Datasets:
Tasks:
Text Retrieval
Modalities:
Text
Formats:
json
Sub-tasks:
document-retrieval
Languages:
Slovak
Size:
10K - 100K
Tags:
text-retrieval
DOI:
License:
import pandas as pd | |
# recall@k function | |
def recall(actual, predicted, k): | |
""" | |
Calculate recall for set results | |
:param actual: actual results on question from annotated datatest | |
:param predicted: predicted results on question from searched engine | |
:param k: max results in set | |
:return: recall value | |
""" | |
# corrects results | |
act_set = actual | |
# search results (count edit k) | |
pred_set = predicted[:k] | |
# count and find same numbers | |
common_elements = 0 | |
for item in act_set: | |
if item in pred_set: | |
common_elements += 1 | |
result = round(common_elements / float(len(act_set)), 2) | |
return result | |
def count_recall(actual_list, predicted_list, count_results): | |
""" | |
Calculate recall for search engine | |
:param actual_list: actual results from annotated datatest | |
:param predicted_list: predicted results from searched engine | |
:return: average recall value | |
""" | |
# set values for parameter k | |
k_start = 3 | |
k_end = count_results + 1 | |
# Initialization empty DataFrame | |
df_recall = pd.DataFrame(index=range(3, count_results + 1)) | |
# For cycle go to every predicted questions | |
for i, predicted_val in enumerate(predicted_list, 1): | |
recalls = [] | |
# Count recall for question | |
for k in range(k_start, k_end): | |
recall_val = recall(actual_list[i - 1], predicted_val, k) | |
recalls.append(recall_val) | |
df_temp = pd.DataFrame({f"Question {i}": recalls}, index=range(3, count_results + 1)) | |
df_recall = pd.concat([df_recall, df_temp], axis=1) | |
df_recall[f"Question {i}"] = recalls | |
# Calculate the average recall value for each number of questions | |
average_recall = df_recall.mean(axis=1) | |
# Print list the recall values for each question separately | |
# print("Recall values for every question:") | |
# print(df_recall) | |
# set results two dots numbers | |
pd.set_option('display.float_format', '{:.2f}'.format) | |
# Print all mean recall | |
# print(f"\nAll Mean Recall for {count_results} results :{round(average_recall.mean(), 2)}") | |
print(f"Recall Metric for {count_results} is: {round(average_recall.iloc[-1], 2)}") | |
return average_recall | |