|
from IPython.display import clear_output |
|
from subprocess import call, getoutput, Popen |
|
from IPython.display import display |
|
import ipywidgets as widgets |
|
import io |
|
from PIL import Image, ImageDraw, ImageOps |
|
import fileinput |
|
import time |
|
import os |
|
from os import listdir |
|
from os.path import isfile |
|
import random |
|
import sys |
|
from io import BytesIO |
|
import requests |
|
from collections import defaultdict |
|
from math import log, sqrt |
|
import numpy as np |
|
import sys |
|
import fileinput |
|
import six |
|
import base64 |
|
import re |
|
import cv2 |
|
|
|
from urllib.parse import urlparse, parse_qs, unquote |
|
import urllib.request |
|
from urllib.request import urlopen, Request |
|
|
|
import tempfile |
|
from tqdm import tqdm |
|
|
|
|
|
|
|
|
|
def Deps(force_reinstall): |
|
|
|
if not force_reinstall and os.path.exists('/usr/local/lib/python3.11/dist-packages/gradio'): |
|
ntbk() |
|
os.environ['TORCH_HOME'] = '/notebooks/cache/torch' |
|
os.environ['PYTHONWARNINGS'] = 'ignore' |
|
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' |
|
print('[1;32mModules and notebooks updated, dependencies already installed') |
|
|
|
else: |
|
call("pip install --root-user-action=ignore --no-deps -q accelerate==0.12.0", shell=True, stdout=open('/dev/null', 'w')) |
|
call("pip uninstall -qq deepspeed -y", shell=True, stdout=open('/dev/null', 'w')) |
|
ntbk() |
|
if not os.path.exists('/models'): |
|
call('mkdir /models', shell=True) |
|
if not os.path.exists('/notebooks/models'): |
|
call('ln -s /models /notebooks', shell=True) |
|
if os.path.exists('/deps'): |
|
call("rm -r /deps", shell=True) |
|
call('mkdir /deps', shell=True) |
|
if not os.path.exists('cache'): |
|
call('mkdir cache', shell=True) |
|
os.chdir('/deps') |
|
call('wget -q -i https://raw.githubusercontent.com/TheLastBen/fast-stable-diffusion/main/Dependencies/aptdeps.txt', shell=True) |
|
call('dpkg -i *.deb', shell=True, stdout=open('/dev/null', 'w')) |
|
depsinst("https://huggingface.co/TheLastBen/dependencies/resolve/main/ppsdeps_311.tar.zst", "/deps/ppsdeps_311.tar.zst") |
|
call('tar -C / --zstd -xf ppsdeps_311.tar.zst', shell=True, stdout=open('/dev/null', 'w')) |
|
os.chdir('/notebooks') |
|
call('pip install --root-user-action=ignore --disable-pip-version-check -qq diffusers==0.18.1', shell=True, stdout=open('/dev/null', 'w')) |
|
call("git clone --depth 1 -q --branch main https://github.com/TheLastBen/diffusers /diffusers", shell=True, stdout=open('/dev/null', 'w'), stderr=open('/dev/null', 'w')) |
|
os.environ['TORCH_HOME'] = '/notebooks/cache/torch' |
|
os.environ['PYTHONWARNINGS'] = 'ignore' |
|
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' |
|
call("sed -i 's@text = _formatwarnmsg(msg)@text =\"\"@g' /usr/lib/python3.11/warnings.py", shell=True) |
|
if not os.path.exists('/notebooks/diffusers'): |
|
call('ln -s /diffusers /notebooks', shell=True) |
|
call("rm -r /deps", shell=True) |
|
os.chdir('/notebooks') |
|
clear_output() |
|
|
|
done() |
|
|
|
|
|
|
|
|
|
def depsinst(url, dst): |
|
file_size = None |
|
req = Request(url, headers={"User-Agent": "torch.hub"}) |
|
u = urlopen(req) |
|
meta = u.info() |
|
if hasattr(meta, 'getheaders'): |
|
content_length = meta.getheaders("Content-Length") |
|
else: |
|
content_length = meta.get_all("Content-Length") |
|
if content_length is not None and len(content_length) > 0: |
|
file_size = int(content_length[0]) |
|
|
|
with tqdm(total=file_size, disable=False, mininterval=0.5, |
|
bar_format='Installing dependencies |{bar:20}| {percentage:3.0f}%') as pbar: |
|
with open(dst, "wb") as f: |
|
while True: |
|
buffer = u.read(8192) |
|
if len(buffer) == 0: |
|
break |
|
f.write(buffer) |
|
pbar.update(len(buffer)) |
|
f.close() |
|
|
|
|
|
|
|
def dwn(url, dst, msg): |
|
file_size = None |
|
req = Request(url, headers={"User-Agent": "torch.hub"}) |
|
u = urlopen(req) |
|
meta = u.info() |
|
if hasattr(meta, 'getheaders'): |
|
content_length = meta.getheaders("Content-Length") |
|
else: |
|
content_length = meta.get_all("Content-Length") |
|
if content_length is not None and len(content_length) > 0: |
|
file_size = int(content_length[0]) |
|
|
|
with tqdm(total=file_size, disable=False, mininterval=0.5, |
|
bar_format=msg+' |{bar:20}| {percentage:3.0f}%') as pbar: |
|
with open(dst, "wb") as f: |
|
while True: |
|
buffer = u.read(8192) |
|
if len(buffer) == 0: |
|
break |
|
f.write(buffer) |
|
pbar.update(len(buffer)) |
|
f.close() |
|
|
|
|
|
|
|
|
|
def ntbk(): |
|
|
|
os.chdir('/notebooks') |
|
if not os.path.exists('Latest_Notebooks'): |
|
call('mkdir Latest_Notebooks', shell=True) |
|
else: |
|
call('rm -r Latest_Notebooks', shell=True) |
|
call('mkdir Latest_Notebooks', shell=True) |
|
os.chdir('/notebooks/Latest_Notebooks') |
|
call('wget -q -i https://huggingface.co/datasets/TheLastBen/PPS/raw/main/Notebooks.txt', shell=True) |
|
call('rm Notebooks.txt', shell=True) |
|
os.chdir('/notebooks') |
|
|
|
|
|
|
|
|
|
def ntbks(): |
|
|
|
os.chdir('/notebooks') |
|
