|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import datasets |
|
import json |
|
from typing import List |
|
import pandas as pd |
|
import csv |
|
|
|
_LICENSE = "http://www.apache.org/licenses/LICENSE-2.0" |
|
_HOMEPAGE='https://huggingface.co/datasets/THUIR/T2Ranking' |
|
|
|
_DESCRIPTION = 'T2Ranking: A large-scale Chinese benchmark for passage retrieval.' |
|
_CITATION = """ |
|
@misc{xie2023t2ranking, |
|
title={T2Ranking: A large-scale Chinese Benchmark for Passage Ranking}, |
|
author={Xiaohui Xie and Qian Dong and Bingning Wang and Feiyang Lv and Ting Yao and Weinan Gan and Zhijing Wu and Xiangsheng Li and Haitao Li and Yiqun Liu and Jin Ma}, |
|
year={2023}, |
|
eprint={2304.03679}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.IR} |
|
} |
|
""" |
|
|
|
_URLS_DICT = { |
|
"collection": "data/collection.tsv", |
|
"qrels.train": "data/qrels.train.tsv", |
|
"qrels.dev": "data/qrels.dev.tsv", |
|
"qrels.retrieval.train": "data/qrels.retrieval.train.tsv", |
|
"qrels.retrieval.dev": "data/qrels.retrieval.dev.tsv", |
|
"queries.train": "data/queries.train.tsv", |
|
"queries.test": "data/queries.test.tsv", |
|
"queries.dev": "data/queries.dev.tsv", |
|
"train.bm25.tsv": "data/train.bm25.tsv", |
|
"train.mined.tsv": "data/train.mined.tsv", |
|
} |
|
|
|
_FEATURES_DICT = { |
|
'collection': { |
|
"pid": datasets.Value("int64"), |
|
"text": datasets.Value("string"), |
|
}, |
|
'qrels.train': { |
|
"qid": datasets.Value("int64"), |
|
"-": datasets.Value("int64"), |
|
"pid": datasets.Value("int64"), |
|
"rel": datasets.Value("int64"), |
|
}, |
|
'qrels.retrieval.train': { |
|
"qid": datasets.Value("int64"), |
|
"pid": datasets.Value("int64"), |
|
}, |
|
'qrels.dev': { |
|
"qid": datasets.Value("int64"), |
|
"-": datasets.Value("int64"), |
|
"pid": datasets.Value("int64"), |
|
"rel": datasets.Value("int64"), |
|
}, |
|
'qrels.retrieval.dev': { |
|
"qid": datasets.Value("int64"), |
|
"pid": datasets.Value("int64"), |
|
}, |
|
'queries.train': { |
|
"qid": datasets.Value("int64"), |
|
"text": datasets.Value("string"), |
|
}, |
|
'queries.dev': { |
|
"qid": datasets.Value("int64"), |
|
"text": datasets.Value("string"), |
|
}, |
|
'queries.test': { |
|
"qid": datasets.Value("int64"), |
|
"text": datasets.Value("string"), |
|
}, |
|
"train.bm25.tsv": { |
|
"qid": datasets.Value("int64"), |
|
"pid": datasets.Value("int64"), |
|
"index": datasets.Value("int64"), |
|
}, |
|
"train.mined.tsv": { |
|
"qid": datasets.Value("int64"), |
|
"pid": datasets.Value("int64"), |
|
"index": datasets.Value("int64"), |
|
"score": datasets.Value("float32"), |
|
}, |
|
} |
|
|
|
class T2RankingConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for T2Ranking.""" |
|
|
|
def __init__(self, splits, **kwargs): |
|
super().__init__(version=datasets.Version("1.0.0"), **kwargs) |
|
self.splits = splits |
|
|
|
|
|
class T2Ranking(datasets.GeneratorBasedBuilder): |
|
"""The T2Ranking benchmark.""" |
|
|
|
BUILDER_CONFIGS = [ |
|
T2RankingConfig( |
|
name="collection", |
|
splits=['train'], |
|
), |
|
T2RankingConfig( |
|
name="qrels.train", |
|
splits=['train'], |
|
), |
|
T2RankingConfig( |
|
name="qrels.dev", |
|
splits=['train'], |
|
), |
|
T2RankingConfig( |
|
name="queries.train", |
|
splits=['train'], |
|
), |
|
T2RankingConfig( |
|
name="queries.dev", |
|
splits=['train'], |
|
), |
|
T2RankingConfig( |
|
name="queries.test", |
|
splits=['train'], |
|
), |
|
T2RankingConfig( |
|
name="qrels.retrieval.train", |
|
splits=['train'], |
|
), |
|
T2RankingConfig( |
|
name="qrels.retrieval.dev", |
|
splits=['train'], |
|
), |
|
T2RankingConfig( |
|
name="train.bm25.tsv", |
|
splits=['train'], |
|
), |
|
T2RankingConfig( |
|
name="train.mined.tsv", |
|
splits=['train'], |
|
), |
|
] |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features(_FEATURES_DICT[self.config.name]), |
|
homepage=_HOMEPAGE, |
|
citation=_CITATION, |
|
license=_LICENSE, |
|
) |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
split_things = [] |
|
for split_name in self.config.splits: |
|
|
|
split_data_path = _URLS_DICT[self.config.name] |
|
|
|
filepath = dl_manager.download(split_data_path) |
|
|
|
|
|
split_thing = datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepath": filepath, |
|
} |
|
) |
|
split_things.append(split_thing) |
|
return split_things |
|
|
|
def _generate_examples(self, filepath): |
|
|
|
reader = csv.DictReader(open(filepath), delimiter='\t', quoting=csv.QUOTE_NONE) |
|
keys = _FEATURES_DICT[self.config.name].keys() |
|
idx = -1 |
|
for data in reader: |
|
idx+=1 |
|
yield idx, {key: data[key] for key in keys} |
|
|
|
|
|
|