Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- dataset_code/sft_sftnews/offload/dataset_tool/AIP_dataset.py +309 -0
- dataset_code/sft_sftnews/offload/dataset_tool/__init__.py +5 -0
- dataset_code/sft_sftnews/offload/dataset_tool/__pycache__/AIP_dataset.cpython-310.pyc +0 -0
- dataset_code/sft_sftnews/offload/dataset_tool/__pycache__/AIP_dataset.cpython-311.pyc +0 -0
- dataset_code/sft_sftnews/offload/dataset_tool/__pycache__/__init__.cpython-310.pyc +0 -0
- dataset_code/sft_sftnews/offload/dataset_tool/__pycache__/__init__.cpython-311.pyc +0 -0
- dataset_code/sft_sftnews/offload/dataset_tool/__pycache__/__init__.cpython-313.pyc +0 -0
- dataset_code/sft_sftnews/offload/dataset_tool/__pycache__/collection_dataset.cpython-310.pyc +0 -0
- dataset_code/sft_sftnews/offload/dataset_tool/__pycache__/collection_dataset.cpython-311.pyc +0 -0
- dataset_code/sft_sftnews/offload/dataset_tool/__pycache__/dataset_hdfs.cpython-310.pyc +0 -0
- dataset_code/sft_sftnews/offload/dataset_tool/__pycache__/dataset_hdfs.cpython-311.pyc +0 -0
- dataset_code/sft_sftnews/offload/dataset_tool/__pycache__/dataset_hdfs.cpython-313.pyc +0 -0
- dataset_code/sft_sftnews/offload/dataset_tool/__pycache__/image_dataset.cpython-310.pyc +0 -0
- dataset_code/sft_sftnews/offload/dataset_tool/__pycache__/image_dataset.cpython-311.pyc +0 -0
- dataset_code/sft_sftnews/offload/dataset_tool/collection_dataset.py +672 -0
- dataset_code/sft_sftnews/offload/dataset_tool/dataset_hdfs.py +198 -0
- dataset_code/sft_sftnews/offload/dataset_tool/image_dataset.py +929 -0
- dataset_code/sft_sftnews/offload/dataset_tool/parquet_dataset/__init__.py +0 -0
- dataset_code/sft_sftnews/offload/dataset_tool/parquet_dataset/__pycache__/__init__.cpython-310.pyc +0 -0
- dataset_code/sft_sftnews/offload/dataset_tool/parquet_dataset/__pycache__/__init__.cpython-311.pyc +0 -0
- dataset_code/sft_sftnews/offload/dataset_tool/parquet_dataset/__pycache__/base_parquet.cpython-310.pyc +0 -0
- dataset_code/sft_sftnews/offload/dataset_tool/parquet_dataset/__pycache__/base_parquet.cpython-311.pyc +0 -0
- dataset_code/sft_sftnews/offload/dataset_tool/parquet_dataset/__pycache__/parquet_utils.cpython-310.pyc +0 -0
- dataset_code/sft_sftnews/offload/dataset_tool/parquet_dataset/__pycache__/parquet_utils.cpython-311.pyc +0 -0
- dataset_code/sft_sftnews/offload/dataset_tool/parquet_dataset/__pycache__/tos_client.cpython-310.pyc +0 -0
- dataset_code/sft_sftnews/offload/dataset_tool/parquet_dataset/__pycache__/tos_client.cpython-311.pyc +0 -0
- dataset_code/sft_sftnews/offload/dataset_tool/parquet_dataset/__pycache__/video_parquet.cpython-310.pyc +0 -0
- dataset_code/sft_sftnews/offload/dataset_tool/parquet_dataset/__pycache__/video_parquet.cpython-311.pyc +0 -0
- dataset_code/sft_sftnews/offload/dataset_tool/parquet_dataset/base_parquet.py +289 -0
- dataset_code/sft_sftnews/offload/dataset_tool/parquet_dataset/parquet_utils.py +142 -0
- dataset_code/sft_sftnews/offload/dataset_tool/parquet_dataset/samplers/__init__.py +0 -0
- dataset_code/sft_sftnews/offload/dataset_tool/parquet_dataset/samplers/__pycache__/__init__.cpython-310.pyc +0 -0
- dataset_code/sft_sftnews/offload/dataset_tool/parquet_dataset/samplers/__pycache__/__init__.cpython-311.pyc +0 -0
- dataset_code/sft_sftnews/offload/dataset_tool/parquet_dataset/samplers/__pycache__/frame_sampler.cpython-310.pyc +0 -0
- dataset_code/sft_sftnews/offload/dataset_tool/parquet_dataset/samplers/__pycache__/frame_sampler.cpython-311.pyc +0 -0
- dataset_code/sft_sftnews/offload/dataset_tool/parquet_dataset/samplers/__pycache__/text_sampler.cpython-310.pyc +0 -0
- dataset_code/sft_sftnews/offload/dataset_tool/parquet_dataset/samplers/__pycache__/text_sampler.cpython-311.pyc +0 -0
- dataset_code/sft_sftnews/offload/dataset_tool/parquet_dataset/samplers/__pycache__/utils.cpython-310.pyc +0 -0
- dataset_code/sft_sftnews/offload/dataset_tool/parquet_dataset/samplers/__pycache__/utils.cpython-311.pyc +0 -0
- dataset_code/sft_sftnews/offload/dataset_tool/parquet_dataset/samplers/frame_sampler.py +375 -0
- dataset_code/sft_sftnews/offload/dataset_tool/parquet_dataset/samplers/text_sampler.py +332 -0
- dataset_code/sft_sftnews/offload/dataset_tool/parquet_dataset/samplers/utils.py +42 -0
- dataset_code/sft_sftnews/offload/dataset_tool/parquet_dataset/tos_client.py +192 -0
- dataset_code/sft_sftnews/offload/dataset_tool/parquet_dataset/utils/__pycache__/distributed_utils.cpython-310.pyc +0 -0
- dataset_code/sft_sftnews/offload/dataset_tool/parquet_dataset/utils/__pycache__/distributed_utils.cpython-311.pyc +0 -0
- dataset_code/sft_sftnews/offload/dataset_tool/parquet_dataset/utils/__pycache__/hdfs_utils.cpython-310.pyc +0 -0
- dataset_code/sft_sftnews/offload/dataset_tool/parquet_dataset/utils/__pycache__/hdfs_utils.cpython-311.pyc +0 -0
- dataset_code/sft_sftnews/offload/dataset_tool/parquet_dataset/utils/__pycache__/partition_utils.cpython-310.pyc +0 -0
- dataset_code/sft_sftnews/offload/dataset_tool/parquet_dataset/utils/__pycache__/partition_utils.cpython-311.pyc +0 -0
- dataset_code/sft_sftnews/offload/dataset_tool/parquet_dataset/utils/distributed_utils.py +149 -0
dataset_code/sft_sftnews/offload/dataset_tool/AIP_dataset.py
ADDED
|
@@ -0,0 +1,309 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from torch.utils.data.dataset import Dataset
|
| 3 |
+
from torchvision.transforms.functional import to_tensor
|
| 4 |
+
from nebudata import refds
|
| 5 |
+
from .parquet_dataset.utils import hdfs_utils
|
| 6 |
+
from .parquet_dataset.parquet_utils import get_random_for_rank_and_worker, get_portion_for_rank_and_worker, get_worker_id, get_worker_count
|
| 7 |
+
from .parquet_dataset.utils.distributed_utils import get_data_parallel_rank, get_data_parallel_world_size
|
| 8 |
+
import random
|
| 9 |
+
from PIL import Image
|
| 10 |
+
import copy
|
| 11 |
+
import numpy as np
|
| 12 |
+
import json
|
| 13 |
+
from multiprocessing import Pool
|
| 14 |
+
import traceback
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
try:
|
| 18 |
+
import av
|
| 19 |
+
import io
|
| 20 |
+
pyav_enabled = True
|
| 21 |
+
except:
|
| 22 |
+
pyav_enabled = False
|
| 23 |
+
|
| 24 |
+
try:
|
| 25 |
+
import imageio.v3 as iio
|
| 26 |
+
imageio_enabled = True
|
| 27 |
+
except:
|
| 28 |
+
imageio_enabled = False
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
def get_length(path, ignore_prefixes):
|
| 32 |
+
dataset = refds.RefDataset(
|
| 33 |
+
path, ignore_prefixes=ignore_prefixes)
|
| 34 |
+
return dataset.rank_total
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
def get_length_subprocess(path, ignore_prefixes):
|
| 38 |
+
with Pool(1) as pool:
|
| 39 |
+
counts = pool.apply(
|
| 40 |
+
get_length, args=(path, ignore_prefixes, ))
|
| 41 |
+
return counts
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
def sampling(video_length, sample_n_frames, sample_stride, skip_start_end=10):
|
| 45 |
+
# Jacob Sep 17th: If sample frames > video frames, we drop this video
|
| 46 |
+
if (sample_n_frames - 1) * sample_stride + 1 > (video_length - skip_start_end * 2):
|
| 47 |
+
return None
|
| 48 |
+
clip_length = min(
|
| 49 |
+
video_length, (sample_n_frames - 1) * sample_stride + 1)
|
| 50 |
+
start_idx = random.randint(
|
| 51 |
+
skip_start_end, video_length - clip_length - skip_start_end)
|
| 52 |
+
batch_index = np.linspace(
|
| 53 |
+
start_idx, start_idx + clip_length - 1, sample_n_frames, dtype=int)
|
| 54 |
+
return batch_index
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
class AIPVideoDataset(Dataset):
|
| 58 |
+
def __init__(self,
|
| 59 |
+
path,
|
| 60 |
+
sample_size=256,
|
| 61 |
+
sample_stride=4,
|
| 62 |
+
sample_n_frames=16,
|
| 63 |
+
caption_key='caption',
|
| 64 |
+
caption_path="",
|
| 65 |
+
fps=24,
|
| 66 |
+
shuffle=True,
|
| 67 |
+
infinite=True,
|
| 68 |
+
parquet_batch=128,
|
| 69 |
+
video_toskey='clip_toskey',
|
| 70 |
+
bytes_key='bytes',
|
| 71 |
+
ignore_prefixes=None,
|
| 72 |
+
decode_backend='pyav',
|
| 73 |
+
force_partition=False,
|
| 74 |
+
data_world_size=10000, # TODO: can be dynamic
|
| 75 |
+
local_cache_prefix='',
|
| 76 |
+
):
|
| 77 |
+
self.sample_size = sample_size
|
| 78 |
+
assert self.sample_size == -1, \
|
| 79 |
+
"only support original size, consider using sample_size==-1 for bucketing"
|
| 80 |
+
self.sample_stride = sample_stride
|
| 81 |
+
self.sample_n_frames = sample_n_frames
|
| 82 |
+
self.shuffle = shuffle
|
| 83 |
+
self.infinite = infinite # this doesn't work, the dataset is always infinite
|
| 84 |
+
self.fps = fps
|
| 85 |
+
self.force_partition = force_partition
|
| 86 |
+
self.data_world_size = data_world_size
|
| 87 |
+
self.state_dict = {'data_world_size': self.data_world_size, 'seen_times': [0 for _ in range(self.data_world_size)]}
|
| 88 |
+
self.remaining_ranks = []
|
| 89 |
+
self.local_cache_prefix = local_cache_prefix
|
| 90 |
+
|
| 91 |
+
self.path = path
|
| 92 |
+
self.parquet_batch = parquet_batch
|
| 93 |
+
self.video_toskey = video_toskey
|
| 94 |
+
self.caption_key = caption_key # the key used to store caption
|
| 95 |
+
self.bytes_key = bytes_key # the key used to store real bytes
|
| 96 |
+
self.ignore_prefixes = ignore_prefixes
|
| 97 |
+
self.decode_backend = decode_backend
|
| 98 |
+
|
| 99 |
+
self.total_length = None
|
| 100 |
+
# read caption json file from caption_path seperately, for Seed V2 dataset
|
| 101 |
+
self.caption_data = None
|
| 102 |
+
if caption_path != "":
|
| 103 |
+
# with open(caption_path, 'r') as f:
|
| 104 |
+
if caption_path.startswith("hdfs"):
|
| 105 |
+
caption_path = hdfs_utils.download(caption_path, './')
|
| 106 |
+
with open(caption_path, 'r') as f:
|
| 107 |
+
caption_data = json.load(f)
|
| 108 |
+
caption_data = json.loads(hdfs_utils.read(caption_path))
|
| 109 |
+
self.total_length = len(caption_data)
|
| 110 |
+
self.caption_data = {item['uttid']: item[self.caption_key]
|
| 111 |
+
for item in caption_data}
|
| 112 |
+
|
| 113 |
+
if self.decode_backend == 'imageio':
|
| 114 |
+
assert imageio_enabled, 'failed to install imageio'
|
| 115 |
+
elif self.decode_backend == 'pyav':
|
| 116 |
+
assert pyav_enabled, 'failed to install pyav'
|
| 117 |
+
|
| 118 |
+
def __iter__(self):
|
| 119 |
+
rank = get_data_parallel_rank()
|
| 120 |
+
world_size = get_data_parallel_world_size()
|
| 121 |
+
worker_id = get_worker_id()
|
| 122 |
+
worker_count = get_worker_count()
|
| 123 |
+
overall_workers = world_size * worker_count
|
| 124 |
+
|
| 125 |
+
self.local_cache_path = f'{self.local_cache_prefix}_{rank}_{worker_id}.txt'
|
| 126 |
+
refs = [(self.video_toskey, self.bytes_key)
|
| 127 |
+
] if self.video_toskey != '' else []
|
| 128 |
+
|
| 129 |
+
worker_ranks = get_portion_for_rank_and_worker(self.remaining_ranks, allow_empty=True)
|
| 130 |
+
|
| 131 |
+
while True:
|
| 132 |
+
if self.shuffle:
|
| 133 |
+
get_random_for_rank_and_worker(None).shuffle(worker_ranks)
|
| 134 |
+
|
| 135 |
+
for rank in worker_ranks:
|
| 136 |
+
with open(self.local_cache_path, 'a') as f:
|
| 137 |
+
f.write(f'{rank}\n')
|
| 138 |
+
filereader = refds.RefDataset(self.path, ignore_prefixes=self.ignore_prefixes, world_size=self.data_world_size, rank=rank)
|
| 139 |
+
for batch in filereader.iter_batches(batch_size=self.parquet_batch, refs=refs):
|
| 140 |
+
actual_size = len(batch[self.bytes_key])
|
| 141 |
+
columns = [col for col in batch.column_names]
|
| 142 |
+
for i in range(actual_size):
|
| 143 |
+
params_dict = {col: batch[col]
|
| 144 |
+
[i].as_py() for col in columns}
|
| 145 |
+
if self.caption_data is not None:
|
| 146 |
+
# if we have caption_data, use it to replace caption
|
| 147 |
+
uttid = params_dict['uttid']
|
| 148 |
+
if uttid not in self.caption_data:
|
| 149 |
+
continue
|
| 150 |
+
params_dict[self.caption_key] = self.caption_data[uttid]
|
| 151 |
+
frames, metadata = self._data_process(params_dict)
|
| 152 |
+
if frames is None:
|
| 153 |
+
continue
|
| 154 |
+
yield self._pack_frames(frames, metadata)
|
| 155 |
+
|
| 156 |
+
overall_ranks = []
|
| 157 |
+
while len(overall_ranks) < overall_workers:
|
| 158 |
+
overall_ranks += list(range(self.data_world_size))
|
| 159 |
+
worker_ranks = get_portion_for_rank_and_worker(overall_ranks, force=True)
|
| 160 |
+
|
| 161 |
+
def _pack_frames(self, frames, metadata):
|
| 162 |
+
tensor_frames = []
|
| 163 |
+
for frame in frames:
|
| 164 |
+
frame = to_tensor(frame)
|
| 165 |
+
tensor_frames.append(frame)
|
| 166 |
+
tensor_frames = torch.stack(tensor_frames)
|
| 167 |
+
# make value from -1.0 to 1.0
|
| 168 |
+
pixel_values = tensor_frames * 2.0 - 1.0
|
| 169 |
+
item = dict(
|
| 170 |
+
mp4=pixel_values,
|
| 171 |
+
txt=metadata[self.caption_key],
|
| 172 |
+
num_frames=self.sample_n_frames,
|
| 173 |
+
fps=metadata.get('fps', self.fps),
|
| 174 |
+
)
|
| 175 |
+
return item
|
| 176 |
+
|
| 177 |
+
def _data_process(self, params):
|
| 178 |
+
tosbytes = params[self.bytes_key]
|
| 179 |
+
del params[self.bytes_key] # remove the bytes key
|
| 180 |
+
metadata = copy.deepcopy(params)
|
| 181 |
+
try:
|
| 182 |
+
frames = self._bytes_to_PILs(tosbytes)
|
| 183 |
+
except:
|
| 184 |
+
print("data error: ", metadata)
|
| 185 |
+
traceback.print_exc()
|
| 186 |
+
return None, None
|
| 187 |
+
if frames is None:
|
| 188 |
+
return None, None
|
| 189 |
+
return frames, metadata
|
| 190 |
+
|
| 191 |
+
def _bytes_to_PILs(self, video_bytes):
|
| 192 |
+
if self.decode_backend == 'imageio':
|
| 193 |
+
raw_frames = iio.imread(
|
| 194 |
+
video_bytes, index=None, format_hint=".mp4")
|
| 195 |
+
video_length = raw_frames.shape[0]
|
| 196 |
+
video_idxs = sampling(
|
| 197 |
+
video_length, self.sample_n_frames, self.sample_stride)
|
| 198 |
+
if video_idxs is None:
|
| 199 |
+
return None
|
| 200 |
+
frames = []
|
| 201 |
+
for i in video_idxs:
|
| 202 |
+
frames.append(Image.fromarray(raw_frames[i], 'RGB'))
|
| 203 |
+
|
| 204 |
+
elif self.decode_backend[:4] == 'pyav':
|
| 205 |
+
file_io = io.BytesIO(video_bytes)
|
| 206 |
+
container = av.open(file_io)
|
| 207 |
+
stream = container.streams.video[0]
|
| 208 |
+
video_length = container.streams.video[0].frames
|
| 209 |
+
video_idxs = sampling(
|
| 210 |
+
video_length, self.sample_n_frames, self.sample_stride)
|
| 211 |
+
if video_idxs is None:
|
| 212 |
+
return None
|
| 213 |
+
frames_sorted = []
|
| 214 |
+
key_frame_idxs = []
|
| 215 |
+
|
| 216 |
+
# Get keyframe without decoding
|
| 217 |
+
stream.codec_context.skip_frame = "NONKEY"
|
| 218 |
+
for packet in container.demux(stream):
|
| 219 |
+
if packet.is_keyframe:
|
| 220 |
+
frame_idx = int(
|
| 221 |
+
packet.pts * stream.time_base * stream.average_rate + 1e-6)
|
| 222 |
+
key_frame_idxs.append(frame_idx)
|
| 223 |
+
|
| 224 |
+
# Reset for decode any frames
|
| 225 |
+
stream.codec_context.skip_frame = "DEFAULT"
|
| 226 |
+
|
| 227 |
+
# Sort the frames under the cases that frames are unsorted
|
| 228 |
+
video_idxs_sort_idx = np.argsort(np.array(video_idxs))
|
| 229 |
+
video_idxs_sorted = np.array(video_idxs)[video_idxs_sort_idx]
|
| 230 |
+
|
| 231 |
+
# The keyframe assignment for each frame
|
| 232 |
+
keyframe_assignment = np.clip(((np.array(video_idxs_sorted)[
|
| 233 |
+
None] - np.array(key_frame_idxs)[:, None]) > 0).sum(0) - 1, 0, None)
|
| 234 |
+
|
| 235 |
+
time_base = container.streams.video[0].time_base
|
| 236 |
+
framerate = container.streams.video[0].average_rate
|
| 237 |
+
|
| 238 |
+
previous_keyframe_assigment = -1
|
| 239 |
+
for ii, frame_num in enumerate(video_idxs_sorted):
|
| 240 |
+
this_assignment = keyframe_assignment[ii]
|
| 241 |
+
|
| 242 |
+
# Reseek only if when the keyframe are changed, avoid redecode frames
|
| 243 |
+
if this_assignment != previous_keyframe_assigment:
|
| 244 |
+
# Calculate the timestamp for the desired frame
|
| 245 |
+
frame_container_pts = int(
|
| 246 |
+
((key_frame_idxs[this_assignment] + 1) / framerate) / time_base)
|
| 247 |
+
|
| 248 |
+
# Seek to the closest keyframe before the desired timestamp
|
| 249 |
+
container.seek(frame_container_pts, backward=True,
|
| 250 |
+
stream=container.streams.video[0])
|
| 251 |
+
previous_keyframe_assigment = this_assignment
|
| 252 |
+
|
| 253 |
+
# Record where we start, for debug only
|
| 254 |
+
# start_idx = key_frame_idxs[this_assignment]
|
| 255 |
+
|
| 256 |
+
previous_frame_idx = -1
|
| 257 |
+
while previous_frame_idx < frame_num:
|
| 258 |
+
frame = next(container.decode(video=0))
|
| 259 |
+
previous_frame_idx = int(
|
| 260 |
+
frame.pts * stream.time_base * stream.average_rate + 1e-6)
|
| 261 |
+
# Debug code to check if always get the desired frame
|
| 262 |
+
# print(f"start={start_idx}, source={previous_frame_idx}, target={frame_num}, ")
|
| 263 |
+
frames_sorted.append(frame.to_image())
|
| 264 |
+
|
| 265 |
+
# Recollect to the original sorts => inverse sort
|
| 266 |
+
frames = [None for _ in range(len(video_idxs))]
|
| 267 |
+
for i, idx in enumerate(video_idxs_sort_idx):
|
| 268 |
+
frames[idx] = frames_sorted[i]
|
| 269 |
+
elif self.decode_backend == 'image_bytes':
|
| 270 |
+
video_length = len(video_bytes)
|
| 271 |
+
video_idxs = sampling(
|
| 272 |
+
video_length, self.sample_n_frames, self.sample_stride)
|
| 273 |
+
if video_idxs is None:
|
| 274 |
+
return None
|
| 275 |
+
frames = []
|
| 276 |
+
for idx in video_idxs:
|
| 277 |
+
frame_byte = video_bytes[idx]
|
| 278 |
+
with Image.open(io.BytesIO(frame_byte)) as frame:
|
| 279 |