if not os.path.exists('Latest_Notebooks'): |
|
call('mkdir Latest_Notebooks', shell=True) |
|
else: |
|
call('rm -r Latest_Notebooks', shell=True) |
|
call('mkdir Latest_Notebooks', shell=True) |
|
os.chdir('/notebooks/Latest_Notebooks') |
|
call('wget -q -i https://huggingface.co/datasets/TheLastBen/RNPD/raw/main/Notebooks.txt', shell=True) |
|
call('rm Notebooks.txt', shell=True) |
|
os.chdir('/notebooks') |
|
|
|
def done(): |
|
done = widgets.Button( |
|
description='Done!', |
|
disabled=True, |
|
button_style='success', |
|
tooltip='', |
|
icon='check' |
|
) |
|
display(done) |
|
|
|
|
|
|
|
def mdlvxl(): |
|
|
|
os.chdir('/notebooks') |
|
|
|
if os.path.exists('stable-diffusion-XL') and not os.path.exists('/notebooks/stable-diffusion-XL/unet/diffusion_pytorch_model.safetensors'): |
|
call('rm -r stable-diffusion-XL', shell=True) |
|
if not os.path.exists('stable-diffusion-XL'): |
|
print('[1;33mDownloading SDXL model...') |
|
call('mkdir stable-diffusion-XL', shell=True) |
|
os.chdir('stable-diffusion-XL') |
|
call('git init', shell=True, stdout=open('/dev/null', 'w'), stderr=open('/dev/null', 'w')) |
|
call('git lfs install --system --skip-repo', shell=True, stdout=open('/dev/null', 'w'), stderr=open('/dev/null', 'w')) |
|
call('git remote add -f origin https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0', shell=True, stdout=open('/dev/null', 'w'), stderr=open('/dev/null', 'w')) |
|
call('git config core.sparsecheckout true', shell=True, stdout=open('/dev/null', 'w'), stderr=open('/dev/null', 'w')) |
|
call('echo -e "\nscheduler\ntext_encoder\ntext_encoder_2\ntokenizer\ntokenizer_2\nunet\nvae\nfeature_extractor\nmodel_index.json\n!*.safetensors\n!*.bin\n!*.onnx*\n!*.xml\n!*.msgpack" > .git/info/sparse-checkout', shell=True, stdout=open('/dev/null', 'w'), stderr=open('/dev/null', 'w')) |
|
call('git pull origin main', shell=True, stdout=open('/dev/null', 'w'), stderr=open('/dev/null', 'w')) |
|
dwn('https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0/resolve/main/text_encoder/model.safetensors', 'text_encoder/model.safetensors', '1/4') |
|
dwn('https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0/resolve/main/text_encoder_2/model.safetensors', 'text_encoder_2/model.safetensors', '2/4') |
|
dwn('https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0/resolve/main/vae/diffusion_pytorch_model.safetensors', 'vae/diffusion_pytorch_model.safetensors', '3/4') |
|
dwn('https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0/resolve/main/unet/diffusion_pytorch_model.safetensors', 'unet/diffusion_pytorch_model.safetensors', '4/4') |
|
call('rm -r .git', shell=True, stdout=open('/dev/null', 'w'), stderr=open('/dev/null', 'w')) |
|
os.chdir('/notebooks') |
|
clear_output() |
|
while not os.path.exists('/notebooks/stable-diffusion-XL/unet/diffusion_pytorch_model.safetensors'): |
|
print('[1;31mInvalid HF token, make sure you have access to the model') |
|
time.sleep(8) |
|
if os.path.exists('/notebooks/stable-diffusion-XL/unet/diffusion_pytorch_model.safetensors'): |
|
print('[1;32mUsing SDXL model') |
|
else: |
|
print('[1;32mUsing SDXL model') |
|
|
|
call("sed -i 's@\"force_upcast.*@@' /notebooks/stable-diffusion-XL/vae/config.json", shell=True) |
|
|
|
|
|
|
|
def downloadmodel_hfxl(Path_to_HuggingFace): |
|
|
|
os.chdir('/notebooks') |
|
if os.path.exists('stable-diffusion-custom'): |
|
call("rm -r stable-diffusion-custom", shell=True) |
|
clear_output() |
|
|
|
if os.path.exists('Fast-Dreambooth/token.txt'): |
|
with open("Fast-Dreambooth/token.txt") as f: |
|
token = f.read() |
|
authe=f'https://USER:{token}@' |
|
else: |
|
authe="https://" |
|
|
|
clear_output() |
|
call("mkdir stable-diffusion-custom", shell=True) |
|
os.chdir("stable-diffusion-custom") |
|
call("git init", shell=True) |
|
call("git lfs install --system --skip-repo", shell=True) |
|
call('git remote add -f origin '+authe+'huggingface.co/'+Path_to_HuggingFace, shell=True) |
|
call("git config core.sparsecheckout true", shell=True) |
|
call('echo -e "\nscheduler\ntext_encoder\ntokenizer\nunet\nvae\nfeature_extractor\nmodel_index.json\n!*.safetensors\n!*.fp16.bin" > .git/info/sparse-checkout', shell=True) |
|
call("git pull origin main", shell=True) |
|
if os.path.exists('unet/diffusion_pytorch_model.safetensors'): |
|
call("rm -r .git", shell=True) |
|
os.chdir('/notebooks') |
|
clear_output() |
|
done() |
|
while not os.path.exists('/notebooks/stable-diffusion-custom/unet/diffusion_pytorch_model.safetensors'): |
|
print('[1;31mCheck the link you provided') |
|
os.chdir('/notebooks') |
|
time.sleep(5) |
|
|
|
|
|
|
|
def downloadmodel_link_xl(MODEL_LINK): |
|
|
|
import wget |
|
import gdown |
|
from gdown.download import get_url_from_gdrive_confirmation |
|
|
|
def getsrc(url): |
|
parsed_url = urlparse(url) |
|
if parsed_url.netloc == 'civitai.com': |
|
src='civitai' |
|
elif parsed_url.netloc == 'drive.google.com': |
|
src='gdrive' |
|
elif parsed_url.netloc == 'huggingface.co': |
|
src='huggingface' |
|
else: |
|
src='others' |
|
return src |
|
|
|
src=getsrc(MODEL_LINK) |
