|  | import datasets | 
					
						
						|  | import json | 
					
						
						|  | import numpy | 
					
						
						|  | import tarfile | 
					
						
						|  | import io | 
					
						
						|  |  | 
					
						
						|  | _FEATURES = datasets.Features( | 
					
						
						|  | { | 
					
						
						|  | "id": datasets.Value("string"), | 
					
						
						|  | "prompt": datasets.Array3D(shape=(1, 77, 768), dtype="float32"), | 
					
						
						|  | "video": datasets.Sequence(feature=datasets.Array3D(shape=(4, 64, 64), dtype="float32")), | 
					
						
						|  | "description": datasets.Value("string"), | 
					
						
						|  | "videourl": datasets.Value("string"), | 
					
						
						|  | "categories": datasets.Value("string"), | 
					
						
						|  | "duration": datasets.Value("float"), | 
					
						
						|  | "full_metadata": datasets.Value("string"), | 
					
						
						|  | } | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | class FunkLoaderStream(datasets.GeneratorBasedBuilder): | 
					
						
						|  | """TempoFunk Dataset""" | 
					
						
						|  |  | 
					
						
						|  | def _info(self): | 
					
						
						|  | return datasets.DatasetInfo( | 
					
						
						|  | description="TempoFunk Dataset", | 
					
						
						|  | features=_FEATURES, | 
					
						
						|  | homepage="tempofunk.github.io", | 
					
						
						|  | citation=""" | 
					
						
						|  | @misc{TempoFunk2023, | 
					
						
						|  | author = {Lopho, Carlos Chavez}, | 
					
						
						|  | title = {TempoFunk: Extending latent diffusion image models to Video}, | 
					
						
						|  | url = {tempofunk.github.io}, | 
					
						
						|  | month = {5}, | 
					
						
						|  | year = {2023} | 
					
						
						|  | } | 
					
						
						|  | """, | 
					
						
						|  | license="AGPL v3" | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def _split_generators(self, dl_manager): | 
					
						
						|  |  | 
					
						
						|  | print("PATH:", dl_manager.download("lists/chunk_list.json")) | 
					
						
						|  | thing = json.load(open(dl_manager.download("lists/chunk_list.json"), 'rb')) | 
					
						
						|  | _CHUNK_LIST = thing | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | _list = [] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | for chunk in _CHUNK_LIST: | 
					
						
						|  | _list.append(dl_manager.download(f"data/{chunk}.tar")) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | return [ | 
					
						
						|  | datasets.SplitGenerator( | 
					
						
						|  | name=datasets.Split.TRAIN, | 
					
						
						|  | gen_kwargs={ | 
					
						
						|  | "chunks": _list, | 
					
						
						|  | }, | 
					
						
						|  | ), | 
					
						
						|  | ] | 
					
						
						|  |  | 
					
						
						|  | def _generate_examples(self, chunks): | 
					
						
						|  | """Generate images and labels for splits.""" | 
					
						
						|  | for chunk in chunks: | 
					
						
						|  | tar_data = open(chunk, 'rb') | 
					
						
						|  | tar_bytes = tar_data.read() | 
					
						
						|  | tar_bytes_io = io.BytesIO(tar_bytes) | 
					
						
						|  |  | 
					
						
						|  | response_dict = {} | 
					
						
						|  |  | 
					
						
						|  | with tarfile.open(fileobj=tar_bytes_io, mode='r') as tar: | 
					
						
						|  | for file_info in tar: | 
					
						
						|  | if file_info.isfile(): | 
					
						
						|  | file_name = file_info.name | 
					
						
						|  |  | 
					
						
						|  | file_type = file_name.split('_')[0] | 
					
						
						|  | file_id = file_name.split('_')[1].split('.')[0] | 
					
						
						|  | file_ext = file_name.split('_')[1].split('.')[1] | 
					
						
						|  | file_contents = tar.extractfile(file_info).read() | 
					
						
						|  |  | 
					
						
						|  | if file_id not in response_dict: | 
					
						
						|  | response_dict[file_id] = {} | 
					
						
						|  |  | 
					
						
						|  | if file_type == 'txt' or file_type == 'vid': | 
					
						
						|  | response_dict[file_id][file_type] = numpy.load(io.BytesIO(file_contents)) | 
					
						
						|  | elif file_type == 'jso': | 
					
						
						|  | response_dict[file_id][file_type] = json.loads(file_contents) | 
					
						
						|  |  | 
					
						
						|  | for key, value in response_dict.items(): | 
					
						
						|  | yield key, { | 
					
						
						|  | "id": key, | 
					
						
						|  | "description": value['jso']['description'], | 
					
						
						|  | "prompt": value['txt'], | 
					
						
						|  | "video": value['vid'], | 
					
						
						|  | "videourl": value['jso']['videourl'], | 
					
						
						|  | "categories": value['jso']['categories'], | 
					
						
						|  | "duration": value['jso']['duration'], | 
					
						
						|  | "full_metadata": value['jso'] | 
					
						
						|  | } |