+
frame = frame.convert("RGB")
|
| 280 |
+
frames.append(frame)
|
| 281 |
+
|
| 282 |
+
return frames
|
| 283 |
+
|
| 284 |
+
def load_state_dict(self, state_dict):
|
| 285 |
+
# get remaining ranks
|
| 286 |
+
if 'data_world_size' not in self.state_dict:
|
| 287 |
+
print('[AIP_dataset] no state_dict; init data loading')
|
| 288 |
+
elif self.data_world_size != self.state_dict['data_world_size']:
|
| 289 |
+
print('[AIP_dataset] inconsistent data_world_size, init data loading')
|
| 290 |
+
elif self.state_dict['data_world_size'] != len(self.state_dict.get('seen_times', [])):
|
| 291 |
+
print('[AIP_dataset] corrupted state_dict; init data loading')
|
| 292 |
+
else:
|
| 293 |
+
#this has to be the same across all workers
|
| 294 |
+
self.state_dict = state_dict
|
| 295 |
+
print('[AIP_dataset] resume data loading from state_dict')
|
| 296 |
+
max_times = max(self.state_dict['seen_times'])
|
| 297 |
+
for rank, times in enumerate(self.state_dict['seen_times']):
|
| 298 |
+
for _ in range(max_times-times):
|
| 299 |
+
self.remaining_ranks.append(rank)
|
| 300 |
+
|
| 301 |
+
def __len__(self):
|
| 302 |
+
if self.total_length is None:
|
| 303 |
+
counts = get_length_subprocess(self.path, self.ignore_prefixes)
|
| 304 |
+
self.total_length = counts
|
| 305 |
+
return self.total_length
|
| 306 |
+
|
| 307 |
+
@ classmethod
|
| 308 |
+
def create_dataset_function(cls, data_path, args, **kwargs):
|
| 309 |
+
return cls(path=data_path, **kwargs)
|
dataset_code/sft_sftnews/offload/dataset_tool/__init__.py
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from .dataset_hdfs import *
|
| 2 |
+
from .image_dataset import T2IHDFSDataset, T2IHDFSDataset_dump
|
| 3 |
+
from .parquet_dataset.video_parquet import SeedV1Dataset, SeedV1Dataset_dump
|
| 4 |
+
from .AIP_dataset import AIPVideoDataset
|
| 5 |
+
from .collection_dataset import CollectionDataset, CollectionDataset_dump, collate_fn_map
|
dataset_code/sft_sftnews/offload/dataset_tool/__pycache__/AIP_dataset.cpython-310.pyc
ADDED
|
Binary file (8.84 kB). View file
|
|
|
dataset_code/sft_sftnews/offload/dataset_tool/__pycache__/AIP_dataset.cpython-311.pyc
ADDED
|
Binary file (16.7 kB). View file
|
|
|
dataset_code/sft_sftnews/offload/dataset_tool/__pycache__/__init__.cpython-310.pyc
ADDED
|
Binary file (541 Bytes). View file
|
|
|
dataset_code/sft_sftnews/offload/dataset_tool/__pycache__/__init__.cpython-311.pyc
ADDED
|
Binary file (653 Bytes). View file
|
|
|
dataset_code/sft_sftnews/offload/dataset_tool/__pycache__/__init__.cpython-313.pyc
ADDED
|
Binary file (557 Bytes). View file
|
|
|
dataset_code/sft_sftnews/offload/dataset_tool/__pycache__/collection_dataset.cpython-310.pyc
ADDED
|
Binary file (13.6 kB). View file
|
|
|
dataset_code/sft_sftnews/offload/dataset_tool/__pycache__/collection_dataset.cpython-311.pyc
ADDED
|
Binary file (33.1 kB). View file
|
|
|
dataset_code/sft_sftnews/offload/dataset_tool/__pycache__/dataset_hdfs.cpython-310.pyc
ADDED
|
Binary file (5.38 kB). View file
|
|
|
dataset_code/sft_sftnews/offload/dataset_tool/__pycache__/dataset_hdfs.cpython-311.pyc
ADDED
|
Binary file (9.76 kB). View file
|
|
|
dataset_code/sft_sftnews/offload/dataset_tool/__pycache__/dataset_hdfs.cpython-313.pyc
ADDED
|
Binary file (8.98 kB). View file
|
|
|
dataset_code/sft_sftnews/offload/dataset_tool/__pycache__/image_dataset.cpython-310.pyc
ADDED
|
Binary file (24.8 kB). View file
|
|
|
dataset_code/sft_sftnews/offload/dataset_tool/__pycache__/image_dataset.cpython-311.pyc
ADDED
|
Binary file (49.6 kB). View file
|
|
|
dataset_code/sft_sftnews/offload/dataset_tool/collection_dataset.py
ADDED
|
@@ -0,0 +1,672 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import io
|
| 2 |
+
import os
|
| 3 |
+
import json
|
| 4 |
+
import glob
|
| 5 |
+
import torch
|
| 6 |
+
from copy import deepcopy
|
| 7 |
+
from typing import Dict, List
|
| 8 |
+
import importlib
|
| 9 |
+
import random
|
| 10 |
+
from torch.utils.data import ChainDataset, IterableDataset, Dataset
|
| 11 |
+
import torchvision.transforms as transforms
|
| 12 |
+
from torch.utils.data._utils.collate import default_collate
|
| 13 |
+
from torchvision.transforms import functional as F
|
| 14 |
+
import concurrent.futures
|
| 15 |
+
|
| 16 |
+
from dataset_tool.AIP_dataset import AIPVideoDataset
|
| 17 |
+
|
| 18 |
+
from PIL import Image
|
| 19 |
+
from diffusers.utils import export_to_video
|
| 20 |
+
from diffusers.training_utils import free_memory
|
| 21 |
+
|
| 22 |
+
def collate_fn_map(samples):
|
| 23 |
+
"""
|
| 24 |
+
Custom collate function that processes a list of samples into a batch.
|
| 25 |
+
"""
|
| 26 |
+
if type(samples) is list and type(samples[0]) is list:
|
| 27 |
+
samples = samples[0] # remove the first batch, as it is always 1
|
| 28 |
+
if isinstance(samples[0], dict):
|
| 29 |
+
none_keys = []
|
| 30 |
+
for key in samples[0]:
|
| 31 |
+
values = [sample[key] for sample in samples]
|
| 32 |
+
if any(value is None for value in values):
|
| 33 |
+
none_keys.append(key)
|
| 34 |
+
|
| 35 |
+
if none_keys:
|
| 36 |
+
print(f"Warning: Found None values in keys: {none_keys}")
|
| 37 |
+
|
| 38 |
+
return {key: default_collate([sample[key] for sample in samples]) for key in samples[0]}
|
| 39 |
+
raise NotImplementedError
|
| 40 |
+
else:
|
| 41 |
+
return default_collate(samples)
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
class CollectionDataset_dump(IterableDataset):
|
| 45 |
+
def __init__(
|
| 46 |
+
self,
|
| 47 |
+
train_data: list[str],
|
| 48 |
+
train_data_weights: list[int | float],
|
| 49 |
+
dataset_collections: Dict[str, Dict],
|
| 50 |
+
batch_size=1,
|
| 51 |
+
image_batch_size=48,
|
| 52 |
+
enable_bucket=False,
|
| 53 |
+
infinite=True,
|
| 54 |
+
shuffle=True,
|
| 55 |
+
local_cache='', # this should be a ByteNAS path
|
| 56 |
+
data_cache_prefix={'AIPVideoDataset': 'aip_dataset_cache'},
|
| 57 |
+
):
|
| 58 |
+
# prepare for bucketings
|
| 59 |
+
self.enable_bucket = enable_bucket
|
| 60 |
+
self.batch_size = batch_size
|
| 61 |
+
self.image_batch_size = image_batch_size
|
| 62 |
+
|
| 63 |
+
self.buckets = {}
|
| 64 |
+
self.buckets_transform = {}
|
| 65 |
+
self.resolutions = set()
|
| 66 |
+
if not self.enable_bucket:
|
| 67 |
+
assert batch_size == 1, "if not enable_bucket, batch_size must be 1"
|
| 68 |
+
|
| 69 |
+
self.train_data_weights = train_data_weights
|
| 70 |
+
|
| 71 |
+
self.dataset_list = []
|
| 72 |
+
self.dataset_names = []
|
| 73 |
+
self.image_dataset_names = []
|
| 74 |
+
self.dataset_collections = dataset_collections
|
| 75 |
+
self.dataset_to_aspect_ratios = {}
|
| 76 |
+
self.init_state_dict = {}
|
| 77 |
+
self.local_cache_prefix_list = []
|
| 78 |
+
for data_name in train_data:
|
| 79 |
+
if data_name not in dataset_collections:
|
| 80 |
+
print(f'{data_name} not in dataset collections')
|
| 81 |
+
return
|
| 82 |
+
self.dataset_config = dataset_collections[data_name]
|
| 83 |
+
aspect_ratios = self.dataset_config['aspect_ratios']
|
| 84 |
+
self.dataset_to_aspect_ratios[data_name] = aspect_ratios
|
| 85 |
+
self.add_aspect_ratios(aspect_ratios)
|
| 86 |
+
|
| 87 |
+
module, cls = self.dataset_config['target'].rsplit(".", 1)
|
| 88 |
+
data_class = getattr(
|
| 89 |
+
importlib.import_module(module, package=None), cls)
|
| 90 |
+
if cls == 'T2IHDFSDataset' or cls == 'T2IHDFSDataset_dump':
|
| 91 |
+
self.image_dataset_names.append(data_name)
|
| 92 |
+
|
| 93 |
+
if cls in data_cache_prefix:
|
| 94 |
+
data_cache = os.path.join(local_cache, data_cache_prefix[cls])
|
| 95 |
+
os.makedirs(data_cache, exist_ok=True)
|
| 96 |
+
local_cache_prefix = os.path.join(data_cache, data_name)
|
| 97 |
+
self.clean_cache(local_cache_prefix)
|
| 98 |
+
self.dataset_config['params']['local_cache_prefix'] = local_cache_prefix
|
| 99 |
+
self.local_cache_prefix_list.append(local_cache_prefix)
|
| 100 |
+
else:
|
| 101 |
+
self.local_cache_prefix_list.append('')
|
| 102 |
+
dataset = data_class.create_dataset_function(
|
| 103 |
+
self.dataset_config['path'], None, **self.dataset_config['params'])
|
| 104 |
+
if cls == 'AIPVideoDataset':
|
| 105 |
+
self.init_state_dict[data_name] = dataset.state_dict
|
| 106 |
+
self.dataset_list.append(dataset)
|
| 107 |
+
self.dataset_names.append(data_name)
|
| 108 |
+
self.length = sum([len(dataset) for dataset in self.dataset_list])
|
| 109 |
+
self.dataset_iter_list = [iter(dataset) for dataset in self.dataset_list]
|
| 110 |
+
|
| 111 |
+
def add_aspect_ratios(self, aspect_ratios):
|
| 112 |
+
for key in aspect_ratios.keys():
|
| 113 |
+
self.buckets[key] = []
|
| 114 |
+
|
| 115 |
+
for key, sample_size in aspect_ratios.items():
|
| 116 |
+
sample_size = tuple(sample_size)
|
| 117 |
+
self.buckets_transform[key] = transforms.Compose([
|
| 118 |
+
transforms.Resize(min(sample_size[0], sample_size[1])), # fix when height > width
|
| 119 |
+
transforms.CenterCrop(sample_size),
|
| 120 |
+
])
|
| 121 |
+
for h, w in aspect_ratios.values():
|
| 122 |
+
self.resolutions.add((49, h, w))
|
| 123 |
+
|
| 124 |
+
def get_bucket_id(self, item, dataset_name):
|
| 125 |
+
"""
|
| 126 |
+
for large resolution data, we may have multiple bucket ids
|
| 127 |
+
"""
|
| 128 |
+
_,_,_,H,W = item['mp4']['latent_256_size']
|
| 129 |
+
H = H * 64
|
| 130 |
+
W = W* 64
|
| 131 |
+
ratio = float(H) / float(W)
|
| 132 |
+
|
| 133 |
+
ratio_strategy = self.dataset_collections[dataset_name]['ratio_strategy']
|
| 134 |
+
ratios = self.dataset_to_aspect_ratios[dataset_name]
|
| 135 |
+
if ratio_strategy == 'random':
|
| 136 |
+
bucket_id = random.choice(list(ratios.keys()))
|
| 137 |
+
elif ratio_strategy == 'closest':
|
| 138 |
+
bucket_id = min(ratios.items(),
|
| 139 |
+
key=lambda r: abs(float(r[1][0]) / float(r[1][1]) - ratio))[0]
|
| 140 |
+
else:
|
| 141 |
+
raise f"ratio_strategy {ratio_strategy} not support ..."
|
| 142 |
+
|
| 143 |
+
return bucket_id
|
| 144 |
+
|
| 145 |
+
def __len__(self):
|
| 146 |
+
return self.length
|
| 147 |
+
|
| 148 |
+
def crop_and_resize(self, image, h_prime, w_prime):
|
| 149 |
+
"""
|
| 150 |
+
Crop and resize a 4D tensor image.
|
| 151 |
+
|
| 152 |
+
Args:
|
| 153 |
+
image: The input 4D tensor image of shape (frame, channel, h, w).
|
| 154 |
+
h_prime: Desired height of the cropped image.
|
| 155 |
+
w_prime: Desired width of the cropped image.
|
| 156 |
+
|
| 157 |
+
Returns:
|
| 158 |
+
The cropped and resized 4D tensor image.
|
| 159 |
+
"""
|
| 160 |
+
frames, channels, h, w = image.shape
|
| 161 |
+
aspect_ratio_original = h / w
|
| 162 |
+
aspect_ratio_target = h_prime / w_prime
|
| 163 |
+
|
| 164 |
+
if aspect_ratio_original >= aspect_ratio_target:
|
| 165 |
+
new_h = int(w * aspect_ratio_target)
|
| 166 |
+
top = (h - new_h) // 2
|
| 167 |
+
bottom = top + new_h
|
| 168 |
+
left = 0
|
| 169 |
+
right = w
|
| 170 |
+
else:
|
| 171 |
+
new_w = int(h / aspect_ratio_target)
|
| 172 |
+
left = (w - new_w) // 2
|
| 173 |
+
right = left + new_w
|
| 174 |
+
top = 0
|
| 175 |
+
bottom = h
|
| 176 |
+
# print(f"left {left}, right {right}, top {top}, bottom {bottom}")
|
| 177 |
+
# Crop the image
|
| 178 |
+
cropped_image = image[:, :, top:bottom, left:right]
|
| 179 |
+
# Resize the cropped image
|
| 180 |
+
resized_image = F.resize(cropped_image, (h_prime, w_prime))
|
| 181 |
+
return resized_image
|
| 182 |
+
|
| 183 |
+
def put_to_bucket(self, item, dataset_name):
|
| 184 |
+
if len(item['latent'].shape) == 5:
|
| 185 |
+
_,_,_,H,W = item['latent'].shape
|
| 186 |
+
else:
|
| 187 |
+
_,_,H,W = item['latent'].shape
|
| 188 |
+
bucket_id = []
|
| 189 |
+
for key, value in self.dataset_to_aspect_ratios[dataset_name].items():
|
| 190 |
+
if value == [H * 64, W* 64]:
|
| 191 |
+
bucket_id = key
|
| 192 |
+
ori_frams, ori_c, ori_H, ori_W = item['mp4'].shape
|
| 193 |
+
ori_ratio = ori_H / ori_W
|
| 194 |
+
bucket_h, bucket_w = self.dataset_to_aspect_ratios[dataset_name][bucket_id][0], self.dataset_to_aspect_ratios[dataset_name][bucket_id][1]
|
| 195 |
+
bucket_ratio = bucket_h / bucket_w
|
| 196 |
+
# print(f"ori_H {ori_H}, ori_W {ori_W}, ori_ratio {ori_ratio}. bucket_h {bucket_h}, bucket_w {bucket_w}, bucket_ratio {bucket_ratio}")
|
| 197 |
+
item['mp4'] = self.crop_and_resize(item['mp4'], bucket_h, bucket_w)
|
| 198 |
+
|
| 199 |
+
# ori_frams, ori_c, ori_H, ori_W = item['mp4'].shape
|
| 200 |
+
# ori_ratio = ori_H / ori_W
|
| 201 |
+
# bucket_h, bucket_w = self.dataset_to_aspect_ratios[dataset_name][bucket_id][0], self.dataset_to_aspect_ratios[dataset_name][bucket_id][1]
|
| 202 |
+
# bucket_ratio = bucket_h / bucket_w
|
| 203 |
+
# # print(f"ori_H {ori_H}, ori_W {ori_W}, ori_ratio {ori_ratio}. bucket_h {bucket_h}, bucket_w {bucket_w}, bucket_ratio {bucket_ratio}")
|
| 204 |
+
# item['mp4'] = self.crop_and_resize(item['mp4'], bucket_h, bucket_w)
|
| 205 |
+
|
| 206 |
+
# frames, c, H, W = item['mp4'].shape
|
| 207 |
+
# # rewrite item to the same format as the original dataset
|
| 208 |
+
new_item = {}
|
| 209 |
+
new_item['videos'] = item['mp4']
|
| 210 |
+
if len(item['latent'].shape) == 5:
|
| 211 |
+
new_item['latent'] = item['latent'][0]
|
| 212 |
+
else:
|
| 213 |
+
new_item['latent'] = item['latent']
|
| 214 |
+
new_item['prompts'] = item['txt'] if item['txt'] is not None else "" # check text
|
| 215 |
+
latent_tail = item.get('latent_tail')
|
| 216 |
+
if latent_tail is not None:
|
| 217 |
+
new_item['latent_tail'] = item['latent_tail']
|
| 218 |
+
latent_flow = item.get('latent_flow')
|
| 219 |
+
if latent_flow is not None:
|
| 220 |
+
new_item['latent_flow'] = item['latent_flow']
|
| 221 |
+
# else:
|
| 222 |
+
# new_item['latent_tail'] = None
|
| 223 |
+
# new_item['video_metadata'] = {
|
| 224 |
+
# 'num_frames': frames,
|
| 225 |
+
# 'height': H,
|
| 226 |
+
# 'width': W,
|
| 227 |
+
# }
|
| 228 |
+
self.buckets[bucket_id].append(new_item)
|
| 229 |
+
|
| 230 |
+
batch = None
|
| 231 |
+
cur_batch_size = self.image_batch_size if bucket_id.startswith("i-") else self.batch_size
|
| 232 |
+
if len(self.buckets[bucket_id]) >= cur_batch_size:
|
| 233 |
+
batch = self.buckets[bucket_id]
|
| 234 |
+
self.buckets[bucket_id] = []
|
| 235 |
+
return batch
|
| 236 |
+
|
| 237 |
+
def __iter__(self):
|
| 238 |
+
def __native__iter():
|
| 239 |
+
while True:
|
| 240 |
+
dataset_idx = random.choices(
|
| 241 |
+
list(range(len(self.dataset_list))), weights=self.dataset_weights)[0]
|
| 242 |
+
dataset = self.dataset_iter_list[dataset_idx]
|
| 243 |
+
yield next(dataset)
|
| 244 |
+
|
| 245 |
+
def __bucket__iter():
|
| 246 |
+
def get_next_item(dataset):
|
| 247 |
+
return next(dataset)
|
| 248 |
+
while True:
|
| 249 |
+
dataset_idx = random.choices(
|
| 250 |
+
list(range(len(self.dataset_list))), weights=self.train_data_weights)[0]
|
| 251 |
+
dataset = self.dataset_iter_list[dataset_idx]
|
| 252 |
+
dataset_name = self.dataset_names[dataset_idx]
|
| 253 |
+
if dataset_name in self.image_dataset_names:
|
| 254 |
+
replicate_times = max(int(self.image_batch_size / self.batch_size), 1)
|
| 255 |
+
batch_data_list = []
|
| 256 |
+
while replicate_times > 0:
|
| 257 |
+
item = next(dataset)
|
| 258 |
+
batch_data = self.put_to_bucket(item, dataset_name)
|
| 259 |
+
if batch_data is not None:
|
| 260 |
+
batch_data_list.append(batch_data)
|
| 261 |
+
replicate_times -= 1
|
| 262 |
+
for batch_data in batch_data_list:
|
| 263 |
+
yield batch_data
|
| 264 |
+
# else:
|
| 265 |
+
# item = next(dataset)
|
| 266 |
+
# if item == "wtf_is_abnormal":
|
| 267 |
+
# print(f"too much abnormal from {dataset_name}, continue")
|
| 268 |
+
# continue
|
| 269 |
+
# if item == "max_bad_file_count_reached":
|
| 270 |
+
# print(f"{dataset_name} for this worker is corrupted, continue")
|
| 271 |
+
# continue
|
| 272 |
+
# batch_data = self.put_to_bucket(item, dataset_name)
|
| 273 |
+
# if batch_data is not None:
|
| 274 |
+
# yield batch_data
|
| 275 |
+
else:
|
| 276 |
+
with concurrent.futures.ThreadPoolExecutor() as executor:
|
| 277 |
+
future = executor.submit(get_next_item, dataset)
|
| 278 |
+
try:
|
| 279 |
+
item = future.result(timeout=10)
|
| 280 |
+
except concurrent.futures.TimeoutError:
|
| 281 |
+
print(f"timeout for get data from {dataset_name}")
|
| 282 |
+
continue
|
| 283 |
+
if item == "wtf_is_abnormal":
|
| 284 |
+
print(f"too much abnormal from {dataset_name}, continue")
|
| 285 |
+
continue
|
| 286 |
+
if item == "max_bad_file_count_reached":
|
| 287 |
+
print(f"{dataset_name} for this worker is corrupted, continue")
|
| 288 |
+
continue
|
| 289 |
+
batch_data = self.put_to_bucket( item, dataset_name)
|
| 290 |
+
if batch_data is not None:
|
| 291 |
+
yield batch_data
|
| 292 |
+
|
| 293 |
+
if self.enable_bucket:
|
| 294 |
+
return __bucket__iter()
|
| 295 |
+
else:
|
| 296 |
+
return __native__iter()
|
| 297 |
+
|
| 298 |
+
def state_dict(self):
|
| 299 |
+
output_state_dict = deepcopy(self.init_state_dict)
|
| 300 |
+
for dataset_name, local_cache_prefix in zip(self.dataset_names, self.local_cache_prefix_list):
|
| 301 |
+
if dataset_name not in self.init_state_dict:
|
| 302 |
+
continue
|
| 303 |
+
cache_list = glob.glob(f'{local_cache_prefix}*')
|
| 304 |
+
for cache_path in cache_list:
|
| 305 |
+
with open(cache_path, 'r') as f:
|
| 306 |
+
for l in f.readlines():
|
| 307 |
+
r = int(l.strip())
|
| 308 |
+
output_state_dict[dataset_name]['seen_times'][r] += 1
|
| 309 |
+
return output_state_dict
|
| 310 |
+
|
| 311 |
+
def load_state_dict(self, state_dict):