|
|
|
def get_name(url, gdrive): |
|
if not gdrive: |
|
response = requests.get(url, allow_redirects=False) |
|
if "Location" in response.headers: |
|
redirected_url = response.headers["Location"] |
|
quer = parse_qs(urlparse(redirected_url).query) |
|
if "response-content-disposition" in quer: |
|
disp_val = quer["response-content-disposition"][0].split(";") |
|
for vals in disp_val: |
|
if vals.strip().startswith("filename="): |
|
filenm=unquote(vals.split("=", 1)[1].strip()) |
|
return filenm.replace("\"","") |
|
else: |
|
headers = {"User-Agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_10_1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/39.0.2171.95 Safari/537.36"} |
|
lnk="https://drive.google.com/uc?id={id}&export=download".format(id=url[url.find("/d/")+3:url.find("/view")]) |
|
res = requests.session().get(lnk, headers=headers, stream=True, verify=True) |
|
res = requests.session().get(get_url_from_gdrive_confirmation(res.text), headers=headers, stream=True, verify=True) |
|
content_disposition = six.moves.urllib_parse.unquote(res.headers["Content-Disposition"]) |
|
filenm = re.search(r"filename\*=UTF-8''(.*)", content_disposition).groups()[0].replace(os.path.sep, "_") |
|
return filenm |
|
|
|
if src=='civitai': |
|
modelname=get_name(MODEL_LINK, False) |
|
elif src=='gdrive': |
|
modelname=get_name(MODEL_LINK, True) |
|
else: |
|
modelname=os.path.basename(MODEL_LINK) |
|
|
|
|
|
os.chdir('/notebooks') |
|
if src=='huggingface': |
|
dwn(MODEL_LINK, modelname,'[1;33mDownloading the Model') |
|
else: |
|
call("gdown --fuzzy " +MODEL_LINK+ " -O "+modelname, shell=True) |
|
|
|
if os.path.exists(modelname): |
|
if os.path.getsize(modelname) > 1810671599: |
|
|
|
print('[1;32mConverting to diffusers...') |
|
call('python /notebooks/diffusers/scripts/convert_original_stable_diffusion_to_diffusers.py --checkpoint_path '+modelname+' --dump_path stable-diffusion-custom --from_safetensors', shell=True, stdout=open('/dev/null', 'w'), stderr=open('/dev/null', 'w')) |
|
|
|
if os.path.exists('stable-diffusion-custom/unet/diffusion_pytorch_model.bin'): |
|
os.chdir('/notebooks') |
|
clear_output() |
|
done() |
|
else: |
|
while not os.path.exists('stable-diffusion-custom/unet/diffusion_pytorch_model.bin'): |
|
print('[1;31mConversion error') |
|
os.chdir('/notebooks') |
|
time.sleep(5) |
|
else: |
|
while os.path.getsize(modelname) < 1810671599: |
|
print('[1;31mWrong link, check that the link is valid') |
|
os.chdir('/notebooks') |
|
time.sleep(5) |
|
|
|
|
|
|
|
def downloadmodel_path_xl(MODEL_PATH): |
|
|
|
import wget |
|
os.chdir('/notebooks') |
|
clear_output() |
|
if os.path.exists(str(MODEL_PATH)): |
|
|
|
print('[1;32mConverting to diffusers...') |
|
call('python /notebooks/diffusers/scripts/convert_original_stable_diffusion_to_diffusers.py --checkpoint_path '+MODEL_PATH+' --dump_path stable-diffusion-custom --from_safetensors', shell=True, stdout=open('/dev/null', 'w'), stderr=open('/dev/null', 'w')) |
|
|
|
if os.path.exists('stable-diffusion-custom/unet/diffusion_pytorch_model.bin'): |
|
clear_output() |
|
done() |
|
while not os.path.exists('stable-diffusion-custom/unet/diffusion_pytorch_model.bin'): |
|
print('[1;31mConversion error') |
|
os.chdir('/notebooks') |
|
time.sleep(5) |
|
else: |
|
while not os.path.exists(str(MODEL_PATH)): |
|
print('[1;31mWrong path, use the file explorer to copy the path') |
|
os.chdir('/notebooks') |
|
time.sleep(5) |
|
|
|
|
|
|
|
|
|
def dls_xl(Path_to_HuggingFace, MODEL_PATH, MODEL_LINK): |
|
|
|
os.chdir('/notebooks') |
|
|
|
if Path_to_HuggingFace != "": |
|
downloadmodel_hfxl(Path_to_HuggingFace) |
|
MODEL_NAMExl="/notebooks/stable-diffusion-custom" |
|
|
|
elif MODEL_PATH !="": |
|
|
|
downloadmodel_path_xl(MODEL_PATH) |
|
MODEL_NAMExl="/notebooks/stable-diffusion-custom" |
|
|
|
elif MODEL_LINK !="": |
|
|
|
downloadmodel_link_xl(MODEL_LINK) |
|
MODEL_NAMExl="/notebooks/stable-diffusion-custom" |
|
|
|
else: |
|
mdlvxl() |
|
MODEL_NAMExl="/notebooks/stable-diffusion-XL" |
|
|
|
return MODEL_NAMExl |
|
|
|
|
|
|
|
def sess_xl(Session_Name, MODEL_NAMExl): |
|
import gdown |
|
import wget |
|
os.chdir('/notebooks') |
|
PT="" |
|
|
|
while Session_Name=="": |
|
print('[1;31mInput the Session Name:') |
|
Session_Name=input("") |
|
Session_Name=Session_Name.replace(" ","_") |
|
|
|
WORKSPACE='/notebooks/Fast-Dreambooth' |
|
|
|
INSTANCE_NAME=Session_Name |
|
OUTPUT_DIR="/notebooks/models/"+Session_Name |
|
SESSION_DIR=WORKSPACE+"/Sessions/"+Session_Name |
|
INSTANCE_DIR=SESSION_DIR+"/instance_images" |
|
CAPTIONS_DIR=SESSION_DIR+'/captions' |
|
MDLPTH=str(SESSION_DIR+"/"+Session_Name+'.safetensors') |
|
|
|
|
|
if os.path.exists(str(SESSION_DIR)) and not os.path.exists(MDLPTH): |
|
print('[1;32mLoading session with no previous LoRa model') |
|
if MODEL_NAMExl=="": |
|
print('[1;31mNo model found, use the "Model Download" cell to download a model.') |
|
else: |
|
print('[1;32mSession Loaded, proceed') |
|
|
|
elif not os.path.exists(str(SESSION_DIR)): |
|
call('mkdir -p '+INSTANCE_DIR, shell=True) |
