os.path.exists(str(SESSION_DIR)): |
|
mdls=[ckpt for ckpt in listdir(SESSION_DIR) if ckpt.split(".")[-1]=="ckpt"] |
|
if not os.path.exists(MDLPTH) and '.ckpt' in str(mdls): |
|
|
|
def f(n): |
|
k=0 |
|
for i in mdls: |
|
if k==n: |
|
call('mv '+SESSION_DIR+'/'+i+' '+MDLPTH, shell=True) |
|
k=k+1 |
|
|
|
k=0 |
|
print('[1;33mNo final checkpoint model found, select which intermediary checkpoint to use, enter only the number, (000 to skip):\n[1;34m') |
|
|
|
for i in mdls: |
|
print(str(k)+'- '+i) |
|
k=k+1 |
|
n=input() |
|
while int(n)>k-1: |
|
n=input() |
|
if n!="000": |
|
f(int(n)) |
|
print('[1;32mUsing the model '+ mdls[int(n)]+" ...") |
|
time.sleep(8) |
|
else: |
|
print('[1;32mSkipping the intermediary checkpoints.') |
|
|
|
|
|
if os.path.exists(str(SESSION_DIR)) and not os.path.exists(MDLPTH): |
|
print('[1;32mLoading session with no previous model, using the original model or the custom downloaded model') |
|
if MODEL_NAMEv2=="": |
|
print('[1;31mNo model found, use the "Model Download" cell to download a model.') |
|
else: |
|
print('[1;32mSession Loaded, proceed to uploading instance images') |
|
|
|
elif os.path.exists(MDLPTH): |
|
print('[1;32mSession found, loading the trained model ...') |
|
if Model_Version=='512': |
|
call("wget -q -O convertodiff.py https://raw.githubusercontent.com/TheLastBen/fast-stable-diffusion/main/Dreambooth/convertodiffv2.py", shell=True) |
|
clear_output() |
|
print('[1;32mSession found, loading the trained model ...') |
|
call('python /notebooks/convertodiff.py '+MDLPTH+' '+OUTPUT_DIR+' --v2 --reference_model stabilityai/stable-diffusion-2-1-base', shell=True) |
|
|
|
elif Model_Version=='768': |
|
call('wget -q -O convertodiff.py https://raw.githubusercontent.com/TheLastBen/fast-stable-diffusion/main/Dreambooth/convertodiffv2.py', shell=True) |
|
clear_output() |
|
print('[1;32mSession found, loading the trained model ...') |
|
call('python /notebooks/convertodiff.py '+MDLPTH+' '+OUTPUT_DIR+' --v2 --reference_model stabilityai/stable-diffusion-2-1', shell=True) |
|
|
|
call('rm /notebooks/convertodiff.py', shell=True) |
|
|
|
if os.path.exists(OUTPUT_DIR+'/unet/diffusion_pytorch_model.bin'): |
|
resumev2=True |
|
clear_output() |
|
print('[1;32mSession loaded.') |
|
else: |
|
if not os.path.exists(OUTPUT_DIR+'/unet/diffusion_pytorch_model.bin'): |
|
print('[1;31mConversion error, if the error persists, remove the CKPT file from the current session folder') |
|
|
|
elif not os.path.exists(str(SESSION_DIR)): |
|
call('mkdir -p '+INSTANCE_DIR, shell=True) |
|
print('[1;32mCreating session...') |
|
if MODEL_NAMEv2=="": |
|
print('[1;31mNo model found, use the "Model Download" cell to download a model.') |
|
else: |
|
print('[1;32mSession created, proceed to uploading instance images') |
|
|
|
return PT, WORKSPACE, Session_Name, INSTANCE_NAME, OUTPUT_DIR, SESSION_DIR, CONCEPT_DIR, INSTANCE_DIR, CAPTIONS_DIR, MDLPTH, MODEL_NAMEv2, resumev2 |
|
|
|
|
|
|
|
def done(): |
|
done = widgets.Button( |
|
description='Done!', |
|
disabled=True, |
|
button_style='success', |
|
tooltip='', |
|
icon='check' |
|
) |
|
display(done) |
|
|
|
|
|
|
|
|
|
def uplder(Remove_existing_instance_images, Crop_images, Crop_size, IMAGES_FOLDER_OPTIONAL, INSTANCE_DIR, CAPTIONS_DIR, ren): |
|
|
|
uploader = widgets.FileUpload(description="Choose images",accept='image/*', multiple=True) |
|
Upload = widgets.Button( |
|
description='Upload', |
|
disabled=False, |
|
button_style='info', |
|
tooltip='Click to upload the chosen instance images', |
|
icon='' |
|
) |
|
|
|
|
|
def up(Upload): |
|
with out: |
|
uploader.close() |
|
Upload.close() |
|
upld(Remove_existing_instance_images, Crop_images, Crop_size, IMAGES_FOLDER_OPTIONAL, INSTANCE_DIR, CAPTIONS_DIR, uploader, ren) |
|
done() |
|
out=widgets.Output() |
|
|
|
if IMAGES_FOLDER_OPTIONAL=="": |
|
Upload.on_click(up) |
|
display(uploader, Upload, out) |
|
else: |
|
upld(Remove_existing_instance_images, Crop_images, Crop_size, IMAGES_FOLDER_OPTIONAL, INSTANCE_DIR, CAPTIONS_DIR, uploader, ren) |
|
done() |
|
|
|
|
|
|
|
|
|
def upld(Remove_existing_instance_images, Crop_images, Crop_size, IMAGES_FOLDER_OPTIONAL, INSTANCE_DIR, CAPTIONS_DIR, uploader, ren): |
|
|
|
|
|
if os.path.exists(CAPTIONS_DIR+"off"): |
