Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,117 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
task_categories:
|
4 |
+
- text-to-image
|
5 |
+
language:
|
6 |
+
- en
|
7 |
+
pretty_name: ImageReward Dataset
|
8 |
+
size_categories:
|
9 |
+
- 1K<n<10K
|
10 |
+
---
|
11 |
+
|
12 |
+
# ImageRewardDB
|
13 |
+
|
14 |
+
## Dataset Description
|
15 |
+
|
16 |
+
- **Homepage: https://huggingface.co/datasets/wuyuchen/ImageRewardDB**
|
17 |
+
- **Repository: TBD**
|
18 |
+
- **Paper: TBD**
|
19 |
+
|
20 |
+
### Dataset Summary
|
21 |
+
|
22 |
+
ImageRewardDB is a comprehensive text-to-image comparison dataset, focusing on text-to-image human preference.
|
23 |
+
It consists of 137k pairs of expert comparisons, based on text prompts and corresponding model outputs from DiffusionDB.
|
24 |
+
To build the ImageRewadDB, we design a pipeline tailored for it, establishing criteria for quantitative assessment and
|
25 |
+
annotator training, optimizing labeling experience, and ensuring quality validation. And ImageRewardDB is now public available at
|
26 |
+
[🤗 Hugging Face Dataset](https://huggingface.co/datasets/wuyuchen/ImageRewardDB).
|
27 |
+
|
28 |
+
### Languages
|
29 |
+
|
30 |
+
The text in the dataset is all in English.
|
31 |
+
|
32 |
+
### Four Subsets
|
33 |
+
|
34 |
+
Considering that the ImageRewardDB contains a large number of images, we provide four subsets in different scales to support different needs.
|
35 |
+
|
36 |
+
|Subset|Num of Images|Num of Prompts|Size|Image Directory|
|
37 |
+
|:--|--:|--:|--:|--:|
|
38 |
+
|ImageRewardDB 1K|TBD|1K|TBD|`images/`|
|
39 |
+
|ImageRewardDB 2K|TBD|2K|TBD|`images/`|
|
40 |
+
|ImageRewardDB 4K|TBD|4K|TBD|`images/`|
|
41 |
+
|ImageRewardDB 8K|TBD|8K|TBD|`images/`|
|
42 |
+
|
43 |
+
## Dataset Structure
|
44 |
+
|
45 |
+
### Data Instances
|
46 |
+
|
47 |
+
[More Information Needed]
|
48 |
+
|
49 |
+
### Data Fields
|
50 |
+
|
51 |
+
[More Information Needed]
|
52 |
+
|
53 |
+
### Data Splits
|
54 |
+
|
55 |
+
[More Information Needed]
|
56 |
+
|
57 |
+
## Dataset Creation
|
58 |
+
|
59 |
+
### Curation Rationale
|
60 |
+
|
61 |
+
[More Information Needed]
|
62 |
+
|
63 |
+
### Source Data
|
64 |
+
|
65 |
+
#### Initial Data Collection and Normalization
|
66 |
+
|
67 |
+
[More Information Needed]
|
68 |
+
|
69 |
+
#### Who are the source language producers?
|
70 |
+
|
71 |
+
[More Information Needed]
|
72 |
+
|
73 |
+
### Annotations
|
74 |
+
|
75 |
+
#### Annotation process
|
76 |
+
|
77 |
+
[More Information Needed]
|
78 |
+
|
79 |
+
#### Who are the annotators?
|
80 |
+
|
81 |
+
[More Information Needed]
|
82 |
+
|
83 |
+
### Personal and Sensitive Information
|
84 |
+
|
85 |
+
[More Information Needed]
|
86 |
+
|
87 |
+
## Considerations for Using the Data
|
88 |
+
|
89 |
+
### Social Impact of Dataset
|
90 |
+
|
91 |
+
[More Information Needed]
|
92 |
+
|
93 |
+
### Discussion of Biases
|
94 |
+
|
95 |
+
[More Information Needed]
|
96 |
+
|
97 |
+
### Other Known Limitations
|
98 |
+
|
99 |
+
[More Information Needed]
|
100 |
+
|
101 |
+
## Additional Information
|
102 |
+
|
103 |
+
### Dataset Curators
|
104 |
+
|
105 |
+
[More Information Needed]
|
106 |
+
|
107 |
+
### Licensing Information
|
108 |
+
|
109 |
+
[More Information Needed]
|
110 |
+
|
111 |
+
### Citation Information
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
### Contributions
|
116 |
+
|
117 |
+
[More Information Needed]
|