|
print('[1;32mCreating session...') |
|
if MODEL_NAMExl=="": |
|
print('[1;31mNo model found, use the "Model Download" cell to download a model.') |
|
else: |
|
print('[1;32mSession created, proceed to uploading instance images') |
|
if MODEL_NAMExl=="": |
|
print('[1;31mNo model found, use the "Model Download" cell to download a model.') |
|
|
|
else: |
|
print('[1;32mSession Loaded, proceed') |
|
|
|
|
|
return WORKSPACE, Session_Name, INSTANCE_NAME, OUTPUT_DIR, SESSION_DIR, INSTANCE_DIR, CAPTIONS_DIR, MDLPTH, MODEL_NAMExl |
|
|
|
|
|
|
|
def uplder(Remove_existing_instance_images, Crop_images, Crop_size, Resize_to_1024_and_keep_aspect_ratio, IMAGES_FOLDER_OPTIONAL, INSTANCE_DIR, CAPTIONS_DIR): |
|
|
|
if os.path.exists(INSTANCE_DIR+"/.ipynb_checkpoints"): |
|
call('rm -r '+INSTANCE_DIR+'/.ipynb_checkpoints', shell=True) |
|
|
|
uploader = widgets.FileUpload(description="Choose images",accept='image/*, .txt', multiple=True) |
|
Upload = widgets.Button( |
|
description='Upload', |
|
disabled=False, |
|
button_style='info', |
|
tooltip='Click to upload the chosen instance images', |
|
icon='' |
|
) |
|
|
|
|
|
def up(Upload): |
|
with out: |
|
uploader.close() |
|
Upload.close() |
|
upld(Remove_existing_instance_images, Crop_images, Crop_size, Resize_to_1024_and_keep_aspect_ratio, IMAGES_FOLDER_OPTIONAL, INSTANCE_DIR, CAPTIONS_DIR, uploader) |
|
done() |
|
out=widgets.Output() |
|
|
|
if IMAGES_FOLDER_OPTIONAL=="": |
|
Upload.on_click(up) |
|
display(uploader, Upload, out) |
|
else: |
|
upld(Remove_existing_instance_images, Crop_images, Crop_size, Resize_to_1024_and_keep_aspect_ratio, IMAGES_FOLDER_OPTIONAL, INSTANCE_DIR, CAPTIONS_DIR, uploader) |
|
done() |
|
|
|
|
|
|
|
def upld(Remove_existing_instance_images, Crop_images, Crop_size, Resize_to_1024_and_keep_aspect_ratio, IMAGES_FOLDER_OPTIONAL, INSTANCE_DIR, CAPTIONS_DIR, uploader): |
|
|
|
|
|
if Remove_existing_instance_images: |
|
if os.path.exists(str(INSTANCE_DIR)): |
|
call("rm -r " +INSTANCE_DIR, shell=True) |
|
if os.path.exists(str(CAPTIONS_DIR)): |
|
call("rm -r " +CAPTIONS_DIR, shell=True) |
|
|
|
|
|
if not os.path.exists(str(INSTANCE_DIR)): |
|
call("mkdir -p " +INSTANCE_DIR, shell=True) |
|
if not os.path.exists(str(CAPTIONS_DIR)): |
|
call("mkdir -p " +CAPTIONS_DIR, shell=True) |
|
|
|
|
|
if IMAGES_FOLDER_OPTIONAL !="": |
|
|
|
if os.path.exists(IMAGES_FOLDER_OPTIONAL+"/.ipynb_checkpoints"): |
|
call('rm -r '+IMAGES_FOLDER_OPTIONAL+'/.ipynb_checkpoints', shell=True) |
|
|
|
if any(file.endswith('.{}'.format('txt')) for file in os.listdir(IMAGES_FOLDER_OPTIONAL)): |
|
call('mv '+IMAGES_FOLDER_OPTIONAL+'/*.txt '+CAPTIONS_DIR, shell=True) |
|
if Crop_images: |
|
os.chdir(str(IMAGES_FOLDER_OPTIONAL)) |
|
call('find . -name "* *" -type f | rename ' "'s/ /-/g'", shell=True) |
|
os.chdir('/notebooks') |
|
for filename in tqdm(os.listdir(IMAGES_FOLDER_OPTIONAL), bar_format=' |{bar:15}| {n_fmt}/{total_fmt} Uploaded'): |
|
extension = filename.split(".")[-1] |
|
identifier=filename.split(".")[0] |
|
new_path_with_file = os.path.join(INSTANCE_DIR, filename) |
|
file = Image.open(IMAGES_FOLDER_OPTIONAL+"/"+filename) |
|
file=file.convert("RGB") |
|
file=ImageOps.exif_transpose(file) |
|
width, height = file.size |
|
if file.size !=(Crop_size, Crop_size): |
|
image=crop_image(file, Crop_size) |
|
if extension.upper()=="JPG" or extension.upper()=="jpg": |
|
image[0].save(new_path_with_file, format="JPEG", quality = 100) |
|
else: |
|
image[0].save(new_path_with_file, format=extension.upper()) |
|
|
|
else: |
|
call("cp \'"+IMAGES_FOLDER_OPTIONAL+"/"+filename+"\' "+INSTANCE_DIR, shell=True) |
|
|
|
else: |
|
for filename in tqdm(os.listdir(IMAGES_FOLDER_OPTIONAL), bar_format=' |{bar:15}| {n_fmt}/{total_fmt} Uploaded'): |
|
call("cp -r " +IMAGES_FOLDER_OPTIONAL+"/. " +INSTANCE_DIR, shell=True) |
|
|
|
elif IMAGES_FOLDER_OPTIONAL =="": |
|
up="" |
|
for file in uploader.value: |
|
filename = file['name'] |
|
if filename.split(".")[-1]=="txt": |
|
with open(CAPTIONS_DIR+'/'+filename, 'w') as f: |
|
f.write(bytes(file['content']).decode()) |
|
up=[file for file in uploader.value if not file['name'].endswith('.txt')] |
|
if Crop_images: |
|
for file in tqdm(up, bar_format=' |{bar:15}| {n_fmt}/{total_fmt} Uploaded'): |
|
filename = file['name'] |
|
img = Image.open(io.BytesIO(file['content'])) |
|
extension = filename.split(".")[-1] |
|
identifier=filename.split(".")[0] |
|
img=img.convert("RGB") |
|
img=ImageOps.exif_transpose(img) |
|
|
|
if extension.upper()=="JPG" or extension.upper()=="jpg": |
|
img.save(INSTANCE_DIR+"/"+filename, format="JPEG", quality = 100) |
|
else: |
|
img.save(INSTANCE_DIR+"/"+filename, format=extension.upper()) |
|
|
|
new_path_with_file = os.path.join(INSTANCE_DIR, filename) |
|
file = Image.open(new_path_with_file) |
|
width, height = file.size |
|
if file.size !=(Crop_size, Crop_size): |
|
image=crop_image(file, Crop_size) |
|
if extension.upper()=="JPG" or extension.upper()=="jpg": |
|
image[0].save(new_path_with_file, format="JPEG", quality = 100) |
|
else: |