|
call('mv '+CAPTIONS_DIR+"off"+' '+CAPTIONS_DIR, shell=True) |
|
time.sleep(2) |
|
|
|
if Remove_existing_instance_images: |
|
if os.path.exists(str(INSTANCE_DIR)): |
|
call("rm -r " +INSTANCE_DIR, shell=True) |
|
if os.path.exists(str(CAPTIONS_DIR)): |
|
call("rm -r " +CAPTIONS_DIR, shell=True) |
|
|
|
|
|
if not os.path.exists(str(INSTANCE_DIR)): |
|
call("mkdir -p " +INSTANCE_DIR, shell=True) |
|
if not os.path.exists(str(CAPTIONS_DIR)): |
|
call("mkdir -p " +CAPTIONS_DIR, shell=True) |
|
|
|
|
|
if IMAGES_FOLDER_OPTIONAL !="": |
|
if any(file.endswith('.{}'.format('txt')) for file in os.listdir(IMAGES_FOLDER_OPTIONAL)): |
|
call('mv '+IMAGES_FOLDER_OPTIONAL+'/*.txt '+CAPTIONS_DIR, shell=True) |
|
if Crop_images: |
|
os.chdir(str(IMAGES_FOLDER_OPTIONAL)) |
|
call('find . -name "* *" -type f | rename ' "'s/ /-/g'", shell=True) |
|
os.chdir('/notebooks') |
|
for filename in tqdm(os.listdir(IMAGES_FOLDER_OPTIONAL), bar_format=' |{bar:15}| {n_fmt}/{total_fmt} Uploaded'): |
|
extension = filename.split(".")[-1] |
|
identifier=filename.split(".")[0] |
|
new_path_with_file = os.path.join(INSTANCE_DIR, filename) |
|
file = Image.open(IMAGES_FOLDER_OPTIONAL+"/"+filename) |
|
width, height = file.size |
|
image = file |
|
if file.size !=(Crop_size, Crop_size): |
|
image=crop_image(file, Crop_size) |
|
if (extension.upper() == "JPG" or "jpg"): |
|
image[0].save(new_path_with_file, format="JPEG", quality = 100) |
|
else: |
|
image[0].save(new_path_with_file, format=extension.upper()) |
|
|
|
else: |
|
call("cp \'"+IMAGES_FOLDER_OPTIONAL+"/"+filename+"\' "+INSTANCE_DIR, shell=True) |
|
|
|
else: |
|
for filename in tqdm(os.listdir(IMAGES_FOLDER_OPTIONAL), bar_format=' |{bar:15}| {n_fmt}/{total_fmt} Uploaded'): |
|
call("cp -r " +IMAGES_FOLDER_OPTIONAL+"/. " +INSTANCE_DIR, shell=True) |
|
|
|
|
|
|
|
elif IMAGES_FOLDER_OPTIONAL =="": |
|
up="" |
|
for filename, file in uploader.value.items(): |
|
if filename.split(".")[-1]=="txt": |
|
with open(CAPTIONS_DIR+'/'+filename, 'w') as f: |
|
f.write(file['content'].decode()) |
|
up=[(filename, file) for filename, file in uploader.value.items() if filename.split(".")[-1]!="txt"] |
|
if Crop_images: |
|
for filename, file_info in tqdm(up, bar_format=' |{bar:15}| {n_fmt}/{total_fmt} Uploaded'): |
|
img = Image.open(io.BytesIO(file_info['content'])) |
|
extension = filename.split(".")[-1] |
|
identifier=filename.split(".")[0] |
|
|
|
if (extension.upper() == "JPG" or "jpg"): |
|
img.save(INSTANCE_DIR+"/"+filename, format="JPEG", quality = 100) |
|
else: |
|
img.save(INSTANCE_DIR+"/"+filename, format=extension.upper()) |
|
|
|
new_path_with_file = os.path.join(INSTANCE_DIR, filename) |
|
file = Image.open(new_path_with_file) |
|
width, height = file.size |
|
image = img |
|
if file.size !=(Crop_size, Crop_size): |
|
image=crop_image(file, Crop_size) |
|
if (extension.upper() == "JPG" or "jpg"): |
|
image[0].save(new_path_with_file, format="JPEG", quality = 100) |
|
else: |
|
image[0].save(new_path_with_file, format=extension.upper()) |
|
|
|
else: |
|
for filename, file_info in tqdm(uploader.value.items(), bar_format=' |{bar:15}| {n_fmt}/{total_fmt} Uploaded'): |
|
img = Image.open(io.BytesIO(file_info['content'])) |
|
|
|
extension = filename.split(".")[-1] |
|
identifier=filename.split(".")[0] |
|
|
|
if (extension.upper() == "JPG" or "jpg"): |
|
img.save(INSTANCE_DIR+"/"+filename, format="JPEG", quality = 100) |
|
else: |
|
img.save(INSTANCE_DIR+"/"+filename, format=extension.upper()) |
|
|
|
|
|
if ren: |
|
i=0 |
|
for filename in tqdm(os.listdir(INSTANCE_DIR), bar_format=' |{bar:15}| {n_fmt}/{total_fmt} Renamed'): |
|
extension = filename.split(".")[-1] |
|
identifier=filename.split(".")[0] |
|
new_path_with_file = os.path.join(INSTANCE_DIR, "conceptimagedb"+str(i)+"."+extension) |
|
call('mv "'+os.path.join(INSTANCE_DIR,filename)+'" "'+new_path_with_file+'"', shell=True) |
|
i=i+1 |
|
|
|
os.chdir(INSTANCE_DIR) |
|
call('find . -name "* *" -type f | rename ' "'s/ /-/g'", shell=True) |
|
os.chdir(CAPTIONS_DIR) |
|
call('find . -name "* *" -type f | rename ' "'s/ /-/g'", shell=True) |
|
os.chdir('/notebooks') |
|
|
|
|
|
def caption(CAPTIONS_DIR, INSTANCE_DIR): |
|
|
|
if os.path.exists(CAPTIONS_DIR+"off"): |
|
