TopoDNN / Model.py
TSaala's picture
Add Model.py
9fcbfc5 verified
import keras
from keras.layers import Dense, BatchNormalization
from keras import regularizers
from keras.optimizers import Adam
from keras.callbacks import ModelCheckpoint, EarlyStopping
import pandas as pd
import numpy as np
# Model parameters:
activation = 'relu'
final_activation = 'sigmoid'
loss = 'binary_crossentropy'
batchsize = 200
epochs = 100
lr = 0.00005
# Model architecture:
model = keras.Sequential()
model.add(
Dense(units=300, input_dim=x_train.shape[1], activation=activation, kernel_regularizer=regularizers.L1(0.001)))
model.add(BatchNormalization())
model.add(Dense(units=102, activation=activation, kernel_regularizer=regularizers.L1(0.001)))
model.add(BatchNormalization())
model.add(Dense(units=12, activation=activation, kernel_regularizer=regularizers.L1(0.001)))
model.add(BatchNormalization())
model.add(Dense(units=6, activation=activation, kernel_regularizer=regularizers.L1(0.001)))
model.add(BatchNormalization())
model.add(Dense(units=1, activation=final_activation))
model.compile(optimizer=Adam(learning_rate=lr),
loss=loss,
metrics=['accuracy', 'AUC'])
model.summary()
# Model checkpoints:
saveModel = ModelCheckpoint('best_model.hdf5',
save_best_only=True,
monitor='val_loss',
mode='min')
# Model training:
history = model.fit(
x_train,
y_train,
batch_size=batchsize,
callbacks=[EarlyStopping(verbose=True, patience=10, monitor='val_loss'), saveModel],
epochs=epochs,
validation_data=(
x_val,
y_val))