|
image[0].save(new_path_with_file, format=extension.upper()) |
|
|
|
else: |
|
for file in tqdm(uploader.value, bar_format=' |{bar:15}| {n_fmt}/{total_fmt} Uploaded'): |
|
filename = file['name'] |
|
img = Image.open(io.BytesIO(file['content'])) |
|
img=img.convert("RGB") |
|
extension = filename.split(".")[-1] |
|
identifier=filename.split(".")[0] |
|
|
|
if extension.upper()=="JPG" or extension.upper()=="jpg": |
|
img.save(INSTANCE_DIR+"/"+filename, format="JPEG", quality = 100) |
|
else: |
|
img.save(INSTANCE_DIR+"/"+filename, format=extension.upper()) |
|
|
|
os.chdir(INSTANCE_DIR) |
|
call('find . -name "* *" -type f | rename ' "'s/ /-/g'", shell=True) |
|
os.chdir(CAPTIONS_DIR) |
|
call('find . -name "* *" -type f | rename ' "'s/ /-/g'", shell=True) |
|
os.chdir('/notebooks') |
|
|
|
if Resize_to_1024_and_keep_aspect_ratio and not Crop_images: |
|
resize_keep_aspect(INSTANCE_DIR) |
|
|
|
|
|
|
|
def caption(CAPTIONS_DIR, INSTANCE_DIR): |
|
|
|
paths="" |
|
out="" |
|
widgets_l="" |
|
clear_output() |
|
def Caption(path): |
|
if path!="Select an instance image to caption": |
|
|
|
name = os.path.splitext(os.path.basename(path))[0] |
|
ext=os.path.splitext(os.path.basename(path))[-1][1:] |
|
if ext=="jpg" or "JPG": |
|
ext="JPEG" |
|
|
|
if os.path.exists(CAPTIONS_DIR+"/"+name + '.txt'): |
|
with open(CAPTIONS_DIR+"/"+name + '.txt', 'r') as f: |
|
text = f.read() |
|
else: |
|
with open(CAPTIONS_DIR+"/"+name + '.txt', 'w') as f: |
|
f.write("") |
|
with open(CAPTIONS_DIR+"/"+name + '.txt', 'r') as f: |
|
text = f.read() |
|
|
|
img=Image.open(os.path.join(INSTANCE_DIR,path)) |
|
img=img.convert("RGB") |
|
img=img.resize((420, 420)) |
|
image_bytes = BytesIO() |
|
img.save(image_bytes, format=ext, qualiy=10) |
|
image_bytes.seek(0) |
|
image_data = image_bytes.read() |
|
img= image_data |
|
image = widgets.Image( |
|
value=img, |
|
width=420, |
|
height=420 |
|
) |
|
text_area = widgets.Textarea(value=text, description='', disabled=False, layout={'width': '300px', 'height': '120px'}) |
|
|
|
|
|
def update_text(text): |
|
with open(CAPTIONS_DIR+"/"+name + '.txt', 'w') as f: |
|
f.write(text) |
|
|
|
button = widgets.Button(description='Save', button_style='success') |
|
button.on_click(lambda b: update_text(text_area.value)) |
|
|
|
return widgets.VBox([widgets.HBox([image, text_area, button])]) |
|
|
|
|
|
paths = os.listdir(INSTANCE_DIR) |
|
widgets_l = widgets.Select(options=["Select an instance image to caption"]+paths, rows=25) |
|
|
|
|
|
out = widgets.Output() |
|
|
|
def click(change): |
|
with out: |
|
out.clear_output() |
|
display(Caption(change.new)) |
|
|
|
widgets_l.observe(click, names='value') |
|
display(widgets.HBox([widgets_l, out])) |
|
|
|
|
|
|
|
def dbtrainxl(Unet_Training_Epochs, Text_Encoder_Training_Epochs, Unet_Learning_Rate, Text_Encoder_Learning_Rate, dim, Offset_Noise, Resolution, MODEL_NAME, SESSION_DIR, INSTANCE_DIR, CAPTIONS_DIR, External_Captions, INSTANCE_NAME, Session_Name, OUTPUT_DIR, ofstnselvl, Save_VRAM, Intermediary_Save_Epoch): |
|
|
|
|
|
if os.path.exists(INSTANCE_DIR+"/.ipynb_checkpoints"): |
|
call('rm -r '+INSTANCE_DIR+'/.ipynb_checkpoints', shell=True) |
|
if os.path.exists(CAPTIONS_DIR+"/.ipynb_checkpoints"): |
|
call('rm -r '+CAPTIONS_DIR+'/.ipynb_checkpoints', shell=True) |
|
|
|
|
|
Seed=random.randint(1, 999999) |
|
|
|
ofstnse="" |
|
if Offset_Noise: |
|
ofstnse="--offset_noise" |
|
|
|
GC='' |
|
if Save_VRAM: |
|
GC='--gradient_checkpointing' |
|
|
|
extrnlcptn="" |
|
if External_Captions: |
|
extrnlcptn="--external_captions" |
|
|
|
precision="fp16" |
|
|
|
|
|
|
|
def train_only_text(SESSION_DIR, MODEL_NAME, INSTANCE_DIR, OUTPUT_DIR, Seed, Resolution, ofstnse, extrnlcptn, precision, Training_Epochs): |
|
print('[1;33mTraining the Text Encoder...[0m') |
|
call('accelerate launch /notebooks/diffusers/examples/dreambooth/train_dreambooth_sdxl_TI.py \ |
|
'+ofstnse+' \ |
|
'+extrnlcptn+' \ |
|
--dim='+str(dim)+' \ |
|
--ofstnselvl='+str(ofstnselvl)+' \ |
|
--image_captions_filename \ |
|
--Session_dir='+SESSION_DIR+' \ |
|
--pretrained_model_name_or_path='+MODEL_NAME+' \ |
|
--instance_data_dir='+INSTANCE_DIR+' \ |
|
--output_dir='+OUTPUT_DIR+' \ |
|
--captions_dir='+CAPTIONS_DIR+' \ |
|
--seed='+str(Seed)+' \ |
|
--resolution='+str(Resolution)+' \ |
|
--mixed_precision='+str(precision)+' \ |
|
--train_batch_size=1 \ |
|
--gradient_accumulation_steps=1 '+GC+ ' \ |
|
--use_8bit_adam \ |
|
--learning_rate='+str(Text_Encoder_Learning_Rate)+' \ |
|
--lr_scheduler="cosine" \ |
|
--lr_warmup_steps=0 \ |
|
--num_train_epochs='+str(Training_Epochs), shell=True) |
|
|
|
|
|
|
|
def train_only_unet(SESSION_DIR, MODEL_NAME, INSTANCE_DIR, OUTPUT_DIR, Seed, Resolution, ofstnse, extrnlcptn, precision, Training_Epochs): |
|
print('[1;33mTraining the UNet...[0m') |
|
call('accelerate launch /notebooks/diffusers/examples/dreambooth/train_dreambooth_sdxl_lora.py \ |
|
'+ofstnse+' \ |
|
'+extrnlcptn+' \ |
|
--saves='+Intermediary_Save_Epoch+' \ |
|
--dim='+str(dim)+' \ |
|
--ofstnselvl='+str(ofstnselvl)+' \ |
|