call('mv '+CAPTIONS_DIR+"off"+' '+CAPTIONS_DIR, shell=True) |
|
time.sleep(2) |
|
|
|
paths="" |
|
out="" |
|
widgets_l="" |
|
clear_output() |
|
def Caption(path): |
|
if path!="Select an instance image to caption": |
|
|
|
name = os.path.splitext(os.path.basename(path))[0] |
|
ext=os.path.splitext(os.path.basename(path))[-1][1:] |
|
if ext=="jpg" or "JPG": |
|
ext="JPEG" |
|
|
|
if os.path.exists(CAPTIONS_DIR+"/"+name + '.txt'): |
|
with open(CAPTIONS_DIR+"/"+name + '.txt', 'r') as f: |
|
text = f.read() |
|
else: |
|
with open(CAPTIONS_DIR+"/"+name + '.txt', 'w') as f: |
|
f.write("") |
|
with open(CAPTIONS_DIR+"/"+name + '.txt', 'r') as f: |
|
text = f.read() |
|
|
|
img=Image.open(os.path.join(INSTANCE_DIR,path)) |
|
img=img.resize((420, 420)) |
|
image_bytes = BytesIO() |
|
img.save(image_bytes, format=ext, qualiy=10) |
|
image_bytes.seek(0) |
|
image_data = image_bytes.read() |
|
img= image_data |
|
image = widgets.Image( |
|
value=img, |
|
width=420, |
|
height=420 |
|
) |
|
text_area = widgets.Textarea(value=text, description='', disabled=False, layout={'width': '300px', 'height': '120px'}) |
|
|
|
|
|
def update_text(text): |
|
with open(CAPTIONS_DIR+"/"+name + '.txt', 'w') as f: |
|
f.write(text) |
|
|
|
button = widgets.Button(description='Save', button_style='success') |
|
button.on_click(lambda b: update_text(text_area.value)) |
|
|
|
return widgets.VBox([widgets.HBox([image, text_area, button])]) |
|
|
|
|
|
paths = os.listdir(INSTANCE_DIR) |
|
widgets_l = widgets.Select(options=["Select an instance image to caption"]+paths, rows=25) |
|
|
|
|
|
out = widgets.Output() |
|
|
|
def click(change): |
|
with out: |
|
out.clear_output() |
|
display(Caption(change.new)) |
|
|
|
widgets_l.observe(click, names='value') |
|
display(widgets.HBox([widgets_l, out])) |
|
|
|
|
|
|
|
|
|
def dbtrainv2(Resume_Training, UNet_Training_Steps, UNet_Learning_Rate, Text_Encoder_Training_Steps, Text_Encoder_Concept_Training_Steps, Text_Encoder_Learning_Rate, Style_Training, Resolution, MODEL_NAMEv2, SESSION_DIR, INSTANCE_DIR, CONCEPT_DIR, CAPTIONS_DIR, External_Captions, INSTANCE_NAME, Session_Name, OUTPUT_DIR, PT, resumev2, Save_Checkpoint_Every_n_Steps, Start_saving_from_the_step, Save_Checkpoint_Every): |
|
|
|
if resumev2 and not Resume_Training: |
|
print('[1;31mOverwrite your previously trained model ?, answering "yes" will train a new model, answering "no" will resumev2 the training of the previous model? yes or no ?[0m') |
|
while True: |
|
ansres=input('') |
|
if ansres=='no': |
|
Resume_Training = True |
|
break |
|
elif ansres=='yes': |
|
Resume_Training = False |
|
resumev2= False |
|
break |
|
|
|
while not Resume_Training and not os.path.exists(MODEL_NAMEv2+'/unet/diffusion_pytorch_model.bin'): |
|
print('[1;31mNo model found, use the "Model Download" cell to download a model.') |
|
time.sleep(5) |
|
|
|
if os.path.exists(CAPTIONS_DIR+"off"): |
|
call('mv '+CAPTIONS_DIR+"off"+' '+CAPTIONS_DIR, shell=True) |
|
time.sleep(2) |
|
|
|
MODELT_NAME=MODEL_NAMEv2 |
|
|
|
Seed=random.randint(1, 999999) |
|
|
|
Style="" |
|
if Style_Training: |
|
Style="--Style" |
|
|
|
extrnlcptn="" |
|
if External_Captions: |
|
extrnlcptn="--external_captions" |
|
|
|
precision="fp16" |
|
|
|
GCUNET="--gradient_checkpointing" |
|
if Resolution<=640: |
|
GCUNET="" |
|
|
|
resuming="" |
|
if Resume_Training and os.path.exists(OUTPUT_DIR+'/unet/diffusion_pytorch_model.bin'): |
|
MODELT_NAME=OUTPUT_DIR |
|
print('[1;32mResuming Training...[0m') |
|
resuming="Yes" |
|
elif Resume_Training and not os.path.exists(OUTPUT_DIR+'/unet/diffusion_pytorch_model.bin'): |
|
print('[1;31mPrevious model not found, training a new model...[0m') |
|
MODELT_NAME=MODEL_NAMEv2 |
|
while MODEL_NAMEv2=="": |
|
print('[1;31mNo model found, use the "Model Download" cell to download a model.') |
|
time.sleep(5) |
|
|
|
|
|
trnonltxt="" |
|
if UNet_Training_Steps==0: |
|
trnonltxt="--train_only_text_encoder" |
|
|
|
Enable_text_encoder_training= True |
|
Enable_Text_Encoder_Concept_Training= True |
|
|
|
|
|
if Text_Encoder_Training_Steps==0 or External_Captions: |
|
Enable_text_encoder_training= False |
|
else: |
|
stptxt=Text_Encoder_Training_Steps |
|
|
|
if Text_Encoder_Concept_Training_Steps==0: |
|