|
| 312 |
+
for dataset_name, local_cache_prefix, dataset in zip(self.dataset_names, self.local_cache_prefix_list, self.dataset_list):
|
| 313 |
+
if dataset_name not in state_dict:
|
| 314 |
+
continue
|
| 315 |
+
if dataset_name not in self.init_state_dict:
|
| 316 |
+
continue
|
| 317 |
+
self.clean_cache(local_cache_prefix)
|
| 318 |
+
dataset.load_state_dict(state_dict[dataset_name])
|
| 319 |
+
self.init_state_dict[dataset_name] = dataset.state_dict
|
| 320 |
+
|
| 321 |
+
def clean_cache(self, local_cache_prefix):
|
| 322 |
+
for fname in glob.glob(f'{local_cache_prefix}*'):
|
| 323 |
+
try:
|
| 324 |
+
os.remove(fname)
|
| 325 |
+
except OSError:
|
| 326 |
+
pass
|
| 327 |
+
|
| 328 |
+
@classmethod
|
| 329 |
+
def create_dataset_function(cls, data, data_weights, **kwargs):
|
| 330 |
+
return cls(data, data_weights, **kwargs)
|
| 331 |
+
|
| 332 |
+
|
| 333 |
+
|
| 334 |
+
class CollectionDataset(IterableDataset):
|
| 335 |
+
def __init__(
|
| 336 |
+
self,
|
| 337 |
+
train_data: list[str],
|
| 338 |
+
train_data_weights: list[int | float],
|
| 339 |
+
dataset_collections: Dict[str, Dict],
|
| 340 |
+
batch_size=1,
|
| 341 |
+
image_batch_size=48,
|
| 342 |
+
enable_bucket=False,
|
| 343 |
+
infinite=True,
|
| 344 |
+
shuffle=True,
|
| 345 |
+
local_cache='', # this should be a ByteNAS path
|
| 346 |
+
data_cache_prefix={'AIPVideoDataset': 'aip_dataset_cache'},
|
| 347 |
+
):
|
| 348 |
+
# prepare for bucketings
|
| 349 |
+
self.enable_bucket = enable_bucket
|
| 350 |
+
self.batch_size = batch_size
|
| 351 |
+
self.image_batch_size = image_batch_size
|
| 352 |
+
|
| 353 |
+
self.buckets = {}
|
| 354 |
+
self.buckets_transform = {}
|
| 355 |
+
self.resolutions = set()
|
| 356 |
+
if not self.enable_bucket:
|
| 357 |
+
assert batch_size == 1, "if not enable_bucket, batch_size must be 1"
|
| 358 |
+
|
| 359 |
+
self.train_data_weights = train_data_weights
|
| 360 |
+
|
| 361 |
+
self.dataset_list = []
|
| 362 |
+
self.dataset_names = []
|
| 363 |
+
self.image_dataset_names = []
|
| 364 |
+
self.dataset_collections = dataset_collections
|
| 365 |
+
self.dataset_to_aspect_ratios = {}
|
| 366 |
+
self.init_state_dict = {}
|
| 367 |
+
self.local_cache_prefix_list = []
|
| 368 |
+
for data_name in train_data:
|
| 369 |
+
if data_name not in dataset_collections:
|
| 370 |
+
print(f'{data_name} not in dataset collections')
|
| 371 |
+
return
|
| 372 |
+
self.dataset_config = dataset_collections[data_name]
|
| 373 |
+
aspect_ratios = self.dataset_config['aspect_ratios']
|
| 374 |
+
self.dataset_to_aspect_ratios[data_name] = aspect_ratios
|
| 375 |
+
self.add_aspect_ratios(aspect_ratios)
|
| 376 |
+
|
| 377 |
+
module, cls = self.dataset_config['target'].rsplit(".", 1)
|
| 378 |
+
data_class = getattr(
|
| 379 |
+
importlib.import_module(module, package=None), cls)
|
| 380 |
+
if cls == 'T2IHDFSDataset':
|
| 381 |
+
self.image_dataset_names.append(data_name)
|
| 382 |
+
|
| 383 |
+
if cls in data_cache_prefix:
|
| 384 |
+
data_cache = os.path.join(local_cache, data_cache_prefix[cls])
|
| 385 |
+
os.makedirs(data_cache, exist_ok=True)
|
| 386 |
+
local_cache_prefix = os.path.join(data_cache, data_name)
|
| 387 |
+
self.clean_cache(local_cache_prefix)
|
| 388 |
+
self.dataset_config['params']['local_cache_prefix'] = local_cache_prefix
|
| 389 |
+
self.local_cache_prefix_list.append(local_cache_prefix)
|
| 390 |
+
else:
|
| 391 |
+
self.local_cache_prefix_list.append('')
|
| 392 |
+
dataset = data_class.create_dataset_function(
|
| 393 |
+
self.dataset_config['path'], None, **self.dataset_config['params'])
|
| 394 |
+
if cls == 'AIPVideoDataset':
|
| 395 |
+
self.init_state_dict[data_name] = dataset.state_dict
|
| 396 |
+
self.dataset_list.append(dataset)
|
| 397 |
+
self.dataset_names.append(data_name)
|
| 398 |
+
|
| 399 |
+
self.length = sum([len(dataset) for dataset in self.dataset_list])
|
| 400 |
+
self.dataset_iter_list = [iter(dataset) for dataset in self.dataset_list]
|
| 401 |
+
|
| 402 |
+
def add_aspect_ratios(self, aspect_ratios):
|
| 403 |
+
for key in aspect_ratios.keys():
|
| 404 |
+
self.buckets[key] = []
|
| 405 |
+
|
| 406 |
+
for key, sample_size in aspect_ratios.items():
|
| 407 |
+
sample_size = tuple(sample_size)
|
| 408 |
+
self.buckets_transform[key] = transforms.Compose([
|
| 409 |
+
transforms.Resize(min(sample_size[0], sample_size[1])), # fix when height > width
|
| 410 |
+
transforms.CenterCrop(sample_size),
|
| 411 |
+
])
|
| 412 |
+
for h, w in aspect_ratios.values():
|
| 413 |
+
self.resolutions.add((49, h, w))
|
| 414 |
+
|
| 415 |
+
def get_bucket_id(self, item, dataset_name):
|
| 416 |
+
"""
|
| 417 |
+
for large resolution data, we may have multiple bucket ids
|
| 418 |
+
"""
|
| 419 |
+
frames, c, H, W = item['mp4'].shape
|
| 420 |
+
ratio = float(H) / float(W)
|
| 421 |
+
|
| 422 |
+
ratio_strategy = self.dataset_collections[dataset_name]['ratio_strategy']
|
| 423 |
+
ratios = self.dataset_to_aspect_ratios[dataset_name]
|
| 424 |
+
if ratio_strategy == 'random':
|
| 425 |
+
bucket_id = random.choice(list(ratios.keys()))
|
| 426 |
+
elif ratio_strategy == 'closest':
|
| 427 |
+
bucket_id = min(ratios.items(),
|
| 428 |
+
key=lambda r: abs(float(r[1][0]) / float(r[1][1]) - ratio))[0]
|
| 429 |
+
else:
|
| 430 |
+
raise f"ratio_strategy {ratio_strategy} not support ..."
|
| 431 |
+
|
| 432 |
+
return bucket_id
|
| 433 |
+
|
| 434 |
+
def __len__(self):
|
| 435 |
+
return self.length
|
| 436 |
+
|
| 437 |
+
def crop_and_resize(self, image, h_prime, w_prime):
|
| 438 |
+
"""
|
| 439 |
+
Crop and resize a 4D tensor image.
|
| 440 |
+
|
| 441 |
+
Args:
|
| 442 |
+
image: The input 4D tensor image of shape (frame, channel, h, w).
|
| 443 |
+
h_prime: Desired height of the cropped image.
|
| 444 |
+
w_prime: Desired width of the cropped image.
|
| 445 |
+
|
| 446 |
+
Returns:
|
| 447 |
+
The cropped and resized 4D tensor image.
|
| 448 |
+
"""
|
| 449 |
+
frames, channels, h, w = image.shape
|
| 450 |
+
aspect_ratio_original = h / w
|
| 451 |
+
aspect_ratio_target = h_prime / w_prime
|
| 452 |
+
|
| 453 |
+
if aspect_ratio_original >= aspect_ratio_target:
|
| 454 |
+
new_h = int(w * aspect_ratio_target)
|
| 455 |
+
top = (h - new_h) // 2
|
| 456 |
+
bottom = top + new_h
|
| 457 |
+
left = 0
|
| 458 |
+
right = w
|
| 459 |
+
else:
|
| 460 |
+
new_w = int(h / aspect_ratio_target)
|
| 461 |
+
left = (w - new_w) // 2
|
| 462 |
+
right = left + new_w
|
| 463 |
+
top = 0
|
| 464 |
+
bottom = h
|
| 465 |
+
# print(f"left {left}, right {right}, top {top}, bottom {bottom}")
|
| 466 |
+
# Crop the image
|
| 467 |
+
cropped_image = image[:, :, top:bottom, left:right]
|
| 468 |
+
# Resize the cropped image
|
| 469 |
+
resized_image = F.resize(cropped_image, (h_prime, w_prime))
|
| 470 |
+
return resized_image
|
| 471 |
+
|
| 472 |
+
def _save_frames(self, frame_raw, uid, fps, stride=None, base_path="/mnt/bn/yufan-dev-my/ysh/Datasets/sft_sftnews_videos"):
|
| 473 |
+
if stride:
|
| 474 |
+
output_path = f"{base_path}/processed/stride{stride}"
|
| 475 |
+
else:
|
| 476 |
+
output_path = f"{base_path}/processed"
|
| 477 |
+
os.makedirs(output_path, exist_ok=True)
|
| 478 |
+
|
| 479 |
+
save_list = []
|
| 480 |
+
frame_height, frame_width = None, None
|
| 481 |
+
for frame in frame_raw:
|
| 482 |
+
frame = (frame + 1) / 2 * 255
|
| 483 |
+
frame = transforms.ToPILImage()(frame.to(torch.uint8)).convert("RGB")
|
| 484 |
+
if frame_height is None:
|
| 485 |
+
frame_height, frame_width = frame.height, frame.width
|
| 486 |
+
video_path = f"{output_path}/{uid}_{len(frame_raw)}_{frame_height}_{frame_width}.mp4"
|
| 487 |
+
if os.path.exists(video_path):
|
| 488 |
+
print(f"skip original video: {video_path}")
|
| 489 |
+
return
|
| 490 |
+
save_list.append(frame)
|
| 491 |
+
frame = None
|
| 492 |
+
del frame
|
| 493 |
+
|
| 494 |
+
if not save_list:
|
| 495 |
+
return
|
| 496 |
+
|
| 497 |
+
export_to_video(save_list, video_path, fps=fps)
|
| 498 |
+
print(f"save to {video_path}")
|
| 499 |
+
|
| 500 |
+
save_list = None
|
| 501 |
+
del save_list
|
| 502 |
+
|
| 503 |
+
free_memory()
|
| 504 |
+
|
| 505 |
+
|
| 506 |
+
def put_to_bucket(self, item, dataset_name):
|
| 507 |
+
bucket_id = self.get_bucket_id(item, dataset_name)
|
| 508 |
+
ori_frams, ori_c, ori_H, ori_W = item['mp4'].shape
|
| 509 |
+
ori_ratio = ori_H / ori_W
|
| 510 |
+
bucket_h, bucket_w = self.dataset_to_aspect_ratios[dataset_name][bucket_id][0], self.dataset_to_aspect_ratios[dataset_name][bucket_id][1]
|
| 511 |
+
bucket_ratio = bucket_h / bucket_w
|
| 512 |
+
# print(f"ori_H {ori_H}, ori_W {ori_W}, ori_ratio {ori_ratio}. bucket_h {bucket_h}, bucket_w {bucket_w}, bucket_ratio {bucket_ratio}")
|
| 513 |
+
item['mp4'] = self.crop_and_resize(item['mp4'], bucket_h, bucket_w)
|
| 514 |
+
|
| 515 |
+
# ----- save video -----
|
| 516 |
+
try:
|
| 517 |
+
if item["topk_avg_motion_scores_t"] >= 400:
|
| 518 |
+
base_path="/mnt/bn/yufan-dev-my/ysh/Datasets/sft_sftnews_videos/high_motion"
|
| 519 |
+
else:
|
| 520 |
+
base_path="/mnt/bn/yufan-dev-my/ysh/Datasets/sft_sftnews_videos/low_motion"
|
| 521 |
+
self._save_frames(item['mp4'], item["uttid"], item['fps'], base_path=base_path)
|
| 522 |
+
|
| 523 |
+
item["stride_mp4"] = self.crop_and_resize(item["stride_mp4"], bucket_h, bucket_w)
|
| 524 |
+
self._save_frames(item["stride_mp4"], item["uttid"], item['fps'], stride=item['stride'], base_path=base_path)
|
| 525 |
+
except:
|
| 526 |
+
pass
|
| 527 |
+
# ----- save video -----
|
| 528 |
+
|
| 529 |
+
# ----- save meta -----
|
| 530 |
+
if item["topk_avg_motion_scores_t"] >= 400:
|
| 531 |
+
base_path="/mnt/bn/yufan-dev-my/ysh/Datasets/sft_sftnews_videos/metadata/high_motion"
|
| 532 |
+
else:
|
| 533 |
+
base_path="/mnt/bn/yufan-dev-my/ysh/Datasets/sft_sftnews_videos/metadata/low_motion"
|
| 534 |
+
os.makedirs(base_path, exist_ok=True)
|
| 535 |
+
output_path = os.path.join(base_path, f"{item['uttid']}.json")
|
| 536 |
+
if not os.path.exists(output_path):
|
| 537 |
+
meta = {
|
| 538 |
+
"uttid": item["uttid"],
|
| 539 |
+
"text": item['txt'],
|
| 540 |
+
"ori_num_frames": item["ori_num_frames"],
|
| 541 |
+
"ori_height": item["ori_height"],
|
| 542 |
+
"ori_width": item["ori_width"],
|
| 543 |
+
"cur_num_frames": item["cur_num_frames"],
|
| 544 |
+
"cur_height": item['mp4'].shape[-2],
|
| 545 |
+
"cur_width": item['mp4'].shape[-1],
|
| 546 |
+
"topk_avg_motion_scores_t": item["topk_avg_motion_scores_t"],
|
| 547 |
+
}
|
| 548 |
+
with open(output_path, 'w',) as f:
|
| 549 |
+
json.dump(meta, f, indent=2)
|
| 550 |
+
print(f"save json to {output_path}")
|
| 551 |
+
# ----- save meta -----
|
| 552 |
+
|
| 553 |
+
first_frame = item['mp4'][0]
|
| 554 |
+
item["first_frames_images"] = (first_frame + 1) / 2 * 255
|
| 555 |
+
|
| 556 |
+
frames, c, H, W = item['mp4'].shape
|
| 557 |
+
# rewrite item to the same format as the original dataset
|
| 558 |
+
new_item = {}
|
| 559 |
+
new_item['videos'] = item['mp4']
|
| 560 |
+
new_item['prompts'] = item['txt'] if item['txt'] is not None else "" # check text
|
| 561 |
+
new_item['video_metadata'] = {
|
| 562 |
+
'num_frames': frames,
|
| 563 |
+
'height': H,
|
| 564 |
+
'width': W,
|
| 565 |
+
}
|
| 566 |
+
new_item["first_frames_images"] = item["first_frames_images"]
|
| 567 |
+
new_item["uttid"] = item["uttid"]
|
| 568 |
+
new_item['stride_videos'] = item["stride_mp4"]
|
| 569 |
+
new_item["topk_avg_motion_scores_t"] = item["topk_avg_motion_scores_t"]
|
| 570 |
+
self.buckets[bucket_id].append(new_item)
|
| 571 |
+
|
| 572 |
+
batch = None
|
| 573 |
+
cur_batch_size = self.image_batch_size if bucket_id.startswith("i-") else self.batch_size
|
| 574 |
+
if len(self.buckets[bucket_id]) >= cur_batch_size:
|
| 575 |
+
batch = self.buckets[bucket_id]
|
| 576 |
+
self.buckets[bucket_id] = []
|
| 577 |
+
|
| 578 |
+
# item["uttid"] = None
|
| 579 |
+
# item['txt'] = None
|
| 580 |
+
# item["ori_num_frames"] = None
|
| 581 |
+
# item["ori_height"] = None
|
| 582 |
+
# item["ori_width"] = None
|
| 583 |
+
# item["cur_num_frames"] = None
|
| 584 |
+
# item['mp4'] = None
|
| 585 |
+
# item["topk_avg_motion_scores_t"] = None
|
| 586 |
+
# item["first_frames_images"] = None
|
| 587 |
+
# new_item['videos'] = None
|
| 588 |
+
# new_item['prompts'] = None
|
| 589 |
+
# new_item["first_frames_images"] = None
|
| 590 |
+
# new_item["uttid"] = None
|
| 591 |
+
# new_item['stride_videos'] = None
|
| 592 |
+
# new_item["topk_avg_motion_scores_t"] = None
|
| 593 |
+
|
| 594 |
+
new_item = None
|
| 595 |
+
item = None
|
| 596 |
+
meta = None
|
| 597 |
+
del meta
|
| 598 |
+
del item
|
| 599 |
+
del new_item
|
| 600 |
+
free_memory()
|
| 601 |
+
|
| 602 |
+
return batch
|
| 603 |
+
|
| 604 |
+
def __iter__(self):
|
| 605 |
+
def __native__iter():
|
| 606 |
+
while True:
|
| 607 |
+
dataset_idx = random.choices(
|
| 608 |
+
list(range(len(self.dataset_list))), weights=self.dataset_weights)[0]
|
| 609 |
+
dataset = self.dataset_iter_list[dataset_idx]
|
| 610 |
+
yield next(dataset)
|
| 611 |
+
|
| 612 |
+
def __bucket__iter():
|
| 613 |
+
while True:
|
| 614 |
+
dataset_idx = random.choices(
|
| 615 |
+
list(range(len(self.dataset_list))), weights=self.train_data_weights)[0]
|
| 616 |
+
dataset = self.dataset_iter_list[dataset_idx]
|
| 617 |
+
dataset_name = self.dataset_names[dataset_idx]
|
| 618 |
+
if dataset_name in self.image_dataset_names:
|
| 619 |
+
replicate_times = max(int(self.image_batch_size / self.batch_size), 1)
|
| 620 |
+
batch_data_list = []
|
| 621 |
+
while replicate_times > 0:
|
| 622 |
+
item = next(dataset)
|
| 623 |
+
batch_data = self.put_to_bucket(item, dataset_name)
|
| 624 |
+
if batch_data is not None:
|
| 625 |
+
batch_data_list.append(batch_data)
|
| 626 |
+
replicate_times -= 1
|
| 627 |
+
for batch_data in batch_data_list:
|
| 628 |
+
yield batch_data
|
| 629 |
+
else:
|
| 630 |
+
item = next(dataset)
|
| 631 |
+
batch_data = self.put_to_bucket(item, dataset_name)
|
| 632 |
+
if batch_data is not None:
|
| 633 |
+
yield batch_data
|
| 634 |
+
|
| 635 |
+
if self.enable_bucket:
|
| 636 |
+
return __bucket__iter()
|
| 637 |
+
else:
|
| 638 |
+
return __native__iter()
|
| 639 |
+
|
| 640 |
+
def state_dict(self):
|
| 641 |
+
output_state_dict = deepcopy(self.init_state_dict)
|
| 642 |
+
for dataset_name, local_cache_prefix in zip(self.dataset_names, self.local_cache_prefix_list):
|
| 643 |
+
if dataset_name not in self.init_state_dict:
|
| 644 |
+
continue
|
| 645 |
+
cache_list = glob.glob(f'{local_cache_prefix}*')
|
| 646 |
+
for cache_path in cache_list:
|
| 647 |
+
with open(cache_path, 'r') as f:
|
| 648 |
+
for l in f.readlines():
|
| 649 |
+
r = int(l.strip())
|
| 650 |
+
output_state_dict[dataset_name]['seen_times'][r] += 1
|
| 651 |
+
return output_state_dict
|
| 652 |
+
|
| 653 |
+
def load_state_dict(self, state_dict):
|
| 654 |
+
for dataset_name, local_cache_prefix, dataset in zip(self.dataset_names, self.local_cache_prefix_list, self.dataset_list):
|
| 655 |
+
if dataset_name not in state_dict:
|
| 656 |
+
continue
|
| 657 |
+
if dataset_name not in self.init_state_dict:
|
| 658 |
+
continue
|
| 659 |
+
self.clean_cache(local_cache_prefix)
|
| 660 |
+
dataset.load_state_dict(state_dict[dataset_name])
|
| 661 |
+
self.init_state_dict[dataset_name] = dataset.state_dict
|
| 662 |
+
|
| 663 |
+
def clean_cache(self, local_cache_prefix):
|
| 664 |
+
for fname in glob.glob(f'{local_cache_prefix}*'):
|
| 665 |
+
try:
|
| 666 |
+
os.remove(fname)
|
| 667 |
+
except OSError:
|
| 668 |
+
pass
|
| 669 |
+
|
| 670 |
+
@classmethod
|
| 671 |
+
def create_dataset_function(cls, data, data_weights, **kwargs):
|
| 672 |
+
return cls(data, data_weights, **kwargs)
|
dataset_code/sft_sftnews/offload/dataset_tool/dataset_hdfs.py
ADDED
|
@@ -0,0 +1,198 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -------------------------------------
|
| 2 |
+
# Modified by: Jacob Zhiyuan Fang
|
| 3 |
+
# Date: 2024/09/10
|
| 4 |
+
# Email: jacob.fang@bytedance.com
|
| 5 |
+
# Author: Xun Guo
|
| 6 |
+
# Email: guoxun.99@bytedance.com
|
| 7 |
+
# Date: 2024/05/29
|
| 8 |
+
# -------------------------------------
|
| 9 |
+
|
| 10 |
+
import os
|
| 11 |
+
import json
|
| 12 |
+
import time
|
| 13 |
+
import random
|
| 14 |
+
import subprocess
|
| 15 |
+
|
| 16 |
+
import torch
|
| 17 |
+
import numpy as np
|
| 18 |
+
import tensorflow as tf
|
| 19 |
+
import multiprocessing as mp
|
| 20 |
+
import torchvision.transforms as transforms
|
| 21 |
+
|
| 22 |
+
from .parquet_dataset.parquet_utils import get_random_for_rank_and_worker, get_portion_for_rank_and_worker
|
| 23 |
+
from typing import List, Tuple
|
| 24 |
+
from dataloader import KVReader
|
| 25 |
+
from torch.utils.data.dataset import Dataset
|
| 26 |
+
from torchvision.transforms.functional import to_pil_image
|
| 27 |
+
|
| 28 |
+
from diffusers.training_utils import free_memory
|
| 29 |
+
|
| 30 |
+
class T2VHDFSDataset(Dataset):
|
| 31 |
+
def __init__(self,
|
| 32 |
+
json_path,
|
| 33 |
+
sample_size=256,
|
| 34 |
+
sample_stride=4,
|
| 35 |
+
sample_n_frames=16,
|
| 36 |
+
is_image=False,
|
| 37 |
+
pick=False,
|
| 38 |
+
fps=24,
|
| 39 |
+
shuffle=True,
|
| 40 |
+
infinite=True,
|
| 41 |
+
):
|
| 42 |
+
super().__init__()
|
| 43 |
+
|
| 44 |
+
with open(json_path, 'r') as jsonfile:
|
| 45 |
+
self.dataset = json.load(jsonfile)
|
| 46 |
+
assert type(
|
| 47 |
+
self.dataset) == list, "The annotation file should contain a list !!!"