--image_captions_filename \ |
|
--Session_dir='+SESSION_DIR+' \ |
|
--pretrained_model_name_or_path='+MODEL_NAME+' \ |
|
--instance_data_dir='+INSTANCE_DIR+' \ |
|
--output_dir='+OUTPUT_DIR+' \ |
|
--captions_dir='+CAPTIONS_DIR+' \ |
|
--seed='+str(Seed)+' \ |
|
--resolution='+str(Resolution)+' \ |
|
--mixed_precision='+str(precision)+' \ |
|
--train_batch_size=1 \ |
|
--gradient_accumulation_steps=1 '+GC+ ' \ |
|
--use_8bit_adam \ |
|
--learning_rate='+str(Unet_Learning_Rate)+' \ |
|
--lr_scheduler="cosine" \ |
|
--lr_warmup_steps=0 \ |
|
--num_train_epochs='+str(Training_Epochs), shell=True) |
|
|
|
|
|
|
|
if Unet_Training_Epochs!=0: |
|
if Text_Encoder_Training_Epochs!=0: |
|
train_only_text(SESSION_DIR, MODEL_NAME, INSTANCE_DIR, OUTPUT_DIR, Seed, Resolution, ofstnse, extrnlcptn, precision, Training_Epochs=Text_Encoder_Training_Epochs) |
|
clear_output() |
|
train_only_unet(SESSION_DIR, MODEL_NAME, INSTANCE_DIR, OUTPUT_DIR, Seed, Resolution, ofstnse, extrnlcptn, precision, Training_Epochs=Unet_Training_Epochs) |
|
else : |
|
print('[1;32mNothing to do') |
|
|
|
|
|
if os.path.exists(SESSION_DIR+'/'+Session_Name+'.safetensors'): |
|
clear_output() |
|
print("[1;32mDONE, the LoRa model is in the session's folder") |
|
else: |
|
print("[1;31mSomething went wrong") |
|
|
|
|
|
|
|
|
|
def sdcmf(MDLPTH): |
|
|
|
from slugify import slugify |
|
from huggingface_hub import HfApi, CommitOperationAdd, create_repo |
|
|
|
os.chdir('/notebooks') |
|
|
|
|
|
print('[1;33mInstalling/Updating the repo...') |
|
if not os.path.exists('ComfyUI'): |
|
call('git clone -q --depth 1 https://github.com/comfyanonymous/ComfyUI', shell=True) |
|
|
|
os.chdir('ComfyUI') |
|
call('git reset --hard', shell=True) |
|
print('[1;32m') |
|
call('git pull', shell=True) |
|
|
|
if os.path.exists(MDLPTH): |
|
call('ln -s '+os.path.dirname(MDLPTH)+' models/loras', shell=True, stdout=open('/dev/null', 'w'), stderr=open('/dev/null', 'w')) |
|
|
|
clean_symlinks('models/loras') |
|
|
|
if not os.path.exists('models/checkpoints/sd_xl_base_1.0.safetensors'): |
|
call('ln -s /datasets/stable-diffusion-xl/sd_xl_base_1.0.safetensors models/checkpoints', shell=True) |
|
|
|
localurl="https://tensorboard-"+os.environ.get('PAPERSPACE_FQDN') |
|
call("sed -i 's@logging.info(\"To see the GUI go to: {}://{}:{}\".format(scheme, address, port))@print(\"[32m\u2714 Connected\")\\n print(\"[1;34m"+localurl+"[0m\")@' /notebooks/ComfyUI/server.py", shell=True) |
|
os.chdir('/notebooks') |
|
|
|
|
|
def test(MDLPTH, User, Password): |
|
|
|
|
|
auth=f"--gradio-auth {User}:{Password}" |
|
if User =="" or Password=="": |
|
auth="" |
|
|
|
os.chdir('/notebooks') |
|
if not os.path.exists('/notebooks/sd/stablediffusiond'): |
|
call('wget -q -O sd_mrep.tar.zst https://huggingface.co/TheLastBen/dependencies/resolve/main/sd_mrep.tar.zst', shell=True) |
|
call('tar --zstd -xf sd_mrep.tar.zst', shell=True) |
|
call('rm sd_mrep.tar.zst', shell=True) |
|
|
|
os.chdir('/notebooks/sd') |
|
if not os.path.exists('stable-diffusion-webui'): |
|
call('git clone -q --depth 1 --branch master https://github.com/AUTOMATIC1111/stable-diffusion-webui', shell=True) |
|
|
|
os.chdir('/notebooks/sd/stable-diffusion-webui/') |
|
call('git reset --hard', shell=True, stdout=open('/dev/null', 'w')) |
|
print('[1;32m') |
|
call('git checkout master', shell=True, stdout=open('/dev/null', 'w'), stderr=open('/dev/null', 'w')) |
|
call('git pull', shell=True, stdout=open('/dev/null', 'w')) |
|
os.makedirs('/notebooks/sd/stable-diffusion-webui/repositories', exist_ok=True) |
|
call('git clone https://github.com/AUTOMATIC1111/stable-diffusion-webui-assets /notebooks/sd/stable-diffusion-webui/repositories/stable-diffusion-webui-assets', shell=True, stdout=open('/dev/null', 'w'), stderr=open('/dev/null', 'w')) |
|
clear_output() |
|
|
|
|
|
if not os.path.exists('models/Stable-diffusion/sd_xl_base_1.0.safetensors'): |
|
call('ln -s /datasets/stable-diffusion-xl/sd_xl_base_1.0.safetensors models/Stable-diffusion', shell=True) |
|
|
|
|
|
if os.path.exists(MDLPTH): |
|
call('ln -s '+os.path.dirname(MDLPTH)+' models/Lora', shell=True, stdout=open('/dev/null', 'w'), stderr=open('/dev/null', 'w')) |
|
|
|
clean_symlinks('models/Lora') |
|
|
|
call('wget -q -O /usr/local/lib/python3.11/dist-packages/gradio/blocks.py https://raw.githubusercontent.com/TheLastBen/fast-stable-diffusion/main/AUTOMATIC1111_files/blocks.py', shell=True) |
|
|
|
localurl="tensorboard-"+os.environ.get('PAPERSPACE_FQDN') |
|
|
|
for line in fileinput.input('/usr/local/lib/python3.11/dist-packages/gradio/blocks.py', inplace=True): |
|
if line.strip().startswith('self.server_name ='): |
|
line = f' self.server_name = "{localurl}"\n' |
|
if line.strip().startswith('self.protocol = "https"'): |
|
line = ' self.protocol = "https"\n' |
|
if line.strip().startswith('if self.local_url.startswith("https") or self.is_colab'): |
|
line = '' |
|
if line.strip().startswith('else "http"'): |
|
line = '' |
|
sys.stdout.write(line) |
|
|
|
|
|
os.chdir('/notebooks/sd/stable-diffusion-webui/modules') |
