SushantGautam
commited on
Commit
•
bc53380
1
Parent(s):
59c2767
Create soccer_net_echoes.py
Browse files- soccer_net_echoes.py +105 -0
soccer_net_echoes.py
ADDED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 The HuggingFace Datasets Authors and the current dataset script contributor.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
"""ASR Dataset for various football leagues and seasons"""
|
16 |
+
|
17 |
+
import json
|
18 |
+
import os
|
19 |
+
|
20 |
+
import datasets
|
21 |
+
|
22 |
+
|
23 |
+
_CITATION = """\
|
24 |
+
@InProceedings{huggingface:dataset,
|
25 |
+
title = {ASR Dataset for Football Leagues},
|
26 |
+
author={Your Name},
|
27 |
+
year={2024}
|
28 |
+
}
|
29 |
+
"""
|
30 |
+
|
31 |
+
_DESCRIPTION = """\
|
32 |
+
This dataset contains Automatic Speech Recognition (ASR) data for various football leagues and seasons.
|
33 |
+
The dataset includes ASR outputs from Whisper v1, v2, and v3, along with their English-translated versions.
|
34 |
+
"""
|
35 |
+
|
36 |
+
_HOMEPAGE = "https://github.com/SoccerNet/sn-echoes"
|
37 |
+
|
38 |
+
_LICENSE = "Apache License 2.0"
|
39 |
+
|
40 |
+
_URLS = {
|
41 |
+
"whisper_v1": "whisper_v1/",
|
42 |
+
"whisper_v1_en": "wisper_v1_en/",
|
43 |
+
"whisper_v2": "wisper_v2/",
|
44 |
+
"whisper_v2_en": "wisper_v2_en/",
|
45 |
+
"whisper_v3": "wisper_v3/",
|
46 |
+
}
|
47 |
+
|
48 |
+
|
49 |
+
class FootballASRDataset(datasets.GeneratorBasedBuilder):
|
50 |
+
"""ASR Dataset for various football leagues and seasons"""
|
51 |
+
|
52 |
+
VERSION = datasets.Version("1.0.0")
|
53 |
+
|
54 |
+
BUILDER_CONFIGS = [
|
55 |
+
datasets.BuilderConfig(name="whisper_v1", version=VERSION, description="Contains ASR from Whisper v1"),
|
56 |
+
datasets.BuilderConfig(name="whisper_v1_en", version=VERSION, description="English-translated datasets from Whisper v1"),
|
57 |
+
# datasets.BuilderConfig(name="whisper_v2", version=VERSION, description="Contains ASR from Whisper v2"),
|
58 |
+
# datasets.BuilderConfig(name="whisper_v2_en", version=VERSION, description="English-translated datasets from Whisper v2"),
|
59 |
+
# datasets.BuilderConfig(name="whisper_v3", version=VERSION, description="Contains ASR from Whisper v3"),
|
60 |
+
]
|
61 |
+
|
62 |
+
DEFAULT_CONFIG_NAME = "whisper_v1"
|
63 |
+
|
64 |
+
def _info(self):
|
65 |
+
features = datasets.Features(
|
66 |
+
{
|
67 |
+
"segment_index": datasets.Value("int32"),
|
68 |
+
"start_time": datasets.Value("float"),
|
69 |
+
"end_time": datasets.Value("float"),
|
70 |
+
"transcribed_text": datasets.Value("string"),
|
71 |
+
}
|
72 |
+
)
|
73 |
+
return datasets.DatasetInfo(
|
74 |
+
description=_DESCRIPTION,
|
75 |
+
features=features,
|
76 |
+
homepage=_HOMEPAGE,
|
77 |
+
license=_LICENSE,
|
78 |
+
citation=_CITATION,
|
79 |
+
)
|
80 |
+
|
81 |
+
def _split_generators(self, dl_manager):
|
82 |
+
urls = _URLS[self.config.name]
|
83 |
+
data_dir = dl_manager.download_and_extract("https://codeload.github.com/SoccerNet/sn-echoes/zip/refs/heads/main") +"/sn-echoes-main/Dataset/"
|
84 |
+
print("data_dir", { "data_dir": os.path.join(data_dir+ urls),})
|
85 |
+
return [
|
86 |
+
datasets.SplitGenerator(
|
87 |
+
name=datasets.Split.TRAIN,
|
88 |
+
gen_kwargs={
|
89 |
+
"data_dir": os.path.join(data_dir+ urls),
|
90 |
+
},)
|
91 |
+
]
|
92 |
+
|
93 |
+
def _generate_examples(self, data_dir,):
|
94 |
+
for root, _, files in os.walk(data_dir):
|
95 |
+
for file in files:
|
96 |
+
if file.endswith(".json"):
|
97 |
+
with open(os.path.join(root, file), encoding="utf-8") as f:
|
98 |
+
data = json.load(f)
|
99 |
+
for segment_index, segment_data in data["segments"].items():
|
100 |
+
yield f"{file}_{segment_index}", {
|
101 |
+
"segment_index": segment_index,
|
102 |
+
"start_time": segment_data[0],
|
103 |
+
"end_time": segment_data[1],
|
104 |
+
"transcribed_text": segment_data[2],
|
105 |
+
}
|