|
| 48 |
+
|
| 49 |
+
# IMPORTANT: Prevent tf load tensor to GPU.
|
| 50 |
+
tf.config.set_visible_devices([], 'GPU')
|
| 51 |
+
self._context_features = {
|
| 52 |
+
'title': tf.io.FixedLenFeature([], dtype=tf.string)}
|
| 53 |
+
self._sequence_features = {
|
| 54 |
+
'data': tf.io.FixedLenSequenceFeature([], dtype=tf.string)}
|
| 55 |
+
|
| 56 |
+
self.length = len(self.dataset)
|
| 57 |
+
self.sample_n_frames = sample_n_frames
|
| 58 |
+
self.sample_stride = sample_stride
|
| 59 |
+
self.is_image = is_image
|
| 60 |
+
self.pick = pick
|
| 61 |
+
self.num_parallel_reader = 32
|
| 62 |
+
self.shuffle = shuffle
|
| 63 |
+
self.infinite = infinite
|
| 64 |
+
if sample_size == -1: # if sample_size is None, using Identity transformation
|
| 65 |
+
self.pixel_transforms = transforms.Compose([
|
| 66 |
+
transforms.Lambda(lambda x: x)
|
| 67 |
+
])
|
| 68 |
+
else:
|
| 69 |
+
sample_size = tuple(sample_size) if not isinstance(
|
| 70 |
+
sample_size, int) else (sample_size, sample_size)
|
| 71 |
+
self.pixel_transforms = transforms.Compose([
|
| 72 |
+
transforms.Resize(sample_size[0]),
|
| 73 |
+
transforms.CenterCrop(sample_size),
|
| 74 |
+
])
|
| 75 |
+
self.fps = fps
|
| 76 |
+
|
| 77 |
+
def __iter__(self):
|
| 78 |
+
if self.shuffle:
|
| 79 |
+
get_random_for_rank_and_worker(None).shuffle(self.dataset)
|
| 80 |
+
part_dataset = get_portion_for_rank_and_worker(self.dataset)
|
| 81 |
+
while True:
|
| 82 |
+
if self.shuffle:
|
| 83 |
+
get_random_for_rank_and_worker(None).shuffle(part_dataset)
|
| 84 |
+
for idx in range(len(part_dataset)):
|
| 85 |
+
try:
|
| 86 |
+
to_return = self.__getitem_impl__(idx)
|
| 87 |
+
yield to_return
|
| 88 |
+
except (RuntimeError, ValueError):
|
| 89 |
+
print('Appearing HDFS iops error setting src img \n' * 5)
|
| 90 |
+
# idx = random.sample(range(self.length), 1)[0]
|
| 91 |
+
if not self.infinite:
|
| 92 |
+
break
|
| 93 |
+
|
| 94 |
+
def __len__(self):
|
| 95 |
+
return len(self.dataset)
|
| 96 |
+
|
| 97 |
+
def decode_image(self, raw_data):
|
| 98 |
+
return tf.image.decode_jpeg(raw_data, channels=3, dct_method='INTEGER_ACCURATE').numpy()
|
| 99 |
+
|
| 100 |
+
def get_batch(self, idx):
|
| 101 |
+
video_dict = self.dataset[idx]
|
| 102 |
+
video_name, index_file, caption = video_dict[
|
| 103 |
+
'video_name'], video_dict['index_file'], video_dict['caption']
|
| 104 |
+
reader = KVReader(index_file, self.num_parallel_reader)
|
| 105 |
+
keys = reader.list_keys()
|
| 106 |
+
assert video_name in keys, "video file not in this index file !!!"
|
| 107 |
+
values = reader.read_many([video_name])[0]
|
| 108 |
+
|
| 109 |
+
# Decode record
|
| 110 |
+
contexts, sequences = tf.io.parse_single_sequence_example(
|
| 111 |
+
serialized=values,
|
| 112 |
+
context_features=self._context_features,
|
| 113 |
+
sequence_features=self._sequence_features)
|
| 114 |
+
|
| 115 |
+
# Raw frames data
|
| 116 |
+
raw_frames = sequences['data']
|
| 117 |
+
del reader
|
| 118 |
+
video_length = len(raw_frames)
|
| 119 |
+
|
| 120 |
+
# Sample frames
|
| 121 |
+
if not self.is_image:
|
| 122 |
+
|
| 123 |
+
# Jacob Sep 17th: If sample frames > video frames, we drop this video
|
| 124 |
+
if (self.sample_n_frames - 1) * self.sample_stride + 1 > video_length:
|
| 125 |
+
return None, None
|
| 126 |
+
clip_length = min(
|
| 127 |
+
video_length, (self.sample_n_frames - 1) * self.sample_stride + 1)
|
| 128 |
+
start_idx = random.randint(0, video_length - clip_length)
|
| 129 |
+
batch_index = np.linspace(
|
| 130 |
+
start_idx, start_idx + clip_length - 1, self.sample_n_frames, dtype=int)
|
| 131 |
+
else:
|
| 132 |
+
batch_index = [random.randint(0, video_length - 1)]
|
| 133 |
+
|
| 134 |
+
# Decode frames
|
| 135 |
+
pixel_values = []
|
| 136 |
+
for idx in batch_index:
|
| 137 |
+
frame = raw_frames[idx]
|
| 138 |
+
frame = self.decode_image(frame)
|
| 139 |
+
frame = torch.as_tensor(frame).float().permute(2, 0, 1)
|
| 140 |
+
frame = (frame - 127.5) / 127.5
|
| 141 |
+
pixel_values.append(frame)
|
| 142 |
+
|
| 143 |
+
if self.is_image:
|
| 144 |
+
pixel_values = pixel_values[0]
|
| 145 |
+
|
| 146 |
+
pixel_values = torch.stack(pixel_values, dim=0)
|
| 147 |
+
return pixel_values, caption
|
| 148 |
+
|
| 149 |
+
def __getitem_impl__(self, idx, candidate=None):
|
| 150 |
+
# To avoid bad videos, we retry if there is an Exception.
|
| 151 |
+
# By default the size of videos are all 512, 910 so no need filter.
|
| 152 |
+
if candidate is None:
|
| 153 |
+
candidate = list(range(self.length))
|
| 154 |
+
while True:
|
| 155 |
+
try:
|
| 156 |
+
pixel_values, caption = self.get_batch(idx)
|
| 157 |
+
|
| 158 |
+
if pixel_values is None:
|
| 159 |
+
# restart
|
| 160 |
+
idx = random.sample(candidate, 1)[0]
|
| 161 |
+
else:
|
| 162 |
+
# end the iteration
|
| 163 |
+
break
|
| 164 |
+
except Exception as e:
|
| 165 |
+
print(f"VideoTextPairDataset got unexpected exception: {e}")
|
| 166 |
+
idx = random.sample(candidate, 1)[0]
|
| 167 |
+
pixel_values = self.pixel_transforms(pixel_values)
|
| 168 |
+
|
| 169 |
+
# pixel_values in shape of Frames x channel x H x W
|
| 170 |
+
sample = dict(
|
| 171 |
+
mp4=pixel_values,
|
| 172 |
+
txt=caption,
|
| 173 |
+
num_frames=self.sample_n_frames,
|
| 174 |
+
fps=self.fps,
|
| 175 |
+
)
|
| 176 |
+
|
| 177 |
+
return sample
|
| 178 |
+
|
| 179 |
+
@classmethod
|
| 180 |
+
def create_dataset_function(cls, json_path, args, **kwargs):
|
| 181 |
+
return cls(json_path=json_path, **kwargs)
|
| 182 |
+
|
| 183 |
+
|
| 184 |
+
# Dataset unit test checking how many videos are not preferred
|
| 185 |
+
if __name__ == "__main__":
|
| 186 |
+
dataset = T2VHDFSDataset(
|
| 187 |
+
json_path="/mnt/bn/icvg/video_gen/captions/pond5_res/pond5_data_res_human.json",
|
| 188 |
+
sample_size=512,
|
| 189 |
+
sample_stride=4,
|
| 190 |
+
sample_n_frames=49,
|
| 191 |
+
is_image=False,
|
| 192 |
+
pick=False,
|
| 193 |
+
)
|
| 194 |
+
dataloader = torch.utils.data.DataLoader(
|
| 195 |
+
dataset, batch_size=1, num_workers=1)
|
| 196 |
+
for idx, batch in enumerate(dataloader):
|
| 197 |
+
if idx % 100 == 0:
|
| 198 |
+
breakpoint()
|
dataset_code/sft_sftnews/offload/dataset_tool/image_dataset.py
ADDED
|
@@ -0,0 +1,929 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import sys
|
| 3 |
+
import time
|
| 4 |
+
import torch
|
| 5 |
+
import random
|
| 6 |
+
import bson, json
|
| 7 |
+
from dataloader import KVReader, FalconReader
|
| 8 |
+
from dataclasses import dataclass, field
|
| 9 |
+
from typing import Any, Dict, List, Optional, Tuple
|
| 10 |
+
from torch.utils.data.dataset import Dataset
|
| 11 |
+
from torchvision.transforms import functional as TVF
|
| 12 |
+
from torchvision.transforms.functional import InterpolationMode
|
| 13 |
+
from torchvision.transforms import Compose, ToTensor, Normalize, RandomResizedCrop
|
| 14 |
+
from pyarrow import fs, Field
|
| 15 |
+
import pyarrow.parquet as pq
|
| 16 |
+
import numpy as np
|
| 17 |
+
|
| 18 |
+
########## Utils ##########
|
| 19 |
+
def hlist_files(folders, postfix=".index"):
|
| 20 |
+
"""
|
| 21 |
+
罗列一些 hdfs 路径下的文件。
|
| 22 |
+
"""
|
| 23 |
+
import subprocess
|
| 24 |
+
import os
|
| 25 |
+
if isinstance(folders, str):
|
| 26 |
+
folders = [folders]
|
| 27 |
+
files = []
|
| 28 |
+
for folder in folders:
|
| 29 |
+
if folder.startswith('hdfs'):
|
| 30 |
+
pipe = subprocess.Popen("hdfs dfs -ls -R {}".format(folder), shell=True,
|
| 31 |
+
stdout=subprocess.PIPE)
|
| 32 |
+
# output, _ = pipe.communicate()
|
| 33 |
+
for line in pipe.stdout: # type: ignore
|
| 34 |
+
line = line.strip()
|
| 35 |
+
# drwxr-xr-x - user group 4 file
|
| 36 |
+
if len(line.split()) < 5:
|
| 37 |
+
continue
|
| 38 |
+
filepath = line.split()[-1].decode("utf8")
|
| 39 |
+
if filepath.endswith(postfix):
|
| 40 |
+
files.append(filepath)
|
| 41 |
+
pipe.stdout.close() # type: ignore
|
| 42 |
+
pipe.wait()
|
| 43 |
+
else:
|
| 44 |
+
return []
|
| 45 |
+
files = sorted(files)
|
| 46 |
+
return files
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
def resize_crop(image, image_height, image_width, use_resize_random_crop=False):
|
| 50 |
+
aspect_ratio = image_width / image_height
|
| 51 |
+
if not use_resize_random_crop:
|
| 52 |
+
resize = RandomResizedCrop(
|
| 53 |
+
size=(image_height, image_width), # Crop to target width height
|
| 54 |
+
scale=(1, 1), # Do not scale.
|
| 55 |
+
ratio=(aspect_ratio, aspect_ratio), # Keep target aspect ratio.
|
| 56 |
+
interpolation=InterpolationMode.LANCZOS # Use LANCZO for downsample.
|
| 57 |
+
)
|
| 58 |
+
crop_top_coord, crop_left_coord, _, _ = resize.get_params(image, scale=(1, 1), ratio=(
|
| 59 |
+
aspect_ratio, aspect_ratio))
|
| 60 |
+
crop_coords_top_left = torch.tensor([crop_top_coord, crop_left_coord])
|
| 61 |
+
image = resize(image)
|
| 62 |
+
else:
|
| 63 |
+
image_aspect_ratio = image.width / image.height
|
| 64 |
+
if image_aspect_ratio >= aspect_ratio:
|
| 65 |
+
image_resize_h = image_height
|
| 66 |
+
image_resize_w = int(round(image_height * (image.width / image.height)))
|
| 67 |
+
crop_top_coord = 0
|
| 68 |
+
crop_left_coord = random.randint(0, image_resize_w - image_width)
|
| 69 |
+
else:
|
| 70 |
+
image_resize_w = image_width
|
| 71 |
+
image_resize_h = int(round(image_width * (image.height / image.width)))
|
| 72 |
+
crop_top_coord = random.randint(0, image_resize_h - image_height)
|
| 73 |
+
crop_left_coord = 0
|
| 74 |
+
image = TVF.resize(image, size=[image_resize_h, image_resize_w],
|
| 75 |
+
interpolation=InterpolationMode.LANCZOS)
|
| 76 |
+
image = TVF.crop(image, crop_top_coord, crop_left_coord, image_height,
|
| 77 |
+
image_width)
|
| 78 |
+
crop_coords_top_left = torch.tensor([crop_top_coord, crop_left_coord])
|
| 79 |
+
return image, crop_coords_top_left
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
def partition_by_size(data: List[Any], size: int) -> List[List[Any]]:
|
| 83 |
+
"""
|
| 84 |
+
Partition a list by size.
|
| 85 |
+
When indivisible, the last group contains fewer items than the target size.
|
| 86 |
+
|
| 87 |
+
Examples:
|
| 88 |
+
- data: [1,2,3,4,5]
|
| 89 |
+
- size: 2
|
| 90 |
+
- return: [[1,2], [3,4], [5]]
|
| 91 |
+
"""
|
| 92 |
+
return [data[i:i+size] for i in range(0, len(data), size)]
|
| 93 |
+
|
| 94 |
+
|
| 95 |
+
class timer:
|
| 96 |
+
def __init__(self, op, wait_seconds):
|
| 97 |
+
self.op = op
|
| 98 |
+
self.wait_seconds = wait_seconds
|
| 99 |
+
|
| 100 |
+
def __enter__(self):
|
| 101 |
+
self.start_time = time.time()
|
| 102 |
+
|
| 103 |
+
def __exit__(self, *exc_info):
|
| 104 |
+
self.stop_time = time.time()
|
| 105 |
+
self.elapsed_seconds = self.stop_time - self.start_time
|
| 106 |
+
if self.elapsed_seconds > self.wait_seconds:
|
| 107 |
+
print(f"Op: '{self.op}' took: {round(self.elapsed_seconds, 2)} seconds.", file=sys.stderr)
|
| 108 |
+
|
| 109 |
+
|
| 110 |
+
########## ImageDecoder ##########
|
| 111 |
+
import io
|
| 112 |
+
from PIL import Image
|
| 113 |
+
from base64 import b64decode
|
| 114 |
+
from abc import abstractmethod
|
| 115 |
+
|
| 116 |
+
class ImageDecoder:
|
| 117 |
+
"""
|
| 118 |
+
Decode image from json dictionary.
|
| 119 |
+
Return None or raise exception if sample cannot be decoded to skip forward.
|
| 120 |
+
"""
|
| 121 |
+
@abstractmethod
|
| 122 |
+
def __call__(self, item: Dict[str, Any]) -> Optional[Image.Image]:
|
| 123 |
+
raise NotImplementedError()
|
| 124 |
+
|
| 125 |
+
|
| 126 |
+
class GeneralImageDecoder(ImageDecoder):
|
| 127 |
+
"""
|
| 128 |
+
Read image from hdfs data entry, usually is in bytes format
|
| 129 |
+
"""
|
| 130 |
+
def __init__(self):
|
| 131 |
+
# Avoid image too large warning messages.
|
| 132 |
+
Image.MAX_IMAGE_PIXELS = 1000000000
|
| 133 |
+
|
| 134 |
+
def __call__(self, item: Dict[str, Any]) -> Optional[Image.Image]:
|
| 135 |
+
image_data = item.get("image_org") or item.get("image") or item.get("binary")
|
| 136 |
+
if image_data is None:
|
| 137 |
+
return None
|
| 138 |
+
|
| 139 |
+
if isinstance(image_data, bytes):
|
| 140 |
+
image_bytes = image_data
|
| 141 |
+
else:
|
| 142 |
+
image_bytes = b64decode(image_data)
|
| 143 |
+
|
| 144 |
+
with Image.open(io.BytesIO(image_bytes)) as image:
|
| 145 |
+
if image.mode == "RGBA" or image.info.get("transparency", None) is not None:
|
| 146 |
+
image = image.convert("RGBA")
|
| 147 |
+
white = Image.new(mode="RGB", size=image.size, color=(255, 255, 255))
|
| 148 |
+
white.paste(image, mask=image.split()[3])
|
| 149 |
+
image = white
|
| 150 |
+
else:
|
| 151 |
+
image = image.convert("RGB")
|
| 152 |
+
return image
|
| 153 |
+
|
| 154 |
+
|
| 155 |
+
########## ImagePredicate ##########
|
| 156 |
+
class ImagePredicate:
|
| 157 |
+
"""
|
| 158 |
+
Check if image satifiy a certaion requirements.