|
|
|
call("sed -i 's@possible_sd_paths =.*@possible_sd_paths = [\"/notebooks/sd/stablediffusion\"]@' /notebooks/sd/stable-diffusion-webui/modules/paths.py", shell=True) |
|
call("sed -i 's@\.\.\/@src/@g' /notebooks/sd/stable-diffusion-webui/modules/paths.py", shell=True) |
|
call("sed -i 's@src\/generative-models@generative-models@g' /notebooks/sd/stable-diffusion-webui/modules/paths.py", shell=True) |
|
|
|
os.chdir('/notebooks/sd/stable-diffusion-webui') |
|
clear_output() |
|
|
|
configf="--disable-console-progressbars --no-gradio-queue --upcast-sampling --no-hashing --no-half-vae --disable-safe-unpickle --api --no-download-sd-model --xformers --enable-insecure-extension-access --port 6006 --listen --skip-version-check --ckpt /notebooks/sd/stable-diffusion-webui/models/Stable-diffusion/sd_xl_base_1.0.safetensors "+auth |
|
|
|
return configf |
|
|
|
|
|
|
|
|
|
def clean(): |
|
|
|
Sessions=os.listdir("/notebooks/Fast-Dreambooth/Sessions") |
|
|
|
s = widgets.Select( |
|
options=Sessions, |
|
rows=5, |
|
description='', |
|
disabled=False |
|
) |
|
|
|
out=widgets.Output() |
|
|
|
d = widgets.Button( |
|
description='Remove', |
|
disabled=False, |
|
button_style='warning', |
|
tooltip='Removet the selected session', |
|
icon='warning' |
|
) |
|
|
|
def rem(d): |
|
with out: |
|
if s.value is not None: |
|
clear_output() |
|
print("[1;33mTHE SESSION [1;31m"+s.value+" [1;33mHAS BEEN REMOVED FROM THE STORAGE") |
|
call('rm -r /notebooks/Fast-Dreambooth/Sessions/'+s.value, shell=True) |
|
if os.path.exists('/notebooks/models/'+s.value): |
|
call('rm -r /notebooks/models/'+s.value, shell=True) |
|
s.options=os.listdir("/notebooks/Fast-Dreambooth/Sessions") |
|
|
|
|
|
else: |
|
d.close() |
|
s.close() |
|
clear_output() |
|
print("[1;32mNOTHING TO REMOVE") |
|
|
|
d.on_click(rem) |
|
if s.value is not None: |
|
display(s,d,out) |
|
else: |
|
print("[1;32mNOTHING TO REMOVE") |
|
|
|
|
|
|
|
def crop_image(im, size): |
|
|
|
import cv2 |
|
|
|
GREEN = "#0F0" |
|
BLUE = "#00F" |
|
RED = "#F00" |
|
|
|
def focal_point(im, settings): |
|
corner_points = image_corner_points(im, settings) if settings.corner_points_weight > 0 else [] |
|
entropy_points = image_entropy_points(im, settings) if settings.entropy_points_weight > 0 else [] |
|
face_points = image_face_points(im, settings) if settings.face_points_weight > 0 else [] |
|
|
|
pois = [] |
|
|
|
weight_pref_total = 0 |
|
if len(corner_points) > 0: |
|
weight_pref_total += settings.corner_points_weight |
|
if len(entropy_points) > 0: |
|
weight_pref_total += settings.entropy_points_weight |
|
if len(face_points) > 0: |
|
weight_pref_total += settings.face_points_weight |
|
|
|
corner_centroid = None |
|
if len(corner_points) > 0: |
|
corner_centroid = centroid(corner_points) |
|
corner_centroid.weight = settings.corner_points_weight / weight_pref_total |
|
pois.append(corner_centroid) |
|
|
|
entropy_centroid = None |
|
if len(entropy_points) > 0: |
|
entropy_centroid = centroid(entropy_points) |
|
entropy_centroid.weight = settings.entropy_points_weight / weight_pref_total |
|
pois.append(entropy_centroid) |
|
|
|
face_centroid = None |
|
if len(face_points) > 0: |
|
face_centroid = centroid(face_points) |
|
face_centroid.weight = settings.face_points_weight / weight_pref_total |
|
pois.append(face_centroid) |
|
|
|
average_point = poi_average(pois, settings) |
|
|
|
return average_point |
|
|
|
|
|
def image_face_points(im, settings): |
|
|
|
np_im = np.array(im) |
|
gray = cv2.cvtColor(np_im, cv2.COLOR_BGR2GRAY) |
|
|
|
tries = [ |
|
[ f'{cv2.data.haarcascades}haarcascade_eye.xml', 0.01 ], |
|
[ f'{cv2.data.haarcascades}haarcascade_frontalface_default.xml', 0.05 ], |
|
[ f'{cv2.data.haarcascades}haarcascade_profileface.xml', 0.05 ], |
|
[ f'{cv2.data.haarcascades}haarcascade_frontalface_alt.xml', 0.05 ], |
|
[ f'{cv2.data.haarcascades}haarcascade_frontalface_alt2.xml', 0.05 ], |
|
[ f'{cv2.data.haarcascades}haarcascade_frontalface_alt_tree.xml', 0.05 ], |
|
[ f'{cv2.data.haarcascades}haarcascade_eye_tree_eyeglasses.xml', 0.05 ], |
|
[ f'{cv2.data.haarcascades}haarcascade_upperbody.xml', 0.05 ] |
|
] |
|
for t in tries: |
|
classifier = cv2.CascadeClassifier(t[0]) |
|
minsize = int(min(im.width, im.height) * t[1]) |
|
try: |
|
faces = classifier.detectMultiScale(gray, scaleFactor=1.1, |
|
minNeighbors=7, minSize=(minsize, minsize), flags=cv2.CASCADE_SCALE_IMAGE) |
|
except: |
|
continue |
|
|
|
if len(faces) > 0: |
|
rects = [[f[0], f[1], f[0] + f[2], f[1] + f[3]] for f in faces] |
|
return [PointOfInterest((r[0] +r[2]) // 2, (r[1] + r[3]) // 2, size=abs(r[0]-r[2]), weight=1/len(rects)) for r in rects] |
|
return [] |
|
|
|
|
|
def image_corner_points(im, settings): |
|
grayscale = im.convert("L") |
|
|
|
|
|
gd = ImageDraw.Draw(grayscale) |
|
gd.rectangle([0, im.height*.9, im.width, im.height], fill="#999") |
|
|
|
np_im = np.array(grayscale) |
|
|
|
points = cv2.goodFeaturesToTrack( |
|
np_im, |
|
maxCorners=100, |
|
qualityLevel=0.04, |
|
minDistance=min(grayscale.width, grayscale.height)*0.06, |