Enable_Text_Encoder_Concept_Training= False |
|
else: |
|
stptxtc=Text_Encoder_Concept_Training_Steps |
|
|
|
|
|
if Save_Checkpoint_Every==None: |
|
Save_Checkpoint_Every=1 |
|
stp=0 |
|
if Start_saving_from_the_step==None: |
|
Start_saving_from_the_step=0 |
|
if (Start_saving_from_the_step < 200): |
|
Start_saving_from_the_step=Save_Checkpoint_Every |
|
stpsv=Start_saving_from_the_step |
|
if Save_Checkpoint_Every_n_Steps: |
|
stp=Save_Checkpoint_Every |
|
|
|
|
|
def dump_only_textenc(trnonltxt, MODELT_NAME, INSTANCE_DIR, OUTPUT_DIR, PT, Seed, precision, Training_Steps): |
|
call('accelerate launch /notebooks/diffusers/examples/dreambooth/train_dreambooth_pps.py \ |
|
'+trnonltxt+' \ |
|
--train_text_encoder \ |
|
--image_captions_filename \ |
|
--dump_only_text_encoder \ |
|
--pretrained_model_name_or_path='+MODELT_NAME+' \ |
|
--instance_data_dir='+INSTANCE_DIR+' \ |
|
--output_dir='+OUTPUT_DIR+' \ |
|
--instance_prompt='+PT+' \ |
|
--seed='+str(Seed)+' \ |
|
--resolution=512 \ |
|
--mixed_precision='+str(precision)+' \ |
|
--train_batch_size=1 \ |
|
--gradient_accumulation_steps=1 --gradient_checkpointing \ |
|
--use_8bit_adam \ |
|
--learning_rate='+str(Text_Encoder_Learning_Rate)+' \ |
|
--lr_scheduler="polynomial" \ |
|
--lr_warmup_steps=0 \ |
|
--max_train_steps='+str(Training_Steps), shell=True) |
|
|
|
def train_only_unet(stp, stpsv, SESSION_DIR, MODELT_NAME, INSTANCE_DIR, OUTPUT_DIR, Text_Encoder_Training_Steps, PT, Seed, Resolution, Style, extrnlcptn, precision, Training_Steps): |
|
clear_output() |
|
if resuming=="Yes": |
|
print('[1;32mResuming Training...[0m') |
|
print('[1;33mTraining the UNet...[0m') |
|
call('accelerate launch /notebooks/diffusers/examples/dreambooth/train_dreambooth_pps.py \ |
|
'+Style+' \ |
|
'+extrnlcptn+' \ |
|
--stop_text_encoder_training='+str(Text_Encoder_Training_Steps)+' \ |
|
--image_captions_filename \ |
|
--train_only_unet \ |
|
--Session_dir='+SESSION_DIR+' \ |
|
--save_starting_step='+str(stpsv)+' \ |
|
--save_n_steps='+str(stp)+' \ |
|
--pretrained_model_name_or_path='+MODELT_NAME+' \ |
|
--instance_data_dir='+INSTANCE_DIR+' \ |
|
--output_dir='+OUTPUT_DIR+' \ |
|
--instance_prompt='+PT+' \ |
|
--seed='+str(Seed)+' \ |
|
--resolution='+str(Resolution)+' \ |
|
--mixed_precision='+str(precision)+' \ |
|
--train_batch_size=1 \ |
|
--gradient_accumulation_steps=1 '+GCUNET+' \ |
|
--use_8bit_adam \ |
|
--learning_rate='+str(UNet_Learning_Rate)+' \ |
|
--lr_scheduler="polynomial" \ |
|
--lr_warmup_steps=0 \ |
|
--max_train_steps='+str(Training_Steps), shell=True) |
|
|
|
if Enable_text_encoder_training : |
|
print('[1;33mTraining the text encoder...[0m') |
|
if os.path.exists(OUTPUT_DIR+'/'+'text_encoder_trained'): |
|
call('rm -r '+OUTPUT_DIR+'/text_encoder_trained', shell=True) |
|
dump_only_textenc(trnonltxt, MODELT_NAME, INSTANCE_DIR, OUTPUT_DIR, PT, Seed, precision, Training_Steps=stptxt) |
|
|
|
if Enable_Text_Encoder_Concept_Training: |
|
if os.path.exists(CONCEPT_DIR): |
|
if os.listdir(CONCEPT_DIR)!=[]: |
|
clear_output() |
|
if resuming=="Yes": |
|
print('[1;32mResuming Training...[0m') |
|
print('[1;33mTraining the text encoder on the concept...[0m') |
|
dump_only_textenc(trnonltxt, MODELT_NAME, CONCEPT_DIR, OUTPUT_DIR, PT, Seed, precision, Training_Steps=stptxtc) |
|
else: |
|
clear_output() |
|
if resuming=="Yes": |
|
print('[1;32mResuming Training...[0m') |
|
print('[1;31mNo concept images found, skipping concept training...') |
|
Text_Encoder_Concept_Training_Steps=0 |
|
time.sleep(8) |
|
else: |
|
clear_output() |
|
if resuming=="Yes": |
|
print('[1;32mResuming Training...[0m') |
|
print('[1;31mNo concept images found, skipping concept training...') |
|
Text_Encoder_Concept_Training_Steps=0 |
|
time.sleep(8) |
|
|
|
if UNet_Training_Steps!=0: |
|
train_only_unet(stp, stpsv, SESSION_DIR, MODELT_NAME, INSTANCE_DIR, OUTPUT_DIR, Text_Encoder_Training_Steps, PT, Seed, Resolution, Style, extrnlcptn, precision, Training_Steps=UNet_Training_Steps) |
|
|
|
if UNet_Training_Steps==0 and Text_Encoder_Concept_Training_Steps==0 and External_Captions : |
|
print('[1;32mNothing to do') |
|
else: |
|
if os.path.exists(OUTPUT_DIR+'/unet/diffusion_pytorch_model.bin'): |
|
|
|