|
| 159 |
+
Return False if not satisfied and True if pass the check.
|
| 160 |
+
|
| 161 |
+
Be sure to pass key-value pair when using
|
| 162 |
+
"""
|
| 163 |
+
@abstractmethod
|
| 164 |
+
def __call__(self, image: Image.Image, **kwargs) -> bool:
|
| 165 |
+
raise NotImplementedError()
|
| 166 |
+
|
| 167 |
+
|
| 168 |
+
class ImageMultiPredicate(ImagePredicate):
|
| 169 |
+
def __init__(self, predicates: List[ImagePredicate]):
|
| 170 |
+
self.predicates = predicates
|
| 171 |
+
|
| 172 |
+
def __call__(self, image: Image.Image, **kwargs) -> bool:
|
| 173 |
+
for predicate in self.predicates:
|
| 174 |
+
if not predicate(image, **kwargs):
|
| 175 |
+
return False
|
| 176 |
+
return True
|
| 177 |
+
|
| 178 |
+
|
| 179 |
+
class ImageBucketResolutionPredicate(ImagePredicate):
|
| 180 |
+
def __call__(self, image: Image.Image, bucket: Any, **kwargs) -> bool:
|
| 181 |
+
if image.size[0] < bucket.image_width or image.size[1] < bucket.image_height:
|
| 182 |
+
return False
|
| 183 |
+
return True
|
| 184 |
+
|
| 185 |
+
|
| 186 |
+
class ImageAestheticPredicate(ImagePredicate):
|
| 187 |
+
def __init__(self, aes_thed=0):
|
| 188 |
+
self.aes_thed = aes_thed
|
| 189 |
+
|
| 190 |
+
def __call__(self, image: Image.Image, content: dict, **kwargs) -> bool:
|
| 191 |
+
return ("aesthetic" not in content) or (content["aesthetic"] >= self.aes_thed)
|
| 192 |
+
|
| 193 |
+
|
| 194 |
+
########## TextCleaner ##########
|
| 195 |
+
import re
|
| 196 |
+
import ftfy
|
| 197 |
+
import html
|
| 198 |
+
import urllib.parse as ul
|
| 199 |
+
from bs4 import BeautifulSoup
|
| 200 |
+
|
| 201 |
+
class TextCleaner:
|
| 202 |
+
"""
|
| 203 |
+
Clear up a caption with strange/improper contents
|
| 204 |
+
"""
|
| 205 |
+
bad_punct_regex = re.compile(
|
| 206 |
+
r'[' + '#®•©™&@·º½¾¿¡§~' + '\)' + '\(' + '\]' + '\[' + '\}' + '\{' + '\|' + '\\' + '\/' + '\*' + r']{1,}')
|
| 207 |
+
|
| 208 |
+
def __call__(self, text):
|
| 209 |
+
# The exact text cleaning as was in the training stage:
|
| 210 |
+
text = self.clean_caption(text)
|
| 211 |
+
text = self.clean_caption(text)
|
| 212 |
+
return text
|
| 213 |
+
|
| 214 |
+
@staticmethod
|
| 215 |
+
def basic_clean(text):
|
| 216 |
+
text = ftfy.fix_text(text)
|
| 217 |
+
text = html.unescape(html.unescape(text))
|
| 218 |
+
return text.strip()
|
| 219 |
+
|
| 220 |
+
def clean_caption(self, caption):
|
| 221 |
+
caption = str(caption)
|
| 222 |
+
caption = ul.unquote_plus(caption)
|
| 223 |
+
caption = caption.strip().lower()
|
| 224 |
+
caption = re.sub('<person>', 'person', caption)
|
| 225 |
+
caption = re.sub('<br>', ' ', caption)
|
| 226 |
+
# urls:
|
| 227 |
+
caption = re.sub(
|
| 228 |
+
r'\b((?:https?:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))',
|
| 229 |
+
# noqa
|
| 230 |
+
'', caption) # regex for urls
|
| 231 |
+
caption = re.sub(
|
| 232 |
+
r'\b((?:www:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))',
|
| 233 |
+
# noqa
|
| 234 |
+
'', caption) # regex for urls
|
| 235 |
+
# html:
|
| 236 |
+
caption = BeautifulSoup(caption, features='html.parser').text
|
| 237 |
+
|
| 238 |
+
# @<nickname>
|
| 239 |
+
caption = re.sub(r'@[\w\d]+\b', '', caption)
|
| 240 |
+
|
| 241 |
+
# 31C0—31EF CJK Strokes
|
| 242 |
+
# 31F0—31FF Katakana Phonetic Extensions
|
| 243 |
+
# 3200—32FF Enclosed CJK Letters and Months
|
| 244 |
+
# 3300—33FF CJK Compatibility
|
| 245 |
+
# 3400—4DBF CJK Unified Ideographs Extension A
|
| 246 |
+
# 4DC0—4DFF Yijing Hexagram Symbols
|
| 247 |
+
# 4E00—9FFF CJK Unified Ideographs
|
| 248 |
+
caption = re.sub(r'[\u31c0-\u31ef]+', '', caption)
|
| 249 |
+
caption = re.sub(r'[\u31f0-\u31ff]+', '', caption)
|
| 250 |
+
caption = re.sub(r'[\u3200-\u32ff]+', '', caption)
|
| 251 |
+
caption = re.sub(r'[\u3300-\u33ff]+', '', caption)
|
| 252 |
+
caption = re.sub(r'[\u3400-\u4dbf]+', '', caption)
|
| 253 |
+
caption = re.sub(r'[\u4dc0-\u4dff]+', '', caption)
|
| 254 |
+
caption = re.sub(r'[\u4e00-\u9fff]+', '', caption)
|
| 255 |
+
#######################################################
|
| 256 |
+
|
| 257 |
+
# все виды тире / all types of dash --> "-"
|
| 258 |
+
caption = re.sub(
|
| 259 |
+
r'[\u002D\u058A\u05BE\u1400\u1806\u2010-\u2015\u2E17\u2E1A\u2E3A\u2E3B\u2E40\u301C\u3030\u30A0\uFE31\uFE32\uFE58\uFE63\uFF0D]+',
|
| 260 |
+
# noqa
|
| 261 |
+
'-', caption)
|
| 262 |
+
|
| 263 |
+
# кавычки к одному стандарту
|
| 264 |
+
caption = re.sub(r'[`´«»“”¨]', '"', caption)
|
| 265 |
+
caption = re.sub(r'[‘’]', "'", caption)
|
| 266 |
+
|
| 267 |
+
# "
|
| 268 |
+
caption = re.sub(r'"?', '', caption)
|
| 269 |
+
# &
|
| 270 |
+
caption = re.sub(r'&', '', caption)
|
| 271 |
+
|
| 272 |
+
# ip adresses:
|
| 273 |
+
caption = re.sub(r'\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}', ' ', caption)
|
| 274 |
+
|
| 275 |
+
# article ids:
|
| 276 |
+
caption = re.sub(r'\d:\d\d\s+$', '', caption)
|
| 277 |
+
|
| 278 |
+
# \n
|
| 279 |
+
caption = re.sub(r'\\n', ' ', caption)
|
| 280 |
+
|
| 281 |
+
# "#123"
|
| 282 |
+
caption = re.sub(r'#\d{1,3}\b', '', caption)
|
| 283 |
+
# "#12345.."
|
| 284 |
+
caption = re.sub(r'#\d{5,}\b', '', caption)
|
| 285 |
+
# "123456.."
|
| 286 |
+
caption = re.sub(r'\b\d{6,}\b', '', caption)
|
| 287 |
+
# filenames:
|
| 288 |
+
caption = re.sub(
|
| 289 |
+
r'[\S]+\.(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)', '', caption)
|
| 290 |
+
|
| 291 |
+
#
|
| 292 |
+
caption = re.sub(r'[\"\']{2,}', r'"', caption) # """AUSVERKAUFT"""
|
| 293 |
+
caption = re.sub(r'[\.]{2,}', r' ', caption) # """AUSVERKAUFT"""
|
| 294 |
+
|
| 295 |
+
# ***AUSVERKAUFT***, #AUSVERKAUFT
|
| 296 |
+
caption = re.sub(self.bad_punct_regex, r' ', caption)
|
| 297 |
+
caption = re.sub(r'\s+\.\s+', r' ', caption) # " . "
|
| 298 |
+
|
| 299 |
+
# this-is-my-cute-cat / this_is_my_cute_cat
|
| 300 |
+
regex2 = re.compile(r'(?:\-|\_)')
|
| 301 |
+
if len(re.findall(regex2, caption)) > 3:
|
| 302 |
+
caption = re.sub(regex2, ' ', caption)
|
| 303 |
+
|
| 304 |
+
caption = self.basic_clean(caption)
|
| 305 |
+
|
| 306 |
+
caption = re.sub(r'\b[a-zA-Z]{1,3}\d{3,15}\b', '', caption) # jc6640
|
| 307 |
+
caption = re.sub(r'\b[a-zA-Z]+\d+[a-zA-Z]+\b', '', caption) # jc6640vc
|
| 308 |
+
caption = re.sub(r'\b\d+[a-zA-Z]+\d+\b', '', caption) # 6640vc231
|
| 309 |
+
|
| 310 |
+
caption = re.sub(r'(worldwide\s+)?(free\s+)?shipping', '', caption)
|
| 311 |
+
caption = re.sub(r'(free\s)?download(\sfree)?', '', caption)
|
| 312 |
+
caption = re.sub(r'\bclick\b\s(?:for|on)\s\w+', '', caption)
|
| 313 |
+
caption = re.sub(
|
| 314 |
+
r'\b(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)(\simage[s]?)?', '', caption)
|
| 315 |
+
caption = re.sub(r'\bpage\s+\d+\b', '', caption)
|
| 316 |
+
|
| 317 |
+
# j2d1a2a...
|
| 318 |
+
caption = re.sub(
|
| 319 |
+
r'\b\d*[a-zA-Z]+\d+[a-zA-Z]+\d+[a-zA-Z\d]*\b', r' ', caption)
|
| 320 |
+
|
| 321 |
+
caption = re.sub(r'\b\d+\.?\d*[xх×]\d+\.?\d*\b', '', caption)
|
| 322 |
+
|
| 323 |
+
caption = re.sub(r'\b\s+\:\s+', r': ', caption)
|
| 324 |
+
caption = re.sub(r'(\D[,\./])\b', r'\1 ', caption)
|
| 325 |
+
caption = re.sub(r'\s+', ' ', caption)
|
| 326 |
+
|
| 327 |
+
caption.strip()
|
| 328 |
+
|
| 329 |
+
caption = re.sub(r'^[\"\']([\w\W]+)[\"\']$', r'\1', caption)
|
| 330 |
+
caption = re.sub(r'^[\'\_,\-\:;]', r'', caption)
|
| 331 |
+
caption = re.sub(r'[\'\_,\-\:\-\+]$', r'', caption)
|
| 332 |
+
caption = re.sub(r'^\.\S+$', '', caption)
|
| 333 |
+
|
| 334 |
+
return caption.strip()
|
| 335 |
+
|
| 336 |
+
|
| 337 |
+
########## T2IHDFSDataset ##########
|
| 338 |
+
@dataclass
|
| 339 |
+
class Bucket:
|
| 340 |
+
index_files: List[str] = field(default_factory=list) # the .index filenames
|
| 341 |
+
image_count: int = field(default=0) # the total number of images
|
| 342 |
+
image_height: int = field(default=0) # the image height
|
| 343 |
+
image_width: int = field(default=0) # the image width
|
| 344 |
+
|
| 345 |
+
class T2IHDFSDataset(Dataset):
|
| 346 |
+
def __init__(self,
|
| 347 |
+
hdfs_path,
|
| 348 |
+
resolution,
|
| 349 |
+
caption_key,
|
| 350 |
+
aspect_ratios,
|
| 351 |
+
debug=False,
|
| 352 |
+
use_resize_random_crop=False,
|
| 353 |
+
skip_caption_ratios=[0, 0.0655]):
|
| 354 |
+
super().__init__()
|
| 355 |
+
|
| 356 |
+
self.resolution = resolution
|
| 357 |
+
self.image_decoder = GeneralImageDecoder()
|
| 358 |
+
self.image_predicate = ImageMultiPredicate([
|
| 359 |
+
ImageAestheticPredicate(),
|
| 360 |
+
ImageBucketResolutionPredicate(),
|
| 361 |
+
])
|
| 362 |
+
self.image_transform = Compose([
|
| 363 |
+
ToTensor(),
|
| 364 |
+
Normalize(mean=0.5, std=0.5),
|
| 365 |
+
])
|
| 366 |
+
self.text_transform = TextCleaner()
|
| 367 |
+
self.caption_keys = caption_key
|
| 368 |
+
self.debug = debug
|
| 369 |
+
self.rank = 0 # mock value
|
| 370 |
+
self.use_resize_random_crop = use_resize_random_crop
|
| 371 |
+
self.skip_caption_ratios = skip_caption_ratios
|
| 372 |
+
|
| 373 |
+
self.buckets = dict()
|
| 374 |
+
self.bucket_override = list(map(lambda ratio: (ratio[0], ratio[1]), aspect_ratios.values())) # w, h
|
| 375 |
+
|
| 376 |
+
if isinstance(hdfs_path, str):
|
| 377 |
+
hdfs_path = [hdfs_path]
|
| 378 |
+
filepath_list = hlist_files(hdfs_path, postfix=".index")
|
| 379 |
+
|
| 380 |
+
for filepath in filepath_list:
|
| 381 |
+
# Parse name, example:
|
| 382 |
+
# filepath: "/laion5b_aesv2_512plus_buckets/2_19_256-896_00002_00196.index"
|
| 383 |
+
# filename: "/laion5b_aesv2_512plus_buckets/2_19_256-896_00002_00196"
|
| 384 |
+
# basename: "2_19_256-896_00002_00196"
|
| 385 |
+
# extension: ".index"
|
| 386 |
+
filename, extension = os.path.splitext(filepath)
|
| 387 |
+
basename = os.path.basename(filename)
|
| 388 |
+
|
| 389 |
+
# Parse basename, example:
|
| 390 |
+
# {id}_{image_count}_{image_height}-{image_width}_{other_info}
|
| 391 |
+
if extension in [".index", ".snappy"] and "tempstate" not in filename and 'tmp' not in filename:
|
| 392 |
+
image_count, image_height, image_width = basename.replace("_", "-").split("-")[1:4]
|
| 393 |
+
# skip invalid file.
|
| 394 |
+
try:
|
| 395 |
+
image_count = int(image_count)
|
| 396 |
+
image_height = int(image_height)
|
| 397 |
+
image_width = int(image_width)
|
| 398 |
+
except:
|
| 399 |
+
continue
|
| 400 |
+
if image_width <=0 or image_height<=0:
|
| 401 |
+
continue
|
| 402 |
+
|
| 403 |
+
image_ratio = image_width / image_height
|
| 404 |
+
override_image_width, override_image_height = self._override_resolution_if_needed_v1(image_width,
|
| 405 |
+
image_height)
|
| 406 |
+
override_image_ratio = override_image_width / override_image_height
|
| 407 |
+
# Omit buckets with unreasonable size ratio, such as (128, 1536)
|
| 408 |
+
if override_image_ratio / image_ratio > 1.5 or override_image_ratio / image_ratio < 0.7:
|
| 409 |
+
continue
|
| 410 |
+
|
| 411 |
+
bucket_key = (override_image_width, override_image_height)
|
| 412 |
+
bucket_entry = self.buckets.get(bucket_key, Bucket())
|
| 413 |
+
bucket_entry.index_files.append(filename)
|
| 414 |
+
bucket_entry.image_count += image_count
|
| 415 |
+
bucket_entry.image_height = override_image_height
|
| 416 |
+
bucket_entry.image_width = override_image_width
|
| 417 |
+
self.buckets[bucket_key] = bucket_entry
|
| 418 |
+
|
| 419 |
+
for i, bucket_entry in enumerate(self.buckets.values()):
|
| 420 |
+
print(
|
| 421 |
+
f"Bucket {i}: {bucket_entry.image_width}x{bucket_entry.image_height} " +
|
| 422 |
+
f"contains {bucket_entry.image_count} images."
|
| 423 |
+
)
|
| 424 |
+
print(f"Total samples: {sum([bucket_entry.image_count for bucket_entry in self.buckets.values()])}")
|
| 425 |
+
|
| 426 |
+
def _override_resolution_if_needed_v1(self, width: int, height: int) -> Tuple[int, int]:
|
| 427 |
+
"""
|
| 428 |
+
Override the bucket resolution if configured:
|
| 429 |
+
Example:
|
| 430 |
+
- bucket override: [(1000, 200), (200, 1000)]
|
| 431 |
+
- current resolution: (300, 900)
|
| 432 |
+
- return (200, 1000) because it is the closest in aspect ratio.
|
| 433 |
+
"""
|
| 434 |
+
if self.bucket_override is not None:
|
| 435 |
+
# If bucket override is defined, find a new resolution from the override list that best matches the aspect ratio.
|
| 436 |
+
assert len(self.bucket_override) > 0, "bucket_override must not be an empty list."
|
| 437 |
+
target_aspect_ratio = width / height
|
| 438 |
+
bucket_resolutions = self.bucket_override
|
| 439 |
+
bucket_aspect_ratios = torch.tensor([w / h for w, h in bucket_resolutions], dtype=torch.float64)
|
| 440 |
+
bucket_idx = bucket_aspect_ratios.sub(target_aspect_ratio).abs().argmin().item()
|
| 441 |
+
width, height = bucket_resolutions[bucket_idx]
|
| 442 |
+
|
| 443 |
+
if self.resolution != 512:
|
| 444 |
+
# The buckets are defined in 512 resolution. If target resolution is not 512, we need to scale it and make sure divisible by 64.
|
| 445 |
+
ratio = self.resolution / 512
|
| 446 |
+
width = (width * ratio) // 64 * 64
|
| 447 |
+
height = (height * ratio) // 64 * 64
|
| 448 |
+
|
| 449 |
+
return int(width), int(height)
|
| 450 |
+
|
| 451 |
+
def __len__(self):
|
| 452 |
+
return sum(bucket.image_count for bucket in self.buckets.values())
|
| 453 |
+
|
| 454 |
+
def __iter__(self):
|
| 455 |
+
bucket_entries = list(self.buckets.values())
|
| 456 |
+
bucket_weights = list(map(lambda bucket: bucket.image_count, bucket_entries))
|
| 457 |
+
bucket_iterators = list(map(lambda bucket: self._iterate_bucket(bucket), bucket_entries))
|
| 458 |
+
|
| 459 |
+
while True:
|
| 460 |
+
try:
|
| 461 |
+
bucket_iterator = random.choices(bucket_iterators, bucket_weights)[0]
|
| 462 |
+
bucket, index_file, key, content, image, original_size_as_tuple = next(bucket_iterator)
|
| 463 |
+
# get caption
|
| 464 |
+
text = self.get_caption(content)
|
| 465 |
+
# Skip sample if text returned None.
|
| 466 |
+
if text is None:
|
| 467 |
+
if self.debug: print("text is None")
|
| 468 |
+
continue
|
| 469 |
+
|
| 470 |
+
if self.debug:
|
| 471 |
+
print(f"Original_size_as_tuple {original_size_as_tuple}")
|
| 472 |
+
print(f"Image size: {image.size}")
|
| 473 |
+
print(f"Text length: {len(text)}")
|
| 474 |
+
|
| 475 |
+
# Resize and crop image
|
| 476 |
+
with timer(op=f"[Rank:{self.rank}] Resize image from {index_file}, key: {key}", wait_seconds=2):
|
| 477 |
+
image, crop_coords_top_left = resize_crop(image, bucket.image_height,
|
| 478 |
+
bucket.image_width, self.use_resize_random_crop)
|
| 479 |
+
|
| 480 |
+
# Transform image and text
|
| 481 |
+
with timer(op=f"[Rank:{self.rank}] Transform image and text from {index_file}, key: {key}",
|
| 482 |
+
wait_seconds=2):
|
| 483 |
+
if self.image_transform is not None:
|
| 484 |
+
image = self.image_transform(image)
|
| 485 |
+
image = image.unsqueeze(0) # Add temporal dim
|
| 486 |
+
|
| 487 |
+
# filter pure black image
|
| 488 |
+
if isinstance(image, torch.Tensor) and image.std() < 0.02 and image.mean() < -0.9:
|
| 489 |
+
if self.debug: print("image is too dark")
|
| 490 |
+
continue
|
| 491 |
+
|
| 492 |
+
if self.text_transform is not None:
|
| 493 |
+
text = self.text_transform(text)
|
| 494 |
+
if text == "":
|
| 495 |
+
if self.debug: print("text is empty")
|
| 496 |
+
continue
|
| 497 |
+
|
| 498 |
+
if self.debug:
|
| 499 |
+
print(f"dataset loading current text: en is {text}")
|
| 500 |
+
|
| 501 |
+
item = dict(
|
| 502 |
+
mp4=image,
|
| 503 |
+
txt=text,
|
| 504 |
+
num_frames=1
|
| 505 |
+
)
|
| 506 |
+
yield item
|
| 507 |
+
except Exception as ex:
|
| 508 |
+
raise ex
|
| 509 |
+
# Error should not happen here, but we add a guard anyway.
|
| 510 |
+
#print(f"Bucket dataset processing sample received unexpected exception at file: {index_file}", ex,
|
| 511 |
+
# file=sys.stderr)
|
| 512 |
+
continue
|
| 513 |
+
|
| 514 |
+
def _iterate_bucket(self, bucket: Bucket):
|
| 515 |
+
# Copy the list.
|
| 516 |
+
index_files = list(bucket.index_files)
|
| 517 |
+
count_unsatisfy_image_predicor = 0
|
| 518 |
+
while True:
|
| 519 |
+
# Shuffle files
|
| 520 |
+
random.shuffle(index_files)
|
| 521 |
+
# Loop through all the .index files
|
| 522 |
+
for index_file in index_files:
|
| 523 |
+
try:
|
| 524 |
+
with timer(
|
| 525 |
+
op=f"[Rank:{self.rank}] KVReader opens and lists keys from index file {index_file}",
|
| 526 |
+
wait_seconds=3
|
| 527 |
+
):
|
| 528 |
+
reader = FalconReader(index_file)
|
| 529 |
+
keys = reader.list_keys()
|
| 530 |
+
|
| 531 |
+
# We devide keys to batches then shuffle the batch order.
|
| 532 |
+
# Note that keys within a batch are still contiguous for faster data loading.
|
| 533 |
+
keys_batches = partition_by_size(keys, 64)
|
| 534 |
+
random.shuffle(keys_batches)
|
| 535 |
+
|
| 536 |
+
for key_batch in keys_batches:
|
| 537 |
+
with timer(
|
| 538 |
+
op=f"[Rank:{self.rank}] KVReader reads values from index file {index_file}, keys: {key_batch}",
|
| 539 |
+
wait_seconds=10,
|
| 540 |
+
):
|
| 541 |
+
# Read values. The keys within this batch are contiguous for faster loading.
|
| 542 |
+
value_batch = reader.read_many(key_batch)
|
| 543 |
+
|
| 544 |
+
# Shuffle samples within this batch.
|
| 545 |
+
key_value_batch = list(zip(key_batch, value_batch))
|
| 546 |
+
random.shuffle(key_value_batch)
|
| 547 |
+
|
| 548 |
+
for key, value in key_value_batch:
|
| 549 |
+
# Decode json
|
| 550 |
+
with timer(op=f"[Rank:{self.rank}] Decoding bson/json from {index_file}, key: {key}",
|
| 551 |
+
wait_seconds=2):
|
| 552 |
+
try:
|
| 553 |
+
content = bson.loads(value)
|
| 554 |
+
except:
|
| 555 |
+
content = json.loads(value)
|
| 556 |
+
|
| 557 |
+
# Decode image
|
| 558 |
+
with timer(op=f"[Rank:{self.rank}] Decoding image from {index_file}, key: {key}",
|
| 559 |
+
wait_seconds=2):
|
| 560 |
+
image = self.image_decoder(content)
|
| 561 |
+
original_size_as_tuple = torch.tensor([image.height, image.width])
|
| 562 |
+
# check if image meets requirements, skip if not
|
| 563 |
+
if image is None:
|
| 564 |
+
if self.debug: print("find empty image")
|
| 565 |
+
continue
|
| 566 |
+
if self.image_predicate is not None and \
|
| 567 |
+
not self.image_predicate(image=image, content=content, bucket=bucket):
|
| 568 |
+
if self.debug: print("image does not satifiy image predicates", index_file)
|
| 569 |
+
count_unsatisfy_image_predicor += 1
|
| 570 |
+
# Find the consecutive 500 samples that do not satisfy image_predicate.
|
| 571 |
+
# This kv file may cause the dataloader queue to be empty,
|
| 572 |
+
# leading to program interruption. Therefore, skip this kv file.
|
| 573 |
+
if count_unsatisfy_image_predicor > 500:
|
| 574 |
+
count_unsatisfy_image_predicor = 0
|
| 575 |
+
raise RuntimeError("Find invalid kv file, skip!")
|
| 576 |
+
continue
|
| 577 |
+
else:
|
| 578 |
+
count_unsatisfy_image_predicor = 0
|
| 579 |
+
yield bucket, index_file, key, content, image, original_size_as_tuple
|
| 580 |
+
|
| 581 |
+
except Exception as ex:
|
| 582 |
+
# Error may happen due to network issue when reading from data from this file.
|
| 583 |
+
# Skip to the next index file regardless.
|
| 584 |
+
print(f"Bucket dataset reading data received unexpected exception at file: {index_file}", ex, file=sys.stderr)
|
| 585 |
+
continue
|
| 586 |
+
|
| 587 |
+
def get_caption(self, content):
|
| 588 |
+
text_key = None
|
| 589 |
+
if len(self.caption_keys) == 1: # only one key
|
| 590 |
+
res = content.get(self.caption_keys[0], None)
|
| 591 |
+
else: # 2 or more keys
|
| 592 |
+
for caption_key, skip_ratio in zip(self.caption_keys, self.skip_caption_ratios):
|
| 593 |
+
r1 = random.random()
|
| 594 |
+
if r1 >= skip_ratio and content.get(caption_key, None) is not None:
|
| 595 |
+
text_key = caption_key
|
| 596 |
+
break
|
| 597 |
+
# if all previous captions are skipped, use the last one (original caption)
|
| 598 |
+
if text_key is None:
|
| 599 |
+
if self.debug:
|
| 600 |
+
print("v1 {} v2 {} use original caption".format(self.caption_keys[0] in content, self.caption_keys[1] in content))
|
| 601 |
+
res = content.get(self.caption_keys[-1], None)
|
| 602 |
+
else:
|
| 603 |
+
if self.debug:
|
| 604 |
+
print("v1 {} v2 {} use {}".format(self.caption_keys[0] in content, self.caption_keys[1] in content, text_key))
|
| 605 |
+
res = content[text_key]
|
| 606 |
+
if res is None:
|
| 607 |
+
return None
|
| 608 |
+
else:
|
| 609 |
+
return res["text"]
|
| 610 |
+
|
| 611 |
+
@classmethod
|
| 612 |
+
def create_dataset_function(cls, hdfs_path, args, **kwargs):
|
| 613 |
+
return cls(hdfs_path=hdfs_path, **kwargs)
|
| 614 |
+
|
| 615 |
+
|
| 616 |
+
class T2IHDFSDataset_dump(Dataset):
|
| 617 |
+
def __init__(self,
|
| 618 |
+
hdfs_path,
|
| 619 |
+
resolution,
|
| 620 |
+
caption_key,
|
| 621 |
+
aspect_ratios,
|
| 622 |
+
debug=False,
|
| 623 |
+
use_resize_random_crop=False,
|
| 624 |
+
skip_caption_ratios=[0, 0.0655]):
|
| 625 |
+
super().__init__()
|
| 626 |
+
###delete
|
| 627 |
+
self.resolution = resolution
|
| 628 |
+
self.image_decoder = GeneralImageDecoder()
|
| 629 |
+
self.image_predicate = ImageMultiPredicate([
|
| 630 |
+
ImageAestheticPredicate(),
|
| 631 |
+
ImageBucketResolutionPredicate(),
|
| 632 |
+
])
|
| 633 |
+
self.image_transform = Compose([
|
| 634 |
+
ToTensor(),
|
| 635 |
+
Normalize(mean=0.5, std=0.5),
|
| 636 |
+
])
|
| 637 |
+
self.text_transform = TextCleaner()
|
| 638 |
+
self.caption_keys = caption_key
|
| 639 |
+
self.debug = debug
|
| 640 |
+
self.rank = 0 # mock value
|
| 641 |
+
self.use_resize_random_crop = use_resize_random_crop
|
| 642 |
+
self.skip_caption_ratios = skip_caption_ratios
|
| 643 |
+
|
| 644 |
+
self.buckets = dict()
|
| 645 |
+
self.bucket_override = list(map(lambda ratio: (ratio[0], ratio[1]), aspect_ratios.values())) # w, h
|
| 646 |
+
if isinstance(hdfs_path, str):
|
| 647 |
+
hdfs_path = [hdfs_path]
|
| 648 |
+
filepath_list = hlist_files(hdfs_path, postfix=".parquet")
|
| 649 |
+
|
| 650 |
+
for filepath in filepath_list:
|
| 651 |
+
# Parse name, example:
|
| 652 |
+
# filepath: "/laion5b_aesv2_512plus_buckets/2_19_256-896_00002_00196.index"
|
| 653 |
+
# filename: "/laion5b_aesv2_512plus_buckets/2_19_256-896_00002_00196"
|
| 654 |
+
# basename: "2_19_256-896_00002_00196"
|
| 655 |
+
# extension: ".index"
|
| 656 |
+
filename, extension = os.path.splitext(filepath)
|
| 657 |
+
basename = os.path.basename(filename)
|
| 658 |
+
|
| 659 |
+
# Parse basename, example:
|
| 660 |
+
# {id}_{image_count}_{image_height}-{image_width}_{other_info}
|
| 661 |
+
if 'good' in filename and extension in [".parquet"]:
|
| 662 |
+
image_count, image_height, image_width = basename.replace("_", "-").split("-")[2:5]
|
| 663 |
+
elif extension in [".parquet"]:
|
| 664 |
+
image_count, image_height, image_width = basename.replace("_", "-").split("-")[1:4]
|
| 665 |
+
# skip invalid file.
|
| 666 |
+
try:
|
| 667 |
+
image_count = int(image_count)
|
| 668 |
+
image_height = int(image_height)
|
| 669 |
+
image_width = int(image_width)
|
| 670 |
+
except:
|
| 671 |
+
continue
|
| 672 |
+
if image_width <=0 or image_height<=0:
|
| 673 |
+
continue
|
| 674 |
+
|
| 675 |
+
image_ratio = image_width / image_height
|
| 676 |
+
override_image_width, override_image_height = self._override_resolution_if_needed_v1(image_width,
|
| 677 |
+
image_height)
|
| 678 |
+
override_image_ratio = override_image_width / override_image_height
|
| 679 |
+
# Omit buckets with unreasonable size ratio, such as (128, 1536)
|
| 680 |
+
if override_image_ratio / image_ratio > 1.5 or override_image_ratio / image_ratio < 0.7:
|
| 681 |
+
continue
|
| 682 |
+
|
| 683 |
+
bucket_key = (override_image_width, override_image_height)
|
| 684 |
+
bucket_entry = self.buckets.get(bucket_key, Bucket())
|
| 685 |
+
bucket_entry.index_files.append(filename)
|
| 686 |
+
bucket_entry.image_count += image_count
|
| 687 |
+
bucket_entry.image_height = override_image_height
|
| 688 |
+
bucket_entry.image_width = override_image_width
|
| 689 |
+
self.buckets[bucket_key] = bucket_entry
|
| 690 |
+
|
| 691 |
+
for i, bucket_entry in enumerate(self.buckets.values()):
|
| 692 |
+
print(
|
| 693 |
+
f"Bucket {i}: {bucket_entry.image_width}x{bucket_entry.image_height} " +
|
| 694 |
+
f"contains {bucket_entry.image_count} images."
|
| 695 |
+
)
|
| 696 |
+
print(f"Total samples: {sum([bucket_entry.image_count for bucket_entry in self.buckets.values()])}")
|
| 697 |
+
|
| 698 |
+
def _override_resolution_if_needed_v1(self, width: int, height: int) -> Tuple[int, int]:
|
| 699 |
+
"""
|
| 700 |
+
Override the bucket resolution if configured:
|
| 701 |
+
Example:
|
| 702 |
+
- bucket override: [(1000, 200), (200, 1000)]
|
| 703 |
+
- current resolution: (300, 900)
|
| 704 |
+
- return (200, 1000) because it is the closest in aspect ratio.
|
| 705 |
+
"""
|
| 706 |
+
if self.bucket_override is not None:
|
| 707 |
+
# If bucket override is defined, find a new resolution from the override list that best matches the aspect ratio.
|
| 708 |
+
assert len(self.bucket_override) > 0, "bucket_override must not be an empty list."
|
| 709 |
+
target_aspect_ratio = width / height
|
| 710 |
+
bucket_resolutions = self.bucket_override
|
| 711 |
+
bucket_aspect_ratios = torch.tensor([w / h for w, h in bucket_resolutions], dtype=torch.float64)
|
| 712 |
+
bucket_idx = bucket_aspect_ratios.sub(target_aspect_ratio).abs().argmin().item()
|
| 713 |
+
width, height = bucket_resolutions[bucket_idx]
|
| 714 |
+
|
| 715 |
+
if self.resolution != 512:
|
| 716 |
+
# The buckets are defined in 512 resolution. If target resolution is not 512, we need to scale it and make sure divisible by 64.
|
| 717 |
+
ratio = self.resolution / 512
|
| 718 |
+
width = (width * ratio) // 64 * 64
|
| 719 |
+
height = (height * ratio) // 64 * 64
|
| 720 |
+
|
| 721 |
+
return int(width), int(height)
|
| 722 |
+
|
| 723 |
+
def __len__(self):
|
| 724 |
+
return sum(bucket.image_count for bucket in self.buckets.values())
|
| 725 |
+
|
| 726 |
+
def __iter__(self):
|
| 727 |
+
bucket_entries = list(self.buckets.values())
|
| 728 |
+
bucket_weights = list(map(lambda bucket: bucket.image_count, bucket_entries))
|
| 729 |
+
bucket_iterators = list(map(lambda bucket: self._iterate_bucket(bucket), bucket_entries))
|
| 730 |
+
|
| 731 |
+
while True:
|
| 732 |
+
try:
|
| 733 |
+
bucket_iterator = random.choices(bucket_iterators, bucket_weights)[0]
|
| 734 |
+
bucket, content, image, original_size_as_tuple = next(bucket_iterator)
|
| 735 |
+
|
| 736 |
+
if self.resolution == 256:
|
| 737 |
+
latent = np.frombuffer(content['latent_256'], dtype=np.float32)
|
| 738 |
+
latent = latent.reshape(content['latent_256_size'])
|
| 739 |
+
latent = torch.from_numpy(latent).to(torch.bfloat16)
|
| 740 |
+
if self.resolution == 512:
|
| 741 |
+
latent = np.frombuffer(content['latent_512'], dtype=np.float32)
|
| 742 |
+
latent = latent.reshape(content['latent_512_size'])
|
| 743 |
+
latent = torch.from_numpy(latent).to(torch.bfloat16)
|
| 744 |
+
|
| 745 |
+
image, crop_coords_top_left = resize_crop(image, bucket.image_height,
|
| 746 |
+
bucket.image_width, self.use_resize_random_crop)
|
| 747 |
+
if self.image_transform is not None:
|
| 748 |
+
image = self.image_transform(image)
|
| 749 |
+
image = image.unsqueeze(0) # Add temporal dim
|
| 750 |
+
|
| 751 |
+
# get caption
|
| 752 |
+
image_crop_256 = content.get('image_crop_256')
|
| 753 |
+
if image_crop_256 is not None:
|
| 754 |
+
text = self.get_caption_new(content)
|
| 755 |
+
else:
|
| 756 |
+
text = self.get_caption(content)
|
| 757 |
+
# Skip sample if text returned None.
|
| 758 |
+
if text is None:
|
| 759 |
+
if self.debug: print("text is None")
|
| 760 |
+
continue
|
| 761 |
+
|
| 762 |
+
# Transform image and text
|
| 763 |
+
if self.text_transform is not None:
|
| 764 |
+
text = self.text_transform(text)
|
| 765 |
+
if text == "" or text == 'none':
|
| 766 |
+
if self.debug: print("text is empty")
|
| 767 |
+
continue
|
| 768 |
+
|
| 769 |
+
if self.debug:
|
| 770 |
+
print(f"dataset loading current text: en is {text}")
|
| 771 |
+
|
| 772 |
+
item = dict(
|
| 773 |
+
mp4=image,
|
| 774 |
+
latent = latent,
|
| 775 |
+
txt=text,
|
| 776 |
+
num_frames=1
|
| 777 |
+
)
|
| 778 |
+
yield item
|
| 779 |
+
except Exception as ex:
|
| 780 |
+
raise ex
|
| 781 |
+
# Error should not happen here, but we add a guard anyway.
|
| 782 |
+
#print(f"Bucket dataset processing sample received unexpected exception at file: {index_file}", ex,
|
| 783 |
+
# file=sys.stderr)
|
| 784 |
+
continue
|
| 785 |
+
|
| 786 |
+
def _iterate_bucket(self, bucket: Bucket):
|
| 787 |
+
# Copy the list.
|
| 788 |
+
index_files = list(bucket.index_files)
|
| 789 |
+
count_unsatisfy_image_predicor = 0
|
| 790 |
+
while True:
|
| 791 |
+
# Shuffle files
|
| 792 |
+
random.shuffle(index_files)
|
| 793 |
+
# Loop through all the .index files
|
| 794 |
+
for index_file in index_files:
|
| 795 |
+
try:
|
| 796 |
+
##read parquet file
|
| 797 |
+
filesystem = fs.HadoopFileSystem('hdfs://harunasg', 0)
|
| 798 |
+
index_file = index_file + '.parquet'
|
| 799 |
+
with pq.ParquetFile(index_file, filesystem=filesystem) as fr:
|
| 800 |
+
# print(f'--- total: {fr.metadata.num_rows} ---- {fr.num_row_groups}')
|
| 801 |
+
# keys = []
|
| 802 |
+
# for i in range(fr.num_row_groups):
|
| 803 |
+
# # 读取当前的 Row Group
|
| 804 |
+
# row_group = fr.read_row_group(i).to_pylist()
|
| 805 |
+
# keys += row_group
|
| 806 |
+
random_index = random.randint(0, fr.num_row_groups - 1)
|
| 807 |
+
keys = fr.read_row_group(random_index).to_pylist()
|
| 808 |
+
|
| 809 |
+
# We devide keys to batches then shuffle the batch order.
|
| 810 |
+
# Note that keys within a batch are still contiguous for faster data loading.
|
| 811 |
+
keys_batches = partition_by_size(keys, 64)
|
| 812 |
+
random.shuffle(keys_batches)
|
| 813 |
+
|
| 814 |
+
for key_batch in keys_batches:
|
| 815 |
+
random.shuffle(key_batch)
|
| 816 |
+
|
| 817 |
+
for content in key_batch:
|
| 818 |
+
if self.resolution == 256:
|
| 819 |
+
latent = content['latent_256']
|
| 820 |
+
else:
|
| 821 |
+
latent = content['latent_512']
|
| 822 |
+
if not latent:
|
| 823 |
+
count_unsatisfy_image_predicor += 1
|
| 824 |
+
# Find the consecutive 500 samples that do not satisfy image_predicate.
|
| 825 |
+
# This kv file may cause the dataloader queue to be empty,
|
| 826 |
+
# leading to program interruption. Therefore, skip this kv file.
|
| 827 |
+
if count_unsatisfy_image_predicor > 500:
|
| 828 |
+
count_unsatisfy_image_predicor = 0
|
| 829 |
+
raise RuntimeError("Find invalid kv file, skip!")
