|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import json |
|
|
|
import datasets |
|
|
|
_CITATION = ''' |
|
@inproceedings{ |
|
thakur2021beir, |
|
title={{BEIR}: A Heterogeneous Benchmark for Zero-shot Evaluation of Information Retrieval Models}, |
|
author={Nandan Thakur and Nils Reimers and Andreas R{\"u}ckl{\'e} and Abhishek Srivastava and Iryna Gurevych}, |
|
booktitle={Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track (Round 2)}, |
|
year={2021}, |
|
url={https://openreview.net/forum?id=wCu6T5xFjeJ} |
|
} |
|
''' |
|
|
|
all_data = [ |
|
'arguana', |
|
'climate-fever', |
|
'cqadupstack-android', |
|
'cqadupstack-english', |
|
'cqadupstack-gaming', |
|
'cqadupstack-gis', |
|
'cqadupstack-mathematica', |
|
'cqadupstack-physics', |
|
'cqadupstack-programmers', |
|
'cqadupstack-stats', |
|
'cqadupstack-tex', |
|
'cqadupstack-unix', |
|
'cqadupstack-webmasters', |
|
'cqadupstack-wordpress', |
|
'dbpedia-entity', |
|
'fever', |
|
'fiqa', |
|
'hotpotqa', |
|
'nfcorpus', |
|
'quora', |
|
'scidocs', |
|
'scifact', |
|
'trec-covid', |
|
'webis-touche2020', |
|
'nq' |
|
] |
|
|
|
_DESCRIPTION = 'dataset load script for BEIR corpus' |
|
|
|
_DATASET_URLS = { |
|
data: { |
|
'train': f'https://huggingface.co/datasets/Tevatron/beir-corpus/resolve/main/{data}.jsonl.gz', |
|
} for data in all_data |
|
} |
|
|
|
|
|
class BeirCorpus(datasets.GeneratorBasedBuilder): |
|
BUILDER_CONFIGS = [ |
|
datasets.BuilderConfig( |
|
version=datasets.Version('1.1.0'), |
|
name=data, |
|
description=f'BEIR dataset corpus {data}.' |
|
) for data in all_data |
|
] |
|
|
|
def _info(self): |
|
features = datasets.Features({ |
|
'docid': datasets.Value('string'), |
|
'title': datasets.Value('string'), |
|
'text': datasets.Value('string'), |
|
}) |
|
|
|
return datasets.DatasetInfo( |
|
|
|
description=_DESCRIPTION, |
|
|
|
features=features, |
|
supervised_keys=None, |
|
|
|
homepage='https://github.com/beir-cellar/beir', |
|
|
|
license='', |
|
|
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
data = self.config.name |
|
downloaded_files = dl_manager.download_and_extract(_DATASET_URLS[data]) |
|
|
|
splits = [ |
|
datasets.SplitGenerator( |
|
name='train', |
|
gen_kwargs={ |
|
'filepath': downloaded_files['train'], |
|
}, |
|
), |
|
] |
|
return splits |
|
|
|
def _generate_examples(self, filepath): |
|
with open(filepath, encoding="utf-8") as f: |
|
for line in f: |
|
data = json.loads(line) |
|
yield data['docid'], data |