call('python /notebooks/diffusers/scripts/convertosdv2.py --fp16 '+OUTPUT_DIR+' '+SESSION_DIR+'/'+Session_Name+'.ckpt', shell=True) |
|
clear_output() |
|
if os.path.exists(SESSION_DIR+"/"+INSTANCE_NAME+'.ckpt'): |
|
clear_output() |
|
print("[1;32mDONE, the CKPT model is in the session's folder") |
|
else: |
|
print("[1;31mSomething went wrong") |
|
|
|
else: |
|
print("[1;31mSomething went wrong") |
|
|
|
return resumev2 |
|
|
|
|
|
def test(Custom_Path, Previous_Session_Name, Session_Name, User, Password, Use_localtunnel): |
|
|
|
|
|
if Previous_Session_Name!="": |
|
print("[1;32mLoading a previous session model") |
|
mdldir='/notebooks/Fast-Dreambooth/Sessions/'+Previous_Session_Name |
|
path_to_trained_model=mdldir+"/"+Previous_Session_Name+'.ckpt' |
|
|
|
|
|
while not os.path.exists(path_to_trained_model): |
|
print("[1;31mThere is no trained model in the previous session") |
|
time.sleep(5) |
|
|
|
elif Custom_Path!="": |
|
print("[1;32mLoading model from a custom path") |
|
path_to_trained_model=Custom_Path |
|
|
|
|
|
while not os.path.exists(path_to_trained_model): |
|
print("[1;31mWrong Path") |
|
time.sleep(5) |
|
|
|
else: |
|
print("[1;32mLoading the trained model") |
|
mdldir='/notebooks/Fast-Dreambooth/Sessions/'+Session_Name |
|
path_to_trained_model=mdldir+"/"+Session_Name+'.ckpt' |
|
|
|
|
|
while not os.path.exists(path_to_trained_model): |
|
print("[1;31mThere is no trained model in this session") |
|
time.sleep(5) |
|
|
|
auth=f"--gradio-auth {User}:{Password}" |
|
if User =="" or Password=="": |
|
auth="" |
|
|
|
os.chdir('/notebooks') |
|
if not os.path.exists('/notebooks/sd/stablediffusion'): |
|
call('wget -q -O sd_rep.tar.zst https://huggingface.co/TheLastBen/dependencies/resolve/main/sd_rep.tar.zst', shell=True) |
|
call('tar --zstd -xf sd_rep.tar.zst', shell=True) |
|
call('rm sd_rep.tar.zst', shell=True) |
|
|
|
os.chdir('/notebooks/sd') |
|
if not os.path.exists('stable-diffusion-webui'): |
|
call('git clone -q --depth 1 --branch master https://github.com/AUTOMATIC1111/stable-diffusion-webui', shell=True) |
|
|
|
os.chdir('/notebooks/sd/stable-diffusion-webui/') |
|
call('git reset --hard', shell=True, stdout=open('/dev/null', 'w')) |
|
print('[1;32m') |
|
call('git pull', shell=True, stdout=open('/dev/null', 'w')) |
|
os.chdir('/notebooks') |
|
clear_output() |
|
|
|
if not os.path.exists('/usr/lib/node_modules/localtunnel'): |
|
call('npm install -g localtunnel --silent', shell=True, stdout=open('/dev/null', 'w')) |
|
|
|
share='' |
|
call('wget -q -O /usr/local/lib/python3.9/dist-packages/gradio/blocks.py https://raw.githubusercontent.com/TheLastBen/fast-stable-diffusion/main/AUTOMATIC1111_files/blocks.py', shell=True) |
|
|
|
if not Use_localtunnel: |
|
share='--share' |
|
|
|
else: |
|
share='' |
|
os.chdir('/notebooks') |
|
call('nohup lt --port 7860 > srv.txt 2>&1 &', shell=True) |
|
time.sleep(2) |
|
call("grep -o 'https[^ ]*' /notebooks/srv.txt >srvr.txt", shell=True) |
|
time.sleep(2) |
|
srv= getoutput('cat /notebooks/srvr.txt') |
|
|
|
for line in fileinput.input('/usr/local/lib/python3.9/dist-packages/gradio/blocks.py', inplace=True): |
|
if line.strip().startswith('self.server_name ='): |
|
line = f' self.server_name = "{srv[8:]}"\n' |
|
if line.strip().startswith('self.server_port ='): |
|
line = ' self.server_port = 443\n' |
|
if line.strip().startswith('self.protocol = "https"'): |
|
line = ' self.protocol = "https"\n' |
|
if line.strip().startswith('if self.local_url.startswith("https") or self.is_colab'): |
|
line = '' |
|
if line.strip().startswith('else "http"'): |
|
line = '' |
|
sys.stdout.write(line) |
|
|
|
call('rm /notebooks/srv.txt', shell=True) |
|
call('rm /notebooks/srvr.txt', shell=True) |
|
|
|
|
|
|
|
os.chdir('/notebooks/sd/stable-diffusion-webui/modules') |
|
call('wget -q -O paths.py https://raw.githubusercontent.com/TheLastBen/fast-stable-diffusion/main/AUTOMATIC1111_files/paths.py', shell=True) |
|
call("sed -i 's@/content/gdrive/MyDrive/sd/stablediffusion@/notebooks/sd/stablediffusion@' /notebooks/sd/stable-diffusion-webui/modules/paths.py", shell=True) |
|
os.chdir('/notebooks/sd/stable-diffusion-webui') |
|
clear_output() |
|
|
|
configf="--disable-console-progressbars --no-half-vae --disable-safe-unpickle --api --xformers --medvram --skip-version-check --ckpt "+path_to_trained_model+" "+auth+" "+share |
