Datasets:

Languages:
English
ArXiv:
License:
wuyuchen commited on
Commit
b79e020
·
1 Parent(s): e15a13e

Upload ImageRewardDB.py with huggingface_hub

Browse files
Files changed (1) hide show
  1. ImageRewardDB.py +33 -134
ImageRewardDB.py CHANGED
@@ -43,14 +43,14 @@ To build the ImageRewadDB, we design a pipeline tailored for it, establishing cr
43
  annotator training, optimizing labeling experience, and ensuring quality validation. \
44
  """
45
 
46
- _HOMEPAGE = "https://huggingface.co/datasets/THUDM/ImageRewardDB"
47
  _VERSION = datasets.Version("1.0.0")
48
 
49
  _LICENSE = "Apache License 2.0"
50
 
51
  # The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
52
  # This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
53
- _REPO_ID = "THUDM/ImageRewardDB"
54
  _URLS = {}
55
  _PART_IDS = {
56
  "train": 32,
@@ -107,56 +107,26 @@ class ImageRewardDB(datasets.GeneratorBasedBuilder):
107
  "validation": 2,
108
  "test": 2
109
  }
110
- BUILDER_CONFIGS.append(
111
- ImageRewardDBConfig(name=f"{num_k}k_group", part_ids=part_ids, description=f"This is a {num_k}k-scale groups of ImageRewardDB")
112
- )
113
  BUILDER_CONFIGS.append(
114
  ImageRewardDBConfig(name=f"{num_k}k", part_ids=part_ids, description=f"This is a {num_k}k-scale ImageRewardDB")
115
  )
116
- BUILDER_CONFIGS.append(
117
- ImageRewardDBConfig(name=f"{num_k}k_pair", part_ids=part_ids, description=f"This is a {num_k}k-scale pairs of ImageRewardDB")
118
- )
119
 
120
  DEFAULT_CONFIG_NAME = "8k" # It's not mandatory to have a default configuration. Just use one if it make sense.
121
 
122
  def _info(self):
123
- if "group" in self.config.name:
124
- features = datasets.Features(
125
- {
126
- "prompt_id": datasets.Value("string"),
127
- "prompt": datasets.Value("string"),
128
- "classification": datasets.Value("string"),
129
- "image": datasets.Sequence(datasets.Image()),
130
- "rank": datasets.Sequence(datasets.Value("int8")),
131
- "overall_rating": datasets.Sequence(datasets.Value("int8")),
132
- "image_text_alignment_rating": datasets.Sequence(datasets.Value("int8")),
133
- "fidelity_rating": datasets.Sequence(datasets.Value("int8"))
134
- }
135
- )
136
- elif "pair" in self.config.name:
137
- features = datasets.Features(
138
- {
139
- "prompt_id": datasets.Value("string"),
140
- "prompt": datasets.Value("string"),
141
- "classification": datasets.Value("string"),
142
- "img_better": datasets.Image(),
143
- "img_worse": datasets.Image()
144
- }
145
- )
146
- else:
147
- features = datasets.Features(
148
- {
149
- "image": datasets.Image(),
150
- "prompt_id": datasets.Value("string"),
151
- "prompt": datasets.Value("string"),
152
- "classification": datasets.Value("string"),
153
- "image_amount_in_total": datasets.Value("int8"),
154
- "rank": datasets.Value("int8"),
155
- "overall_rating": datasets.Value("int8"),
156
- "image_text_alignment_rating": datasets.Value("int8"),
157
- "fidelity_rating": datasets.Value("int8")
158
- }
159
- )
160
  return datasets.DatasetInfo(
161
  # This is the description that will appear on the datasets page.
162
  description=_DESCRIPTION,
@@ -229,93 +199,22 @@ class ImageRewardDB(datasets.GeneratorBasedBuilder):
229
  assert num_data_dirs == len(json_paths)
230
 