|
| 830 |
+
continue
|
| 831 |
+
else:
|
| 832 |
+
count_unsatisfy_image_predicor = 0
|
| 833 |
+
image = self.image_decoder(content)
|
| 834 |
+
original_size_as_tuple = torch.tensor([image.height, image.width])
|
| 835 |
+
|
| 836 |
+
yield bucket, content, image, original_size_as_tuple
|
| 837 |
+
|
| 838 |
+
except Exception as ex:
|
| 839 |
+
# Error may happen due to network issue when reading from data from this file.
|
| 840 |
+
# Skip to the next index file regardless.
|
| 841 |
+
print(f"Bucket dataset reading data received unexpected exception at file: {index_file}", ex, file=sys.stderr)
|
| 842 |
+
continue
|
| 843 |
+
|
| 844 |
+
def get_caption(self, content):
|
| 845 |
+
text_key = None
|
| 846 |
+
if len(self.caption_keys) == 1: # only one key
|
| 847 |
+
res = content.get(self.caption_keys[0], None)
|
| 848 |
+
else: # 2 or more keys
|
| 849 |
+
for caption_key, skip_ratio in zip(self.caption_keys, self.skip_caption_ratios):
|
| 850 |
+
r1 = random.random()
|
| 851 |
+
if r1 >= skip_ratio and content.get(caption_key, None) is not None:
|
| 852 |
+
text_key = caption_key
|
| 853 |
+
break
|
| 854 |
+
# if all previous captions are skipped, use the last one (original caption)
|
| 855 |
+
if text_key is None:
|
| 856 |
+
if self.debug:
|
| 857 |
+
print("v1 {} v2 {} use original caption".format(self.caption_keys[0] in content, self.caption_keys[1] in content))
|
| 858 |
+
res = content.get(self.caption_keys[-1], None)
|
| 859 |
+
else:
|
| 860 |
+
if self.debug:
|
| 861 |
+
print("v1 {} v2 {} use {}".format(self.caption_keys[0] in content, self.caption_keys[1] in content, text_key))
|
| 862 |
+
res = content[text_key]
|
| 863 |
+
if res is None:
|
| 864 |
+
return None
|
| 865 |
+
else:
|
| 866 |
+
return res
|
| 867 |
+
def get_caption_new(self, content):
|
| 868 |
+
caption_dict = json.loads(content['caption_dict'])
|
| 869 |
+
caption_list = []
|
| 870 |
+
for k, v in caption_dict.items():
|
| 871 |
+
if '_en_' in k and '_text' in k:
|
| 872 |
+
caption_list.append(v)
|
| 873 |
+
if len(caption_list) == 0:
|
| 874 |
+
return None
|
| 875 |
+
res = random.choice(caption_list)
|
| 876 |
+
return res
|
| 877 |
+
|
| 878 |
+
@classmethod
|
| 879 |
+
def create_dataset_function(cls, hdfs_path, args, **kwargs):
|
| 880 |
+
return cls(hdfs_path=hdfs_path, **kwargs)
|
| 881 |
+
|
| 882 |
+
|
| 883 |
+
if __name__ == "__main__":
|
| 884 |
+
from omegaconf import OmegaConf
|
| 885 |
+
from torch.utils.data import DataLoader
|
| 886 |
+
from torch.utils.data.distributed import DistributedSampler
|
| 887 |
+
from matplotlib import pyplot as plt
|
| 888 |
+
import numpy as np
|
| 889 |
+
from training.dataset_tool import CollectionDataset, collate_fn_map
|
| 890 |
+
|
| 891 |
+
hdfs_path = "hdfs://harunasg/home/byte_icvg_aigc_cp/user/seed_t2i/kexuanyi/data/train_data/pretrained_data/kv/v2.0/pretrained_en/v2.0_data_512_src_data"
|
| 892 |
+
config = "/mnt/bn/icvg/users/minxuan.lin/Workspace/video-factory/config/dataset_config/test_collection_config_sg.yaml"
|
| 893 |
+
seed = 0
|
| 894 |
+
|
| 895 |
+
# set seed
|
| 896 |
+
random.seed(seed)
|
| 897 |
+
np.random.seed(seed)
|
| 898 |
+
torch.manual_seed(seed)
|
| 899 |
+
torch.cuda.manual_seed(seed)
|
| 900 |
+
torch.cuda.manual_seed_all(seed)
|
| 901 |
+
|
| 902 |
+
configs = OmegaConf.load(config)
|
| 903 |
+
train_dataset = CollectionDataset.create_dataset_function(configs['train_data'],
|
| 904 |
+
configs['train_data_weights'],
|
| 905 |
+
**configs['data']['params'])
|
| 906 |
+
# train_dataset = T2IHDFSDataset.create_dataset_function(hdfs_path=hdfs_path, args=None, **configs['data']['params']['dataset_collections']['seedv2-t2i']['params'])
|
| 907 |
+
|
| 908 |
+
# sampler = DistributedSampler(train_dataset, rank=rank, num_replicas=world_size,)
|
| 909 |
+
train_dataloader = DataLoader(
|
| 910 |
+
train_dataset,
|
| 911 |
+
batch_size=1,
|
| 912 |
+
num_workers=1,
|
| 913 |
+
collate_fn=collate_fn_map,
|
| 914 |
+
pin_memory=False
|
| 915 |
+
)
|
| 916 |
+
|
| 917 |
+
output_dir = "outputs/test1"
|
| 918 |
+
os.makedirs(output_dir, exist_ok=True)
|
| 919 |
+
|
| 920 |
+
for i, batch in enumerate(train_dataloader):
|
| 921 |
+
print(batch.keys())
|
| 922 |
+
print(batch['prompts'])
|
| 923 |
+
print(batch['videos'].size())
|
| 924 |
+
print(batch['video_metadata'])
|
| 925 |
+
print(torch.min(batch['videos']), torch.max(batch['videos']))
|
| 926 |
+
for j in range(batch['videos'].size()[0]):
|
| 927 |
+
plt.imsave(f"{output_dir}/test_{i}_{j}.jpg", ((batch['videos'][j,0,...]+1)*127.5).permute(1,2,0).numpy().astype(np.uint8))
|
| 928 |
+
if i > 20:
|
| 929 |
+
break
|
dataset_code/sft_sftnews/offload/dataset_tool/parquet_dataset/__init__.py
ADDED
|
File without changes
|
dataset_code/sft_sftnews/offload/dataset_tool/parquet_dataset/__pycache__/__init__.cpython-310.pyc
ADDED
|
Binary file (181 Bytes). View file
|
|
|
dataset_code/sft_sftnews/offload/dataset_tool/parquet_dataset/__pycache__/__init__.cpython-311.pyc
ADDED
|
Binary file (197 Bytes). View file
|
|
|
dataset_code/sft_sftnews/offload/dataset_tool/parquet_dataset/__pycache__/base_parquet.cpython-310.pyc
ADDED
|
Binary file (8.39 kB). View file
|
|
|
dataset_code/sft_sftnews/offload/dataset_tool/parquet_dataset/__pycache__/base_parquet.cpython-311.pyc
ADDED
|
Binary file (15.6 kB). View file
|
|
|
dataset_code/sft_sftnews/offload/dataset_tool/parquet_dataset/__pycache__/parquet_utils.cpython-310.pyc
ADDED
|
Binary file (4.36 kB). View file
|
|
|
dataset_code/sft_sftnews/offload/dataset_tool/parquet_dataset/__pycache__/parquet_utils.cpython-311.pyc
ADDED
|
Binary file (7.34 kB). View file
|
|
|
dataset_code/sft_sftnews/offload/dataset_tool/parquet_dataset/__pycache__/tos_client.cpython-310.pyc
ADDED
|
Binary file (6.31 kB). View file
|
|
|
dataset_code/sft_sftnews/offload/dataset_tool/parquet_dataset/__pycache__/tos_client.cpython-311.pyc
ADDED
|
Binary file (10.7 kB). View file
|
|
|
dataset_code/sft_sftnews/offload/dataset_tool/parquet_dataset/__pycache__/video_parquet.cpython-310.pyc
ADDED
|
Binary file (15.5 kB). View file
|
|
|
dataset_code/sft_sftnews/offload/dataset_tool/parquet_dataset/__pycache__/video_parquet.cpython-311.pyc
ADDED
|
Binary file (38.1 kB). View file
|
|
|
dataset_code/sft_sftnews/offload/dataset_tool/parquet_dataset/base_parquet.py
ADDED
|
@@ -0,0 +1,289 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from itertools import chain
|
| 2 |
+
from multiprocessing import Pool
|
| 3 |
+
from pyarrow.parquet import ParquetFile
|
| 4 |
+
from torch.utils.data import IterableDataset
|
| 5 |
+
from typing import List, Literal, Optional, Union
|
| 6 |
+
from pyarrow.fs import HadoopFileSystem, LocalFileSystem
|
| 7 |
+
|
| 8 |
+
from .utils.hdfs_utils import listdir_with_metafile, exists
|
| 9 |
+
from .parquet_utils import (
|
| 10 |
+
get_portion_for_worker_only,
|
| 11 |
+
get_random_for_rank_and_worker,
|
| 12 |
+
get_portion_for_rank_and_worker,
|
| 13 |
+
)
|
| 14 |
+
|
| 15 |
+
def hack_s_data(filepath):
|
| 16 |
+
if "vae-1011" in filepath:
|
| 17 |
+
return filepath.replace("byte_data_tt_m/VGFM/data/packed/vae-1011", "byte_icvg_aigc_cp/user/video/temp/19900101/packed/vae-1011")
|
| 18 |
+
elif "dit-1126" in filepath:
|
| 19 |
+
return filepath.replace("byte_data_tt_m/user/sheng.bi/vgfm/packed/dit-1126", "byte_icvg_aigc_cp/user/video/temp/19900101/dit-1126")
|
| 20 |
+
else:
|
| 21 |
+
return filepath
|
| 22 |
+
|
| 23 |
+
def get_filesystem(path: str) -> Union[LocalFileSystem, HadoopFileSystem]:
|
| 24 |
+
"""
|
| 25 |
+
Get filesystem based on the path.
|
| 26 |
+
"""
|
| 27 |
+
if path.startswith("hdfs://"):
|
| 28 |
+
return HadoopFileSystem.from_uri(path)
|
| 29 |
+
else:
|
| 30 |
+
return LocalFileSystem()
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
def read_metadata(
|
| 34 |
+
path: str,
|
| 35 |
+
):
|
| 36 |
+
fs = get_filesystem(path)
|
| 37 |
+
with ParquetFile(path, filesystem=fs) as file:
|
| 38 |
+
metadata = file.metadata
|
| 39 |
+
return metadata
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
class ParquetDataset(IterableDataset):
|
| 43 |
+
"""
|
| 44 |
+
Parquet dataset.
|
| 45 |
+
|
| 46 |
+
Arguments:
|
| 47 |
+
path: a directory path that contains *.parquet files.
|
| 48 |
+
seed: seed for deterministic sampling. If None, just random.
|
| 49 |
+
partition: partition strategy. Split by *.parquet file or by row groups in each file.
|
| 50 |
+
force_partition: if True, raise error if partition is indivisible.
|
| 51 |
+
num_parallel_files: number of parallel files to read.
|
| 52 |
+
infinite: If True, data will be returned infinitely.
|
| 53 |
+
"""
|
| 54 |
+
|
| 55 |
+
def __init__(
|
| 56 |
+
self,
|
| 57 |
+
path: Union[str, List[str]],
|
| 58 |
+
seed: Optional[int],
|
| 59 |
+
partition: Literal["file", "group", "dump"] = "file",
|
| 60 |
+
force_partition: bool = False,
|
| 61 |
+
num_parallel_files: int = 8,
|
| 62 |
+
infinite: bool = True,
|
| 63 |
+
path_mode: Literal["dir", "file"] = "dir",
|
| 64 |
+
shuffle: bool = True,
|
| 65 |
+
columns: Optional[List[str]] = None,
|
| 66 |
+
plugin_caption_path="",
|
| 67 |
+
dump_path = "",
|
| 68 |
+
):
|
| 69 |
+
assert partition in ["file", "group", "dump"]
|
| 70 |
+
assert path_mode in ["dir", "file"]
|
| 71 |
+
|
| 72 |
+
# Save settings.
|
| 73 |
+
self.seed = seed
|
| 74 |
+
self.infinite = infinite
|
| 75 |
+
self.partition = partition
|
| 76 |
+
self.force_partition = force_partition
|
| 77 |
+
self.num_parallel_files = num_parallel_files
|
| 78 |
+
self.shuffle = shuffle
|
| 79 |
+
self.columns = columns
|
| 80 |
+
|
| 81 |
+
# List file paths.
|
| 82 |
+
filepaths = path if isinstance(path, list) else [path]
|
| 83 |
+
if path_mode == "dir":
|
| 84 |
+
filepaths = map(listdir_with_metafile, filepaths)
|
| 85 |
+
filepaths = chain(*filepaths)
|
| 86 |
+
filepaths = filter(lambda path: path.endswith(".parquet"), filepaths)
|
| 87 |
+
filepaths = [hack_s_data(path) for path in filepaths]
|
| 88 |
+
filepaths = sorted(filepaths)
|
| 89 |
+
assert len(filepaths) > 0
|
| 90 |
+
|
| 91 |
+
# Create file readers.
|
| 92 |
+
self.filereaders = [
|
| 93 |
+
ParquetFileReader(
|
| 94 |
+
path=path,
|
| 95 |
+
seed=seed,
|
| 96 |
+
partition=partition,
|
| 97 |
+
force_partition=force_partition,
|
| 98 |
+
shuffle=shuffle,
|
| 99 |
+
columns=columns,
|
| 100 |
+
plugin_caption_path=plugin_caption_path.rstrip(
|
| 101 |
+
'/')+"/"+path.split('/')[-1] if plugin_caption_path != "" else "",
|
| 102 |
+
dump_path = dump_path.rstrip(
|
| 103 |
+
'/')+"/"+path.split('/')[-1] if dump_path != "" else "",
|
| 104 |
+
)
|
| 105 |
+
for path in filepaths
|
| 106 |
+
]
|
| 107 |
+
|
| 108 |
+
# Please don't use a fake __len__(self)! Try making other functions e.g. get_size() instead.
|
| 109 |
+
def __len__(self):
|
| 110 |
+
if not hasattr(self, "count"):
|
| 111 |
+
# Calculate an approximate dataset item count.
|
| 112 |
+
# We open 5 files and compute the average items per file.
|
| 113 |
+
# Then we use this to approximate total dataset item count.
|
| 114 |
+
|
| 115 |
+
with Pool(1) as pool:
|
| 116 |
+
counts = pool.map(len, self.filereaders[:5])
|
| 117 |
+
self.count = int(sum(counts) / len(counts) * len(self.filereaders))
|
| 118 |
+
return self.count
|
| 119 |
+
|
| 120 |
+
def __iter__(self):
|
| 121 |
+
epoch = 0
|
| 122 |
+
filereaders = self.filereaders
|
| 123 |
+
random = get_random_for_rank_and_worker(self.seed)
|
| 124 |
+
|
| 125 |
+
# Partition by files if needed.
|
| 126 |
+
if self.partition == "file":
|
| 127 |
+
filereaders = get_portion_for_rank_and_worker(
|
| 128 |
+
filereaders, self.force_partition)
|
| 129 |
+
|
| 130 |
+
while True:
|
| 131 |
+
# Initialize filereaders iterators.
|
| 132 |
+
if len(filereaders) == 0:
|
| 133 |
+
filereaders = get_portion_for_rank_and_worker(
|
| 134 |
+
self.filereaders, self.force_partition, resample = True)
|
| 135 |
+
iterators = [reader.__iter__(epoch=epoch)
|
| 136 |
+
for reader in filereaders]
|
| 137 |
+
if self.shuffle:
|
| 138 |
+
random.shuffle(iterators)
|
| 139 |
+
|
| 140 |
+
# Yield samples.
|
| 141 |
+
bad_file_count = 0
|
| 142 |
+
max_bad_file_count = len(iterators)
|
| 143 |
+
while any(iterators):
|
| 144 |
+
if self.shuffle:
|
| 145 |
+
iterator = random.choice(
|
| 146 |
+
iterators[: self.num_parallel_files])
|
| 147 |
+
else:
|
| 148 |
+
iterator = iterators[0]
|
| 149 |
+
try:
|
| 150 |
+
result = next(iterator)
|
| 151 |
+
if result == "invalid parquet file!":
|
| 152 |
+
print("encounter data-caption file problem, removing iterator")
|
| 153 |
+
iterators.remove(iterator)
|
| 154 |
+
bad_file_count += 1
|
| 155 |
+
if bad_file_count >= max_bad_file_count:
|
| 156 |
+
bad_file_count = 0
|
| 157 |
+
yield "max_bad_file_count_reached"
|
| 158 |
+
continue
|
| 159 |
+
else:
|
| 160 |
+
yield result
|
| 161 |
+
except StopIteration:
|
| 162 |
+
iterators.remove(iterator)
|
| 163 |
+
|
| 164 |
+
# Break after the first epoch if not infinite.
|
| 165 |
+
if not self.infinite:
|
| 166 |
+
break
|
| 167 |
+
|
| 168 |
+
# Increment epoch.
|
| 169 |
+
epoch += 1
|
| 170 |
+
|
| 171 |
+
|
| 172 |
+
class ParquetFileReader:
|
| 173 |
+
"""
|
| 174 |
+
Read a single *.parquet file.
|
| 175 |
+
|
| 176 |
+
Arguments:
|
| 177 |
+
path: a *.parquet file path.
|
| 178 |
+
seed: seed for deterministic sampling. If None, just random.
|
| 179 |
+
partition: partition strategy.
|
| 180 |
+
force_partition: if True, raise error if partition is indivisible.
|
| 181 |
+
"""
|
| 182 |
+
|
| 183 |
+
def __init__(
|
| 184 |
+
self,
|
| 185 |
+
path: str,
|
| 186 |
+
seed: Optional[int],
|
| 187 |
+
partition: bool,
|
| 188 |
+
force_partition: bool,
|
| 189 |
+
shuffle: bool,
|
| 190 |
+
columns: Optional[List[str]],
|
| 191 |
+
plugin_caption_path: str,
|
| 192 |
+
dump_path: str,
|
| 193 |
+
):
|
| 194 |
+
self.path = path
|
| 195 |
+
self.seed = seed
|
| 196 |
+
self.partition = partition
|
| 197 |
+
self.force_partition = force_partition
|
| 198 |
+
self.shuffle = shuffle
|
| 199 |
+
self.columns = columns
|
| 200 |
+
self.plugin_caption_path = plugin_caption_path
|
| 201 |
+
self.dump_path = dump_path
|
| 202 |
+
|
| 203 |
+
def __len__(self):
|
| 204 |
+
fs = get_filesystem(self.path)
|
| 205 |
+
with ParquetFile(self.path, filesystem=fs) as file:
|
| 206 |
+
return file.metadata.num_rows
|
| 207 |
+
|
| 208 |
+
def __iter_parallel(self, epoch):
|
| 209 |
+
fs = get_filesystem(self.path)
|
| 210 |
+
print(self.path)
|
| 211 |
+
if not exists(self.path) or not exists(self.plugin_caption_path) or not exists(self.dump_path):
|
| 212 |
+
# return and make the iter empty
|
| 213 |
+
print(f"parallel loading warning: {self.path} or {self.plugin_caption_path} not exists, return empty iter")
|
| 214 |
+
yield "invalid parquet file!"
|
| 215 |
+
with ParquetFile(self.path, filesystem=fs) as file, \
|
| 216 |
+
ParquetFile(self.plugin_caption_path, filesystem=fs) as plugin_caption, \
|
| 217 |
+
ParquetFile(self.dump_path, filesystem=fs) as dump_file:
|
| 218 |
+
# List all groups.
|
| 219 |
+
groups = list(range(file.num_row_groups))
|
| 220 |
+
|
| 221 |
+
# Partition groups if needed.
|
| 222 |
+
if self.partition == "group":
|
| 223 |
+
groups = get_portion_for_rank_and_worker(
|
| 224 |
+
groups, self.force_partition)
|
| 225 |
+
elif self.partition == "dump":
|
| 226 |
+
groups = get_portion_for_worker_only(groups)
|
| 227 |
+
|
| 228 |
+
if self.shuffle:
|
| 229 |
+
# Shuffle groups
|
| 230 |
+
seed = (self.seed + epoch) if self.seed is not None else None
|
| 231 |
+
get_random_for_rank_and_worker(seed).shuffle(groups)
|
| 232 |
+
|
| 233 |
+
# Iteration over all samples from all row groups.
|
| 234 |
+
for group in groups:
|
| 235 |
+
print(group)
|
| 236 |
+
iter_main = file.iter_batches(
|
| 237 |
+
batch_size=1, row_groups=[group], columns=self.columns,
|
| 238 |
+
use_threads=False,)
|
| 239 |
+
iter_plugin_caption = plugin_caption.iter_batches(
|
| 240 |
+
batch_size=1, row_groups=[group], columns=None,
|
| 241 |
+
use_threads=False,)
|
| 242 |
+
iter_dump = dump_file.iter_batches(
|
| 243 |
+
batch_size=1, row_groups=[group], columns=None,
|
| 244 |
+
use_threads=False,)
|
| 245 |
+
|
| 246 |
+
# Zip the two iterators to read rows "in parallel"
|
| 247 |
+
for main_batch, caption_batch, dump_batch in zip(iter_main, iter_plugin_caption, iter_dump):
|
| 248 |
+
# Convert each single-row batch to a dict
|
| 249 |
+
main_batch_dict = main_batch.to_pandas().iloc[0].to_dict()
|
| 250 |
+
caption_batch_dict = caption_batch.to_pandas(
|
| 251 |
+
).iloc[0].to_dict()
|
| 252 |
+
dump_batch_dict = dump_batch.to_pandas().iloc[0].to_dict()
|
| 253 |
+
assert caption_batch_dict['uttid'] == main_batch_dict[
|
| 254 |
+
'uttid'] and caption_batch_dict['uttid'] == dump_batch_dict['uttid'], f"uttid not match {caption_batch_dict['uttid']} vs {main_batch_dict['uttid']}"
|
| 255 |
+
main_batch_dict.update(caption_batch_dict)
|
| 256 |
+
main_batch_dict.update(dump_batch_dict)
|
| 257 |
+
yield main_batch_dict
|
| 258 |
+
|
| 259 |
+
def __iter_normal(self, epoch):
|
| 260 |
+
fs = get_filesystem(self.path)
|
| 261 |
+
with ParquetFile(self.path, filesystem=fs) as file:
|
| 262 |
+
# List all groups.
|
| 263 |
+
groups = list(range(file.num_row_groups))
|
| 264 |
+
|
| 265 |
+
# Partition groups if needed.
|
| 266 |
+
if self.partition == "group":
|
| 267 |
+
groups = get_portion_for_rank_and_worker(
|
| 268 |
+
groups, self.force_partition)
|
| 269 |
+
elif self.partition == "dump":
|
| 270 |
+
groups = get_portion_for_worker_only(groups)
|
| 271 |
+
|
| 272 |
+
if self.shuffle:
|
| 273 |
+
# Shuffle groups
|
| 274 |
+
seed = (self.seed + epoch) if self.seed is not None else None
|
| 275 |
+
get_random_for_rank_and_worker(seed).shuffle(groups)
|
| 276 |
+
|
| 277 |
+
# Iteration over all samples from all row groups.
|
| 278 |
+
for group in groups:
|
| 279 |
+
for sample in file.iter_batches(
|
| 280 |
+
batch_size=1, row_groups=[group], columns=self.columns,
|
| 281 |
+
use_threads=False,
|
| 282 |
+
):
|
| 283 |
+
yield sample.to_pandas().iloc[0].to_dict()
|
| 284 |
+
|
| 285 |
+
def __iter__(self, epoch=0):
|
| 286 |
+
if self.plugin_caption_path != "":
|
| 287 |
+
return self.__iter_parallel(epoch)
|
| 288 |
+
else:
|
| 289 |
+
return self.__iter_normal(epoch)
|
dataset_code/sft_sftnews/offload/dataset_tool/parquet_dataset/parquet_utils.py
ADDED
|
@@ -0,0 +1,142 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import random
|
| 3 |
+
import importlib
|
| 4 |
+
import contextlib
|
| 5 |
+
import numpy as np
|
| 6 |
+
|
| 7 |
+
from typing import Any, Dict, List, Optional
|
| 8 |
+
from torch.utils.data import get_worker_info
|
| 9 |
+
from omegaconf import DictConfig, ListConfig
|
| 10 |
+
|
| 11 |
+
from .utils.partition_utils import partition_by_groups
|
| 12 |
+
from .utils.distributed_utils import get_data_parallel_rank, get_data_parallel_world_size
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
def get_worker_id() -> int:
|
| 16 |
+
"""
|
| 17 |
+
Get the current dataloader worker id.