|
|
|
return configf |
|
|
|
|
|
|
|
def clean(): |
|
|
|
Sessions=os.listdir("/notebooks/Fast-Dreambooth/Sessions") |
|
|
|
s = widgets.Select( |
|
options=Sessions, |
|
rows=5, |
|
description='', |
|
disabled=False |
|
) |
|
|
|
out=widgets.Output() |
|
|
|
d = widgets.Button( |
|
description='Remove', |
|
disabled=False, |
|
button_style='warning', |
|
tooltip='Removet the selected session', |
|
icon='warning' |
|
) |
|
|
|
def rem(d): |
|
with out: |
|
if s.value is not None: |
|
clear_output() |
|
print("[1;33mTHE SESSION [1;31m"+s.value+" [1;33mHAS BEEN REMOVED FROM THE STORAGE") |
|
call('rm -r /notebooks/Fast-Dreambooth/Sessions/'+s.value, shell=True) |
|
if os.path.exists('/notebooks/models/'+s.value): |
|
call('rm -r /notebooks/models/'+s.value, shell=True) |
|
s.options=os.listdir("/notebooks/Fast-Dreambooth/Sessions") |
|
|
|
|
|
else: |
|
d.close() |
|
s.close() |
|
clear_output() |
|
print("[1;32mNOTHING TO REMOVE") |
|
|
|
d.on_click(rem) |
|
if s.value is not None: |
|
display(s,d,out) |
|
else: |
|
print("[1;32mNOTHING TO REMOVE") |
|
|
|
|
|
|
|
def hfv2(Name_of_your_concept, Save_concept_to, hf_token_write, INSTANCE_NAME, OUTPUT_DIR, Session_Name, MDLPTH): |
|
|
|
from slugify import slugify |
|
from huggingface_hub import HfApi, HfFolder, CommitOperationAdd |
|
from huggingface_hub import create_repo |
|
from IPython.display import display_markdown |
|
|
|
if(Name_of_your_concept == ""): |
|
Name_of_your_concept = Session_Name |
|
Name_of_your_concept=Name_of_your_concept.replace(" ","-") |
|
|
|
|
|
|
|
if hf_token_write =="": |
|
print('[1;32mYour Hugging Face write access token : ') |
|
hf_token_write=input() |
|
|
|
hf_token = hf_token_write |
|
|
|
api = HfApi() |
|
your_username = api.whoami(token=hf_token)["name"] |
|
|
|
if(Save_concept_to == "Public_Library"): |
|
repo_id = f"sd-dreambooth-library/{slugify(Name_of_your_concept)}" |
|
|
|
call("curl -X POST -H 'Authorization: Bearer '"+hf_token+" -H 'Content-Type: application/json' https://huggingface.co/organizations/sd-dreambooth-library/share/SSeOwppVCscfTEzFGQaqpfcjukVeNrKNHX", shell=True) |
|
else: |
|
repo_id = f"{your_username}/{slugify(Name_of_your_concept)}" |
|
output_dir = f'/notebooks/models/'+INSTANCE_NAME |
|
|
|
def bar(prg): |
|
br="[1;33mUploading to HuggingFace : " '[0m|'+'█' * prg + ' ' * (25-prg)+'| ' +str(prg*4)+ "%" |
|
return br |
|
|
|
print("[1;32mLoading...") |
|
|
|
os.chdir(OUTPUT_DIR) |
|
call('rm -r feature_extractor .git', shell=True) |
|
clear_output() |
|
call('git init', shell=True) |
|
call('git lfs install --system --skip-repo', shell=True) |
|
call('git remote add -f origin "https://USER:'+hf_token+'@huggingface.co/stabilityai/stable-diffusion-2-1"', shell=True) |
|
call('git config core.sparsecheckout true', shell=True) |
|
call('echo -e "\nfeature_extractor" > .git/info/sparse-checkout', shell=True) |
|
call('git pull origin main', shell=True) |
|
call('rm -r .git', shell=True) |
|
os.chdir('/notebooks') |
|
clear_output() |
|
|
|
print(bar(1)) |
|
|
|
readme_text = f'''--- |
|
license: creativeml-openrail-m |
|
tags: |
|
- text-to-image |
|
- stable-diffusion |
|
--- |
|
### {Name_of_your_concept} Dreambooth model trained by {api.whoami(token=hf_token)["name"]} with [TheLastBen's fast-DreamBooth](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast-DreamBooth.ipynb) notebook |
|
|
|
Test the concept via A1111 Colab [fast-Colab-A1111](https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb) |
|
''' |
|
|
|
readme_file = open("README.md", "w") |
|
readme_file.write(readme_text) |
|
readme_file.close() |
|
|
|
operations = [ |
|
CommitOperationAdd(path_in_repo="README.md", path_or_fileobj="README.md"), |
|
CommitOperationAdd(path_in_repo=f"{Session_Name}.ckpt",path_or_fileobj=MDLPTH) |
|
|
|
] |
|
create_repo(repo_id,private=True, token=hf_token) |
|
|
|
api.create_commit( |
|
repo_id=repo_id, |
|
operations=operations, |
|
commit_message=f"Upload the concept {Name_of_your_concept} embeds and token", |
|
token=hf_token |
|
) |
|
|
|
api.upload_folder( |
|
folder_path=OUTPUT_DIR+"/feature_extractor", |
|
path_in_repo="feature_extractor", |
|
repo_id=repo_id, |
|
token=hf_token |
|
) |
|
|