231
  #Iterate throug all extracted zip folders for images
232
- # metadata_table = pd.read_parquet(metadata_path)
233
  for index, json_path in enumerate(json_paths):
234
- json_data = json.load(open(json_path, "r", encoding="utf-8"))
235
- if "group" in self.config.name or "pair" in self.config.name:
236
- group_num = 0
237
- image_path = []
238
- rank = []
239
- overall_rating, image_text_alignment_rating, fidelity_rating = [], [], []
240
- for sample in json_data:
241
- if group_num == 0:
242
- image_path.clear()
243
- rank.clear()
244
- overall_rating.clear()
245
- image_text_alignment_rating.clear()
246
- fidelity_rating.clear()
247
- prompt_id = sample["prompt_id"]
248
- prompt = sample["prompt"]
249
- classification = sample["classification"]
250
- image_amount_in_total = sample["image_amount_in_total"]
251
- # image_path.append(sample["image_path"])
252
- image_path.append(os.path.join(data_dirs[index], str(sample["image_path"]).split("/")[-1]))
253
- rank.append(sample["rank"])
254
- overall_rating.append(sample["overall_rating"])
255
- image_text_alignment_rating.append(sample["image_text_alignment_rating"])
256
- fidelity_rating.append(sample["fidelity_rating"])
257
- group_num += 1
258
- if group_num == image_amount_in_total:
259
- group_num = 0
260
- if "group" in self.config.name:
261
- yield prompt_id, ({
262
- "prompt_id": prompt_id,
263
- "prompt": prompt,
264
- "classification": classification,
265
- "image": [{
266
- "path": image_path[idx],
267
- "bytes": open(image_path[idx], "rb").read()
268
- } for idx in range(image_amount_in_total)],
269
- "rank": rank,
270
- "overall_rating": overall_rating,
271
- "image_text_alignment_rating": image_text_alignment_rating,
272
- "fidelity_rating": fidelity_rating,
273
- })
274
- else:
275
- for idx in range(image_amount_in_total):
276
- for idy in range(idx+1, image_amount_in_total):
277
- if rank[idx] < rank[idy]:
278
- yield prompt_id, ({
279
- "prompt_id": prompt_id,
280
- "prompt": prompt,
281
- "classification": classification,
282
- "img_better": {
283
- "path": image_path[idx],
284
- "bytes": open(image_path[idx], "rb").read()
285
- },
286
- "img_worse": {
287
- "path": image_path[idy],
288
- "bytes": open(image_path[idy], "rb").read()
289
- }
290
- })
291
- elif rank[idx] > rank[idy]:
292
- yield prompt_id, ({
293
- "prompt_id": prompt_id,
294
- "prompt": prompt,
295
- "classification": classification,
296
- "img_better": {
297
- "path": image_path[idy],
298
- "bytes": open(image_path[idy], "rb").read()
299
- },
300
- "img_worse": {
301
- "path": image_path[idx],
302
- "bytes": open(image_path[idx], "rb").read()
303
- }
304
- })
305
- else:
306
- for example in json_data:
307
- image_path = os.path.join(data_dirs[index], str(example["image_path"]).split("/")[-1])
308
- yield example["image_path"], {
309
- "image": {
310
- "path": image_path,
311
- "bytes": open(image_path, "rb").read()
312
- },
313
- "prompt_id": example["prompt_id"],
314
- "prompt": example["prompt"],
315
- "classification": example["classification"],
316
- "image_amount_in_total": example["image_amount_in_total"],
317
- "rank": example["rank"],
318
- "overall_rating": example["overall_rating"],
319
- "image_text_alignment_rating": example["image_text_alignment_rating"],
320
- "fidelity_rating": example["fidelity_rating"]
321
- }
 
43
  annotator training, optimizing labeling experience, and ensuring quality validation. \
44
  """
45
 
46
+ _HOMEPAGE = "https://huggingface.co/datasets/wuyuchen/ImageRewardDB"
47
  _VERSION = datasets.Version("1.0.0")
48
 
49
  _LICENSE = "Apache License 2.0"
50
 
51
  # The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
52
  # This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
53
+ _REPO_ID = "wuyuchen/ImageRewardDB"
54
  _URLS = {}
55
  _PART_IDS = {
56
  "train": 32,
 
107
  "validation": 2,
108
  "test": 2
109
  }
 
 
 
110
  BUILDER_CONFIGS.append(
111
  ImageRewardDBConfig(name=f"{num_k}k", part_ids=part_ids, description=f"This is a {num_k}k-scale ImageRewardDB")
112
  )
 
 
 
113
 
114
  DEFAULT_CONFIG_NAME = "8k" # It's not mandatory to have a default configuration. Just use one if it make sense.
115
 
116
  def _info(self):
117
+ features = datasets.Features(
118
+ {
119
+ "image": datasets.Image(),
120
+ "prompt_id": datasets.Value("string"),
121
+ "prompt": datasets.Value("string"),
122
+ "classification": datasets.Value("string"),
123
+ "image_amount_in_total": datasets.Value("int8"),
124
+ "rank": datasets.Value("int8"),
125
+ "overall_rating": datasets.Value("int8"),
126
+ "image_text_alignment_rating": datasets.Value("int8"),
127
+ "fidelity_rating": datasets.Value("int8")
128
+ }
129
+ )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
130
  return datasets.DatasetInfo(
131
  # This is the description that will appear on the datasets page.
132
  description=_DESCRIPTION,
 
199
  assert num_data_dirs == len(json_paths)
200
 
201
  #Iterate throug all extracted zip folders for images
202
+ metadata_table = pd.read_parquet(metadata_path)
203
  for index, json_path in enumerate(json_paths):
204
+ json_data = json.load(open(json_path, "r", encoding="utf-8"))
205
+ for example in json_data:
206
+ image_path = os.path.join(data_dirs[index], str(example["image_path"]).split("/")[-1])
207
+ yield example["image_path"], {
208
+ "image": {
209
+ "path": image_path,
210
+ "bytes": open(image_path, "rb").read()
211
+ },
212
+ "prompt_id": example["prompt_id"],
213
+ "prompt": example["prompt"],
214
+ "classification": example["classification"],
215
+ "image_amount_in_total": example["image_amount_in_total"],
216
+ "rank": example["rank"],
217
+ "overall_rating": example["overall_rating"],
218
+ "image_text_alignment_rating": example["image_text_alignment_rating"],
219
+ "fidelity_rating": example["fidelity_rating"]
220
+ }