|
import datasets |
|
import json |
|
import numpy |
|
import tarfile |
|
import io |
|
from io import BytesIO |
|
|
|
_FEATURES = datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"metadata": datasets.Value("string"), |
|
"prompt": datasets.Array3D(shape=(1, 77, 768), dtype="float32"), |
|
"vidmean": datasets.Sequence(feature=datasets.Array3D(shape=(4, 64, 64), dtype="float32")), |
|
"vidstd": datasets.Sequence(feature=datasets.Array3D(shape=(4, 64, 64), dtype="float32")) |
|
} |
|
) |
|
|
|
class FunkLoaderStream(datasets.GeneratorBasedBuilder): |
|
"""TempoFunk Dataset""" |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description="TempoFunk Dataset", |
|
features=_FEATURES, |
|
homepage="None", |
|
citation="None", |
|
license="None" |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
|
|
_CHUNK_LIST = json.loads(open(dl_manager.download("lists/chunk_list.json"), 'r').read()) |
|
|
|
|
|
_list = [] |
|
|
|
|
|
for chunk in _CHUNK_LIST: |
|
_list.append(dl_manager.download(f"data/{chunk}.tar")) |
|
|
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"chunks": _list, |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, chunks): |
|
"""Generate images and labels for splits.""" |
|
for chunk in chunks: |
|
tar_data = open(chunk, 'rb') |
|
tar_bytes = tar_data.read() |
|
tar_bytes_io = io.BytesIO(tar_bytes) |
|
|
|
response_dict = {} |
|
|
|
with tarfile.open(fileobj=tar_bytes_io, mode='r') as tar: |
|
for file_info in tar: |
|
if file_info.isfile(): |
|
file_name = file_info.name |
|
|
|
file_type = file_name.split('_')[0] |
|
file_id = file_name.split('_')[1].split('.')[0] |
|
file_ext = file_name.split('_')[1].split('.')[1] |
|
file_contents = tar.extractfile(file_info) |
|
|
|
if file_id not in response_dict: |
|
response_dict[file_id] = {} |
|
|
|
|
|
if file_type == 'txt' or file_type == 'vis' or file_type == 'vim': |
|
|
|
_tmp = BytesIO() |
|
_tmp.write(tar.extractfile(file_name).read()) |
|
_tmp.seek(0) |
|
file_contents = _tmp |
|
response_dict[file_id][file_type] = numpy.load(file_contents) |
|
elif file_type == 'jso': |
|
response_dict[file_id][file_type] = json.loads(file_contents.read()) |
|
|
|
for key, value in response_dict.items(): |
|
yield key, { |
|
"id": key, |
|
"metadata": json.dumps(value['jso']), |
|
"prompt": value['txt'], |
|
"vidmean": value['vim'], |
|
"vidstd": value['vis'], |
|
} |