|
clear_output() |
|
print(bar(8)) |
|
|
|
api.upload_folder( |
|
folder_path=OUTPUT_DIR+"/scheduler", |
|
path_in_repo="scheduler", |
|
repo_id=repo_id, |
|
token=hf_token |
|
) |
|
|
|
clear_output() |
|
print(bar(9)) |
|
|
|
api.upload_folder( |
|
folder_path=OUTPUT_DIR+"/text_encoder", |
|
path_in_repo="text_encoder", |
|
repo_id=repo_id, |
|
token=hf_token |
|
) |
|
|
|
clear_output() |
|
print(bar(12)) |
|
|
|
api.upload_folder( |
|
folder_path=OUTPUT_DIR+"/tokenizer", |
|
path_in_repo="tokenizer", |
|
repo_id=repo_id, |
|
token=hf_token |
|
) |
|
|
|
clear_output() |
|
print(bar(13)) |
|
|
|
api.upload_folder( |
|
folder_path=OUTPUT_DIR+"/unet", |
|
path_in_repo="unet", |
|
repo_id=repo_id, |
|
token=hf_token |
|
) |
|
|
|
clear_output() |
|
print(bar(21)) |
|
|
|
api.upload_folder( |
|
folder_path=OUTPUT_DIR+"/vae", |
|
path_in_repo="vae", |
|
repo_id=repo_id, |
|
token=hf_token |
|
) |
|
|
|
clear_output() |
|
print(bar(23)) |
|
|
|
api.upload_file( |
|
path_or_fileobj=OUTPUT_DIR+"/model_index.json", |
|
path_in_repo="model_index.json", |
|
repo_id=repo_id, |
|
token=hf_token |
|
) |
|
|
|
clear_output() |
|
print(bar(25)) |
|
|
|
print("[1;32mYour concept was saved successfully at https://huggingface.co/"+repo_id) |
|
done() |
|
|
|
|
|
|
|
def crop_image(im, size): |
|
|
|
GREEN = "#0F0" |
|
BLUE = "#00F" |
|
RED = "#F00" |
|
|
|
def focal_point(im, settings): |
|
corner_points = image_corner_points(im, settings) if settings.corner_points_weight > 0 else [] |
|
entropy_points = image_entropy_points(im, settings) if settings.entropy_points_weight > 0 else [] |
|
face_points = image_face_points(im, settings) if settings.face_points_weight > 0 else [] |
|
|
|
pois = [] |
|
|
|
weight_pref_total = 0 |
|
if len(corner_points) > 0: |
|
weight_pref_total += settings.corner_points_weight |
|
if len(entropy_points) > 0: |
|
weight_pref_total += settings.entropy_points_weight |
|
if len(face_points) > 0: |
|
weight_pref_total += settings.face_points_weight |
|
|
|
corner_centroid = None |
|
if len(corner_points) > 0: |
|
corner_centroid = centroid(corner_points) |
|
corner_centroid.weight = settings.corner_points_weight / weight_pref_total |
|
pois.append(corner_centroid) |
|
|
|
entropy_centroid = None |
|
if len(entropy_points) > 0: |
|
entropy_centroid = centroid(entropy_points) |
|
entropy_centroid.weight = settings.entropy_points_weight / weight_pref_total |
|
pois.append(entropy_centroid) |
|
|
|
face_centroid = None |
|
if len(face_points) > 0: |
|
face_centroid = centroid(face_points) |
|
face_centroid.weight = settings.face_points_weight / weight_pref_total |
|
pois.append(face_centroid) |
|
|
|
average_point = poi_average(pois, settings) |
|
|
|
return average_point |
|
|
|
|
|
def image_face_points(im, settings): |
|
|
|
np_im = np.array(im) |
|
gray = cv2.cvtColor(np_im, cv2.COLOR_BGR2GRAY) |
|
|
|
tries = [ |
|
[ f'{cv2.data.haarcascades}haarcascade_eye.xml', 0.01 ], |
|
[ f'{cv2.data.haarcascades}haarcascade_frontalface_default.xml', 0.05 ], |
|
[ f'{cv2.data.haarcascades}haarcascade_profileface.xml', 0.05 ], |
|
[ f'{cv2.data.haarcascades}haarcascade_frontalface_alt.xml', 0.05 ], |
|
[ f'{cv2.data.haarcascades}haarcascade_frontalface_alt2.xml', 0.05 ], |
|
[ f'{cv2.data.haarcascades}haarcascade_frontalface_alt_tree.xml', 0.05 ], |
|
[ f'{cv2.data.haarcascades}haarcascade_eye_tree_eyeglasses.xml', 0.05 ], |
|
[ f'{cv2.data.haarcascades}haarcascade_upperbody.xml', 0.05 ] |
|
] |
|
for t in tries: |
|
classifier = cv2.CascadeClassifier(t[0]) |
|
minsize = int(min(im.width, im.height) * t[1]) |
|
try: |
|
faces = classifier.detectMultiScale(gray, scaleFactor=1.1, |
|
minNeighbors=7, minSize=(minsize, minsize), flags=cv2.CASCADE_SCALE_IMAGE) |
|
except: |
|
continue |
|
|
|
if len(faces) > 0: |
|
rects = [[f[0], f[1], f[0] + f[2], f[1] + f[3]] for f in faces] |
|
return [PointOfInterest((r[0] +r[2]) // 2, (r[1] + r[3]) // 2, size=abs(r[0]-r[2]), weight=1/len(rects)) for r in rects] |
|
return [] |
|
|
|
|
|
def image_corner_points(im, settings): |
|
grayscale = im.convert("L") |
|
|
|
|
|
gd = ImageDraw.Draw(grayscale) |
|
gd.rectangle([0, im.height*.9, im.width, im.height], fill="#999") |
|
|
|
np_im = np.array(grayscale) |
|
|
|
points = cv2.goodFeaturesToTrack( |
