SushantGautam commited on
Commit
12d36f8
·
verified ·
1 Parent(s): 5caf550

Upload folder using huggingface_hub

Browse files
Files changed (2) hide show
  1. HuggingFaceDataset-Binary.py +124 -0
  2. metadata.csv +0 -0
HuggingFaceDataset-Binary.py ADDED
@@ -0,0 +1,124 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2024 The HuggingFace Datasets Authors and the current dataset script contributor.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import json
16
+ import os
17
+ import csv
18
+ from PIL import Image
19
+ import pandas as pd
20
+
21
+ import datasets
22
+
23
+
24
+ _CITATION = """\
25
+ @inproceedings{gautam2024kvasirvqa,
26
+ title={Kvasir-VQA: A Text-Image Pair GI Tract Dataset},
27
+ author={Gautam, Sushant and Storås, Andrea and Midoglu, Cise and Hicks, Steven A. and Thambawita, Vajira and Halvorsen, Pål and Riegler, Michael A.},
28
+ booktitle={Proceedings of the First International Workshop on Vision-Language Models for Biomedical Applications (VLM4Bio '24)},
29
+ year={2024},
30
+ location={Melbourne, VIC, Australia},
31
+ publisher={ACM},
32
+ doi={10.1145/3689096.3689458}
33
+ }
34
+ """
35
+
36
+ _DESCRIPTION = """\
37
+ The Kvasir-VQA dataset is an extended dataset derived from the HyperKvasir and Kvasir-Instrument datasets, augmented with question-and-answer annotations. This dataset is designed to facilitate advanced machine learning tasks in gastrointestinal (GI) diagnostics, including image captioning, Visual Question Answering (VQA), and text-based generation of synthetic medical images.
38
+ """
39
+
40
+ _HOMEPAGE = "https://datasets.simula.no/kvasir-vqa/"
41
+
42
+ _LICENSE = "cc-by-nc-4.0"
43
+
44
+
45
+ class KvasirVQADataset(datasets.GeneratorBasedBuilder):
46
+ """Kvasir-VQA: A Text-Image Pair GI Tract Dataset"""
47
+
48
+ VERSION = datasets.Version("1.0.0")
49
+
50
+ BUILDER_CONFIGS = [
51
+ datasets.BuilderConfig(
52
+ name="kvasir_vqa", version=VERSION, description="Kvasir-VQA dataset containing text-image pairs with question-and-answer annotations"),
53
+ ]
54
+
55
+ DEFAULT_CONFIG_NAME = "kvasir_vqa"
56
+
57
+ def _info(self):
58
+ features = datasets.Features(
59
+ {
60
+ "image": datasets.Image(),
61
+ "source": datasets.Value("string"),
62
+ "question": datasets.Value("string"),
63
+ "answer": datasets.Value("string"),
64
+ "img_id": datasets.Value("string"),
65
+ }
66
+ )
67
+ return datasets.DatasetInfo(
68
+ description=_DESCRIPTION,
69
+ features=features,
70
+ homepage=_HOMEPAGE,
71
+ license=_LICENSE,
72
+ citation=_CITATION,
73
+ )
74
+
75
+ def _split_generators(self, dl_manager):
76
+ data_dir = "."
77
+ return [
78
+ datasets.SplitGenerator(
79
+ name="raw_annotations",
80
+ gen_kwargs={
81
+ "metadata_file": os.path.join(data_dir, "metadata.csv"),
82
+ "image_dir": data_dir,
83
+ },
84
+ )
85
+ ]
86
+
87
+ def _generate_examples(self, metadata_file, image_dir):
88
+ image_cache = {}
89
+ df = pd.read_csv(metadata_file, encoding='utf-8')
90
+ # shuffled_df = df.sample(frac=1, random_state=42).reset_index(drop=True)
91
+ shuffled_df = df
92
+ for idx, row in shuffled_df.iterrows():
93
+ image_file = row["file_name"]
94
+ image_path = os.path.join(image_dir, image_file)
95
+
96
+ if image_file not in image_cache:
97
+ if os.path.exists(image_path):
98
+ with open(image_path, "rb") as img_file:
99
+ image_cache[image_file] = img_file.read()
100
+ else:
101
+ continue # Skip if the image file does not exist
102
+
103
+ yield idx, {
104
+ "image": image_cache[image_file],
105
+ "source": row["source"],
106
+ "question": row["question"],
107
+ "answer": row["answer"],
108
+ "img_id": image_file.replace(".jpg", "").replace("images/", ""),
109
+ }
110
+
111
+ # RUN: datasets-cli test HuggingFaceDataset-Binary.py --save_info --all_configs
112
+
113
+ ## upload to huggingface, it will save as arrow
114
+
115
+ # huggingface-cli upload SimulaMet-HOST/xxKvasir-VQA . . --repo-type dataset xxx
116
+
117
+ ## then convert the arrow to parqueet
118
+
119
+ # datasets-cli convert_to_parquet SimulaMet-HOST/xxKvasir-VQA
120
+
121
+
122
+ # The file names were weird. I had to rename them to make it more readable.
123
+ # cloned the repo to local and pushed again to huggingface
124
+
metadata.csv CHANGED
The diff for this file is too large to render. See raw diff