|
useHarrisDetector=False, |
|
) |
|
|
|
if points is None: |
|
return [] |
|
|
|
focal_points = [] |
|
for point in points: |
|
x, y = point.ravel() |
|
focal_points.append(PointOfInterest(x, y, size=4, weight=1/len(points))) |
|
|
|
return focal_points |
|
|
|
|
|
def image_entropy_points(im, settings): |
|
landscape = im.height < im.width |
|
portrait = im.height > im.width |
|
if landscape: |
|
move_idx = [0, 2] |
|
move_max = im.size[0] |
|
elif portrait: |
|
move_idx = [1, 3] |
|
move_max = im.size[1] |
|
else: |
|
return [] |
|
|
|
e_max = 0 |
|
crop_current = [0, 0, settings.crop_width, settings.crop_height] |
|
crop_best = crop_current |
|
while crop_current[move_idx[1]] < move_max: |
|
crop = im.crop(tuple(crop_current)) |
|
e = image_entropy(crop) |
|
|
|
if (e > e_max): |
|
e_max = e |
|
crop_best = list(crop_current) |
|
|
|
crop_current[move_idx[0]] += 4 |
|
crop_current[move_idx[1]] += 4 |
|
|
|
x_mid = int(crop_best[0] + settings.crop_width/2) |
|
y_mid = int(crop_best[1] + settings.crop_height/2) |
|
|
|
return [PointOfInterest(x_mid, y_mid, size=25, weight=1.0)] |
|
|
|
|
|
def image_entropy(im): |
|
|
|
|
|
band = np.asarray(im.convert("1"), dtype=np.uint8) |
|
hist, _ = np.histogram(band, bins=range(0, 256)) |
|
hist = hist[hist > 0] |
|
return -np.log2(hist / hist.sum()).sum() |
|
|
|
def centroid(pois): |
|
x = [poi.x for poi in pois] |
|
y = [poi.y for poi in pois] |
|
return PointOfInterest(sum(x)/len(pois), sum(y)/len(pois)) |
|
|
|
|
|
def poi_average(pois, settings): |
|
weight = 0.0 |
|
x = 0.0 |
|
y = 0.0 |
|
for poi in pois: |
|
weight += poi.weight |
|
x += poi.x * poi.weight |
|
y += poi.y * poi.weight |
|
avg_x = round(weight and x / weight) |
|
avg_y = round(weight and y / weight) |
|
|
|
return PointOfInterest(avg_x, avg_y) |
|
|
|
|
|
def is_landscape(w, h): |
|
return w > h |
|
|
|
|
|
def is_portrait(w, h): |
|
return h > w |
|
|
|
|
|
def is_square(w, h): |
|
return w == h |
|
|
|
|
|
class PointOfInterest: |
|
def __init__(self, x, y, weight=1.0, size=10): |
|
self.x = x |
|
self.y = y |
|
self.weight = weight |
|
self.size = size |
|
|
|
def bounding(self, size): |
|
return [ |
|
self.x - size//2, |
|
self.y - size//2, |
|
self.x + size//2, |
|
self.y + size//2 |
|
] |
|
|
|
class Settings: |
|
def __init__(self, crop_width=512, crop_height=512, corner_points_weight=0.5, entropy_points_weight=0.5, face_points_weight=0.5): |
|
self.crop_width = crop_width |
|
self.crop_height = crop_height |
|
self.corner_points_weight = corner_points_weight |
|
self.entropy_points_weight = entropy_points_weight |
|
self.face_points_weight = face_points_weight |
|
|
|
settings = Settings( |
|
crop_width = size, |
|
crop_height = size, |
|
face_points_weight = 0.9, |
|
entropy_points_weight = 0.15, |
|
corner_points_weight = 0.5, |
|
) |
|
|
|
scale_by = 1 |
|
if is_landscape(im.width, im.height): |
|
scale_by = settings.crop_height / im.height |
|
elif is_portrait(im.width, im.height): |
|
scale_by = settings.crop_width / im.width |
|
elif is_square(im.width, im.height): |
|
if is_square(settings.crop_width, settings.crop_height): |
|
scale_by = settings.crop_width / im.width |
|
elif is_landscape(settings.crop_width, settings.crop_height): |
|
scale_by = settings.crop_width / im.width |
|
elif is_portrait(settings.crop_width, settings.crop_height): |
|
scale_by = settings.crop_height / im.height |
|
|
|
im = im.resize((int(im.width * scale_by), int(im.height * scale_by))) |
|
im_debug = im.copy() |
|
|
|
focus = focal_point(im_debug, settings) |
|
|
|
|
|
|
|
y_half = int(settings.crop_height / 2) |
|
x_half = int(settings.crop_width / 2) |
|
|
|
x1 = focus.x - x_half |
|
if x1 < 0: |
|
x1 = 0 |
|
elif x1 + settings.crop_width > im.width: |
|
x1 = im.width - settings.crop_width |
|
|
|
y1 = focus.y - y_half |
|
if y1 < 0: |
|
y1 = 0 |
|
elif y1 + settings.crop_height > im.height: |
|
y1 = im.height - settings.crop_height |
|
|
|
x2 = x1 + settings.crop_width |
|
y2 = y1 + settings.crop_height |
|
|
|
crop = [x1, y1, x2, y2] |
|
|
|
results = [] |
|
|
|
results.append(im.crop(tuple(crop))) |
|
|
|
return results |
|
|
|
|
|
|
|
def resize_keep_aspect(DIR): |
|
|
|
min_dimension=1024 |
|
|
|
for filename in os.listdir(DIR): |
|
if filename.lower().endswith(('.png', '.jpg', '.jpeg', '.webp')): |
|
image = cv2.imread(os.path.join(DIR, filename)) |
|
|
|
org_height, org_width = image.shape[0], image.shape[1] |
|
|
|
if org_width < org_height: |
|
new_width = min_dimension |
|
new_height = int(org_height * (min_dimension / org_width)) |
|
else: |
|
new_height = min_dimension |
|
new_width = int(org_width * (min_dimension / org_height)) |
|
|
|
resized_image = cv2.resize(image, (new_width, new_height), interpolation=cv2.INTER_LANCZOS4) |
|
|
|
cv2.imwrite(os.path.join(DIR, filename), resized_image, [int(cv2.IMWRITE_PNG_COMPRESSION), 0]) |
|
|
|
|
|
|
|
def clean_symlinks(path): |
|
for item in os.listdir(path): |
|
lnk = os.path.join(path, item) |
|
if os.path.islink(lnk) and not os.path.exists(os.readlink(lnk)): |
|
os.remove(lnk) |