|
np_im, |
|
maxCorners=100, |
|
qualityLevel=0.04, |
|
minDistance=min(grayscale.width, grayscale.height)*0.06, |
|
useHarrisDetector=False, |
|
) |
|
|
|
if points is None: |
|
return [] |
|
|
|
focal_points = [] |
|
for point in points: |
|
x, y = point.ravel() |
|
focal_points.append(PointOfInterest(x, y, size=4, weight=1/len(points))) |
|
|
|
return focal_points |
|
|
|
|
|
def image_entropy_points(im, settings): |
|
landscape = im.height < im.width |
|
portrait = im.height > im.width |
|
if landscape: |
|
move_idx = [0, 2] |
|
move_max = im.size[0] |
|
elif portrait: |
|
move_idx = [1, 3] |
|
move_max = im.size[1] |
|
else: |
|
return [] |
|
|
|
e_max = 0 |
|
crop_current = [0, 0, settings.crop_width, settings.crop_height] |
|
crop_best = crop_current |
|
while crop_current[move_idx[1]] < move_max: |
|
crop = im.crop(tuple(crop_current)) |
|
e = image_entropy(crop) |
|
|
|
if (e > e_max): |
|
e_max = e |
|
crop_best = list(crop_current) |
|
|
|
crop_current[move_idx[0]] += 4 |
|
crop_current[move_idx[1]] += 4 |
|
|
|
x_mid = int(crop_best[0] + settings.crop_width/2) |
|
y_mid = int(crop_best[1] + settings.crop_height/2) |
|
|
|
return [PointOfInterest(x_mid, y_mid, size=25, weight=1.0)] |
|
|
|
|
|
def image_entropy(im): |
|
|
|
|
|
band = np.asarray(im.convert("1"), dtype=np.uint8) |
|
hist, _ = np.histogram(band, bins=range(0, 256)) |
|
hist = hist[hist > 0] |
|
return -np.log2(hist / hist.sum()).sum() |
|
|
|
def centroid(pois): |
|
x = [poi.x for poi in pois] |
|
y = [poi.y for poi in pois] |
|
return PointOfInterest(sum(x)/len(pois), sum(y)/len(pois)) |
|
|
|
|
|
def poi_average(pois, settings): |
|
weight = 0.0 |
|
x = 0.0 |
|
y = 0.0 |
|
for poi in pois: |
|
weight += poi.weight |
|
x += poi.x * poi.weight |
|
y += poi.y * poi.weight |
|
avg_x = round(weight and x / weight) |
|
avg_y = round(weight and y / weight) |
|
|
|
return PointOfInterest(avg_x, avg_y) |
|
|
|
|
|
def is_landscape(w, h): |
|
return w > h |
|
|
|
|
|
def is_portrait(w, h): |
|
return h > w |
|
|
|
|
|
def is_square(w, h): |
|
return w == h |
|
|
|
|
|
class PointOfInterest: |
|
def __init__(self, x, y, weight=1.0, size=10): |
|
self.x = x |
|
self.y = y |
|
self.weight = weight |
|
self.size = size |
|
|
|
def bounding(self, size): |
|
return [ |
|
self.x - size//2, |
|
self.y - size//2, |
|
self.x + size//2, |
|
self.y + size//2 |
|
] |
|
|
|
class Settings: |
|
def __init__(self, crop_width=512, crop_height=512, corner_points_weight=0.5, entropy_points_weight=0.5, face_points_weight=0.5): |
|
self.crop_width = crop_width |
|
self.crop_height = crop_height |
|
self.corner_points_weight = corner_points_weight |
|
self.entropy_points_weight = entropy_points_weight |
|
self.face_points_weight = face_points_weight |
|
|
|
settings = Settings( |
|
crop_width = size, |
|
crop_height = size, |
|
face_points_weight = 0.9, |
|
entropy_points_weight = 0.15, |
|
corner_points_weight = 0.5, |
|
) |
|
|
|
scale_by = 1 |
|
if is_landscape(im.width, im.height): |
|
scale_by = settings.crop_height / im.height |
|
elif is_portrait(im.width, im.height): |
|
scale_by = settings.crop_width / im.width |
|
elif is_square(im.width, im.height): |
|
if is_square(settings.crop_width, settings.crop_height): |
|
scale_by = settings.crop_width / im.width |
|
elif is_landscape(settings.crop_width, settings.crop_height): |
|
scale_by = settings.crop_width / im.width |
|
elif is_portrait(settings.crop_width, settings.crop_height): |
|
scale_by = settings.crop_height / im.height |
|
|
|
im = im.resize((int(im.width * scale_by), int(im.height * scale_by))) |
|
im_debug = im.copy() |
|
|
|
focus = focal_point(im_debug, settings) |
|
|
|
|
|
|
|
y_half = int(settings.crop_height / 2) |
|
x_half = int(settings.crop_width / 2) |
|
|
|
x1 = focus.x - x_half |
|
if x1 < 0: |
|
x1 = 0 |
|
elif x1 + settings.crop_width > im.width: |
|
x1 = im.width - settings.crop_width |
|
|
|
y1 = focus.y - y_half |
|
if y1 < 0: |
|
y1 = 0 |
|
elif y1 + settings.crop_height > im.height: |
|
y1 = im.height - settings.crop_height |
|
|
|
x2 = x1 + settings.crop_width |
|
y2 = y1 + settings.crop_height |
|
|
|
crop = [x1, y1, x2, y2] |
|
|
|
results = [] |
|
|
|
results.append(im.crop(tuple(crop))) |
|
|
|
return results |