|
| 18 |
+
"""
|
| 19 |
+
return get_worker_info().id if get_worker_info() is not None else 0
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
def get_worker_count() -> int:
|
| 23 |
+
"""
|
| 24 |
+
Get the total dataloader worker count.
|
| 25 |
+
"""
|
| 26 |
+
return get_worker_info().num_workers if get_worker_info() is not None else 1
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
def get_seed_for_rank_and_worker(seed: Optional[int]) -> Optional[int]:
|
| 30 |
+
"""
|
| 31 |
+
Get seed for current rank and worker.
|
| 32 |
+
"""
|
| 33 |
+
if seed is None:
|
| 34 |
+
return None
|
| 35 |
+
return seed + get_data_parallel_rank() * get_worker_count() + get_worker_id()
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
def get_random_for_rank_and_worker(seed: Optional[int]) -> random.Random:
|
| 39 |
+
"""
|
| 40 |
+
Get random.Random for the current rank and worker.
|
| 41 |
+
"""
|
| 42 |
+
return random.Random(get_seed_for_rank_and_worker(seed))
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
def get_random_for_all_ranks(seed: Optional[int]) -> random.Random:
|
| 46 |
+
"""
|
| 47 |
+
Get random.Random that is the same for all ranks.
|
| 48 |
+
"""
|
| 49 |
+
return random.Random(seed or 0)
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
def get_portion_for_rank_and_worker(items: List[Any], force: bool = False, allow_empty: bool = False, resample: bool = False) -> List[Any]:
|
| 53 |
+
"""
|
| 54 |
+
Get the portion of items for current rank and worker.
|
| 55 |
+
"""
|
| 56 |
+
rank = get_data_parallel_rank()
|
| 57 |
+
world_size = get_data_parallel_world_size()
|
| 58 |
+
worker_id = get_worker_id()
|
| 59 |
+
worker_count = get_worker_count()
|
| 60 |
+
if resample:
|
| 61 |
+
return random.sample(items, len(items)//(world_size*worker_count))
|
| 62 |
+
|
| 63 |
+
if world_size * worker_count <= len(items):
|
| 64 |
+
# If there are enough items to be divided, we divide the items
|
| 65 |
+
items = partition_by_groups(items, world_size)[rank]
|
| 66 |
+
items = partition_by_groups(items, worker_count)[worker_id]
|
| 67 |
+
elif allow_empty:
|
| 68 |
+
if rank * worker_count + worker_id < len(items):
|
| 69 |
+
items = [items[rank * worker_count + worker_id]]
|
| 70 |
+
else:
|
| 71 |
+
items = []
|
| 72 |
+
elif not force:
|
| 73 |
+
# If not enough items to be divided, all ranks and workers shuffle it
|
| 74 |
+
# with different seed.
|
| 75 |
+
items = list(items)
|
| 76 |
+
get_random_for_rank_and_worker(0).shuffle(items)
|
| 77 |
+
else:
|
| 78 |
+
raise ValueError("Items not divisible by world_size * worker_count")
|
| 79 |
+
return items
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
def get_portion_for_worker_only(items: List[Any]) -> List[Any]:
|
| 83 |
+
"""
|
| 84 |
+
Get the portion of items for current worker.
|
| 85 |
+
"""
|
| 86 |
+
worker_id = get_worker_id()
|
| 87 |
+
worker_count = get_worker_count()
|
| 88 |
+
|
| 89 |
+
items = partition_by_groups(items, worker_count)[worker_id]
|
| 90 |
+
return items
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
@contextlib.contextmanager
|
| 94 |
+
def local_seed(seed: Optional[int]):
|
| 95 |
+
"""
|
| 96 |
+
Create a local context with seed is set, but exit back to the original random state.
|
| 97 |
+
If seed is None, do nothing.
|
| 98 |
+
"""
|
| 99 |
+
if seed is not None:
|
| 100 |
+
random_state = random.getstate()
|
| 101 |
+
np_state = np.random.get_state()
|
| 102 |
+
torch_state = torch.get_rng_state()
|
| 103 |
+
random.seed(seed)
|
| 104 |
+
np.random.seed(seed)
|
| 105 |
+
torch.manual_seed(seed)
|
| 106 |
+
try:
|
| 107 |
+
yield
|
| 108 |
+
finally:
|
| 109 |
+
random.setstate(random_state)
|
| 110 |
+
np.random.set_state(np_state)
|
| 111 |
+
torch.set_rng_state(torch_state)
|
| 112 |
+
else:
|
| 113 |
+
yield
|
| 114 |
+
|
| 115 |
+
|
| 116 |
+
def _as_list(datasets):
|
| 117 |
+
if isinstance(datasets, list):
|
| 118 |
+
return datasets
|
| 119 |
+
if isinstance(datasets, dict):
|
| 120 |
+
return [d for d in datasets.values() if d is not None]
|
| 121 |
+
raise ValueError
|
| 122 |
+
|
| 123 |
+
|
| 124 |
+
def import_item(path: str, name: str) -> Any:
|
| 125 |
+
"""
|
| 126 |
+
Import a python item. Example: import_item("path.to.file", "MyClass") -> MyClass
|
| 127 |
+
"""
|
| 128 |
+
return getattr(importlib.import_module(path), name)
|
| 129 |
+
|
| 130 |
+
|
| 131 |
+
def create_dataset(path: str, *args, **kwargs) -> Any:
|
| 132 |
+
"""
|
| 133 |
+
Create a dataset. Requires the file to contain a "create_dataset" function.
|
| 134 |
+
"""
|
| 135 |
+
return import_item(path, "create_dataset")(*args, **kwargs)
|
| 136 |
+
|
| 137 |
+
|
| 138 |
+
def shift_seed(seed: Optional[int], shift: int) -> Optional[int]:
|
| 139 |
+
"""
|
| 140 |
+
Shift the seed by a given amount. Or return None if seed is None.
|
| 141 |
+
"""
|
| 142 |
+
return (seed + shift) if seed is not None else None
|
dataset_code/sft_sftnews/offload/dataset_tool/parquet_dataset/samplers/__init__.py
ADDED
|
File without changes
|
dataset_code/sft_sftnews/offload/dataset_tool/parquet_dataset/samplers/__pycache__/__init__.cpython-310.pyc
ADDED
|
Binary file (207 Bytes). View file
|
|
|
dataset_code/sft_sftnews/offload/dataset_tool/parquet_dataset/samplers/__pycache__/__init__.cpython-311.pyc
ADDED
|
Binary file (206 Bytes). View file
|
|
|
dataset_code/sft_sftnews/offload/dataset_tool/parquet_dataset/samplers/__pycache__/frame_sampler.cpython-310.pyc
ADDED
|
Binary file (11.7 kB). View file
|
|
|
dataset_code/sft_sftnews/offload/dataset_tool/parquet_dataset/samplers/__pycache__/frame_sampler.cpython-311.pyc
ADDED
|
Binary file (19.8 kB). View file
|
|
|
dataset_code/sft_sftnews/offload/dataset_tool/parquet_dataset/samplers/__pycache__/text_sampler.cpython-310.pyc
ADDED
|
Binary file (8.57 kB). View file
|
|
|
dataset_code/sft_sftnews/offload/dataset_tool/parquet_dataset/samplers/__pycache__/text_sampler.cpython-311.pyc
ADDED
|
Binary file (15 kB). View file
|
|
|
dataset_code/sft_sftnews/offload/dataset_tool/parquet_dataset/samplers/__pycache__/utils.cpython-310.pyc
ADDED
|
Binary file (1.39 kB). View file
|
|
|
dataset_code/sft_sftnews/offload/dataset_tool/parquet_dataset/samplers/__pycache__/utils.cpython-311.pyc
ADDED
|
Binary file (2.02 kB). View file
|
|
|
dataset_code/sft_sftnews/offload/dataset_tool/parquet_dataset/samplers/frame_sampler.py
ADDED
|
@@ -0,0 +1,375 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Frame samplers.
|
| 3 |
+
"""
|
| 4 |
+
|
| 5 |
+
import numpy as np
|
| 6 |
+
|
| 7 |
+
from dataclasses import dataclass
|
| 8 |
+
from abc import ABC, abstractmethod
|
| 9 |
+
from typing import Any, Dict, List, Literal, NamedTuple, Optional, Tuple, Union
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
class FrameSamplerOutput(NamedTuple):
|
| 13 |
+
"""
|
| 14 |
+
Return indices for frame decoding,
|
| 15 |
+
and optionally additional information to return to user.
|
| 16 |
+
"""
|
| 17 |
+
|
| 18 |
+
indices: List[int]
|
| 19 |
+
additional_info: Dict[str, Any] = {}
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
class FrameSampler(ABC):
|
| 23 |
+
"""
|
| 24 |
+
Frame sampler base class.
|
| 25 |
+
|
| 26 |
+
Child class must implement __call__ method to return the decoding indices.
|
| 27 |
+
Or raise if the video cannot be sampled (e.g. too short, etc.)
|
| 28 |
+
"""
|
| 29 |
+
|
| 30 |
+
@abstractmethod
|
| 31 |
+
def __call__(self, num_frames: int) -> FrameSamplerOutput:
|
| 32 |
+
raise NotImplementedError
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
class AllFrameSampler(FrameSampler):
|
| 36 |
+
"""
|
| 37 |
+
All frame sampler. Returns all frames in a video.
|
| 38 |
+
"""
|
| 39 |
+
|
| 40 |
+
def __call__(self, num_frames: int) -> FrameSamplerOutput:
|
| 41 |
+
return FrameSamplerOutput(list(range(num_frames)))
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
class AdaptiveFrameSampler(FrameSampler):
|
| 45 |
+
"""
|
| 46 |
+
Adaptive frame sampler.
|
| 47 |
+
|
| 48 |
+
Arguments:
|
| 49 |
+
length: frame length to return.
|
| 50 |
+
For example, [5,10] denotes to always return 5 frames or 10 frames.
|
| 51 |
+
It will choose the longest length that fits the original video.
|
| 52 |
+
For example, if the video is 9 frames total, it will clip to 5 frames.
|
| 53 |
+
stride: frame skip.
|
| 54 |
+
For example, 1 denotes no skip. 2 denotes select every other frame. 3
|
| 55 |
+
denotes select every third frame. When a list is given, stride is randomly
|
| 56 |
+
chosen with even probability. However, user may set it to [1,1,2] to
|
| 57 |
+
denote 1 with 66% probability and 2 with 33% proability.
|
| 58 |
+
clip: clip location.
|
| 59 |
+
"center": clip video at the center.
|
| 60 |
+
"uniform": clip video uniformly at random.
|
| 61 |
+
jitter: jitter to the location.
|
| 62 |
+
Only applicable when clip is "center".
|
| 63 |
+
The value is the stdev of the normal distribution to shift the index.
|
| 64 |
+
"""
|
| 65 |
+
|
| 66 |
+
def __init__(
|
| 67 |
+
self,
|
| 68 |
+
lengths: Union[int, List[int]],
|
| 69 |
+
strides: Union[int, List[int]] = 1,
|
| 70 |
+
clip: Literal["center", "uniform"] = "uniform",
|
| 71 |
+
jitter: float = 0.0,
|
| 72 |
+
):
|
| 73 |
+
lengths = [lengths] if isinstance(lengths, int) else lengths
|
| 74 |
+
strides = [strides] if isinstance(strides, int) else strides
|
| 75 |
+
assert len(lengths) > 0
|
| 76 |
+
assert len(strides) > 0
|
| 77 |
+
assert clip in ["center", "uniform"]
|
| 78 |
+
assert jitter >= 0
|
| 79 |
+
self.lengths = np.array(lengths)
|
| 80 |
+
self.strides = np.array(strides)
|
| 81 |
+
self.clip = clip
|
| 82 |
+
self.jitter = jitter
|
| 83 |
+
|
| 84 |
+
def __call__(
|
| 85 |
+
self,
|
| 86 |
+
num_frames: int,
|
| 87 |
+
) -> FrameSamplerOutput:
|
| 88 |
+
# Choose stride.
|
| 89 |
+
# Drop strides that are too long for this video.
|
| 90 |
+
# Then randomly choose a valid stride.
|
| 91 |
+
valid_strides = np.any(num_frames // self.strides >=
|
| 92 |
+
self.lengths.reshape(-1, 1), axis=0)
|
| 93 |
+
valid_strides = self.strides[valid_strides]
|
| 94 |
+
if valid_strides.size <= 0:
|
| 95 |
+
raise ValueError(f"Video is too short ({num_frames} frames).")
|
| 96 |
+
stride = np.random.choice(valid_strides)
|
| 97 |
+
|
| 98 |
+
# Choose length.
|
| 99 |
+
# Pick the max length that can fit the video under the current stride.
|
| 100 |
+
valid_lengths = self.lengths[num_frames // stride >= self.lengths]
|
| 101 |
+
length = np.max(valid_lengths)
|
| 102 |
+
|
| 103 |
+
# Choose start index.
|
| 104 |
+
min_start_index = 0
|
| 105 |
+
max_start_index = num_frames - 1 - stride * (length - 1)
|
| 106 |
+
mid_start_index = round((min_start_index + max_start_index) / 2)
|
| 107 |
+
jitter = round(np.random.normal(loc=0, scale=self.jitter))
|
| 108 |
+
|
| 109 |
+
if self.clip == "center":
|
| 110 |
+
start_index = mid_start_index + jitter
|
| 111 |
+
elif self.clip == "uniform":
|
| 112 |
+
start_index = np.random.randint(
|
| 113 |
+
min_start_index, max_start_index + 1)
|
| 114 |
+
else:
|
| 115 |
+
raise NotImplementedError
|
| 116 |
+
|
| 117 |
+
start_index = np.clip(start_index, min_start_index, max_start_index)
|
| 118 |
+
|
| 119 |
+
# Compute indices
|
| 120 |
+
indices = np.arange(start_index, start_index + length * stride, stride)
|
| 121 |
+
|
| 122 |
+
# Return indices and additional information to return to user.
|
| 123 |
+
return FrameSamplerOutput(
|
| 124 |
+
indices=indices.tolist(),
|
| 125 |
+
additional_info={
|
| 126 |
+
"stride": stride,
|
| 127 |
+
"start_frame": start_index,
|
| 128 |
+
"end_frame": start_index + length * stride,
|
| 129 |
+
"total_frames": num_frames,
|
| 130 |
+
},
|
| 131 |
+
)
|
| 132 |
+
|
| 133 |
+
|
| 134 |
+
@dataclass
|
| 135 |
+
class AdaptiveAdvancedFrameSamplerStrategy:
|
| 136 |
+
stride: int
|
| 137 |
+
stride_prob: float
|
| 138 |
+
frame_lengths: List[int]
|
| 139 |
+
frame_lengths_prob: Union[Literal["uniform", "harmonic"], List[float]]
|
| 140 |
+
|
| 141 |
+
|
| 142 |
+
class AdaptiveAdvancedFrameSampler(FrameSampler):
|
| 143 |
+
"""
|
| 144 |
+
Advanced adaptive frame sampler supports different frame lengths for different strides,
|
| 145 |
+
and supports probabilistic sampling of both the stride and the frame length.
|
| 146 |
+
|
| 147 |
+
strategies: A list of strategies to sample from.
|
| 148 |
+
clip: clip location.
|
| 149 |
+
"center": clip video at the center.
|
| 150 |
+
"uniform": clip video uniformly at random.
|
| 151 |
+
jitter: jitter to the location.
|
| 152 |
+
Only applicable when clip is "center".
|
| 153 |
+
The value is the stdev of the normal distribution to shift the index.
|
| 154 |
+
"""
|
| 155 |
+
|
| 156 |
+
def __init__(
|
| 157 |
+
self,
|
| 158 |
+
strategies: List[AdaptiveAdvancedFrameSamplerStrategy],
|
| 159 |
+
clip: Literal["center", "uniform","simple"] = "uniform",
|
| 160 |
+
jitter: float = 0.0,
|
| 161 |
+
aligned: bool = False,
|
| 162 |
+
):
|
| 163 |
+
assert len(strategies) > 0, "Strategies must not be empty"
|
| 164 |
+
assert len({s.stride for s in strategies}) == len(
|
| 165 |
+
strategies), "Strides cannot duplicate."
|
| 166 |
+
assert clip in ["center", "uniform","simple"]
|
| 167 |
+
assert jitter >= 0
|
| 168 |
+
self.aligned = aligned
|
| 169 |
+
self.clip = clip
|
| 170 |
+
self.jitter = jitter
|
| 171 |
+
self.strides = []
|
| 172 |
+
self.strides_prob = []
|
| 173 |
+
self.frame_lengths = []
|
| 174 |
+
self.frame_lengths_prob = []
|
| 175 |
+
|
| 176 |
+
for strategy in sorted(strategies, key=lambda s: s.stride):
|
| 177 |
+
# Validate strides.
|
| 178 |
+
assert isinstance(
|
| 179 |
+
strategy.stride, int), "Stride must be an integer."
|
| 180 |
+
assert strategy.stride > 0, "Stride must be a positive integer."
|
| 181 |
+
self.strides.append(strategy.stride)
|
| 182 |
+
|
| 183 |
+
# Assign strides_prob.
|
| 184 |
+
assert isinstance(strategy.stride_prob, (int, float)
|
| 185 |
+
), "Stride prob is not int/float."
|
| 186 |
+
assert strategy.stride_prob >= 0, "Stride prob must be non-negative."
|
| 187 |
+
self.strides_prob.append(strategy.stride_prob)
|
| 188 |
+
|
| 189 |
+
# Assign frame lengths, sort by value.
|
| 190 |
+
assert len(
|
| 191 |
+
strategy.frame_lengths) > 0, "Frame lengths must not be empty."
|
| 192 |
+
frame_lengths = np.array(strategy.frame_lengths)
|
| 193 |
+
assert frame_lengths.dtype == int, "Frame lengths must be integers."
|
| 194 |
+
assert np.all(frame_lengths >
|
| 195 |
+
0), "Frame lengths must be positive integers."
|
| 196 |
+
frame_lengths_sorted_idx = np.argsort(frame_lengths)
|
| 197 |
+
frame_lengths = frame_lengths[frame_lengths_sorted_idx]
|
| 198 |
+
self.frame_lengths.append(frame_lengths)
|
| 199 |
+
|
| 200 |
+
# Assign frame lengths prob, apply the sorting to prob as well.
|
| 201 |
+
if strategy.frame_lengths_prob == "uniform":
|
| 202 |
+
# e.g. [0.2, 0.2, 0.2, 0.2, 0.2]
|
| 203 |
+
frame_lengths_prob = np.full(
|
| 204 |
+
len(frame_lengths), 1.0 / len(frame_lengths))
|
| 205 |
+
elif strategy.frame_lengths_prob == "harmonic":
|
| 206 |
+
# e.g. [0.2, 0.25, 0.33, 0.5, 1]
|
| 207 |
+
frame_lengths_prob = np.flip(
|
| 208 |
+
1 / np.arange(1, len(frame_lengths) + 1))
|
| 209 |
+
elif isinstance(strategy.frame_lengths_prob, list):
|
| 210 |
+
frame_lengths_prob = np.array(strategy.frame_lengths_prob)
|
| 211 |
+
frame_lengths_prob = frame_lengths_prob[frame_lengths_sorted_idx]
|
| 212 |
+
else:
|
| 213 |
+
raise NotImplementedError
|
| 214 |
+
assert len(frame_lengths_prob) == len(
|
| 215 |
+
frame_lengths), "Frame lengths prob mismatch."
|
| 216 |
+
assert np.all(frame_lengths_prob >=
|
| 217 |
+
0), "Frame lengths prob must not be negative."
|
| 218 |
+
assert frame_lengths_prob.sum() > 0, "Frame lengths prob must not be all zeros."
|
| 219 |
+
frame_lengths_prob /= frame_lengths_prob.sum()
|
| 220 |
+
self.frame_lengths_prob.append(frame_lengths_prob)
|
| 221 |
+
|
| 222 |
+
self.strides = np.array(self.strides)
|
| 223 |
+
self.strides_prob = np.array(self.strides_prob)
|
| 224 |
+
assert self.strides_prob.sum() > 0, "Strides prob must not be all zeros."
|
| 225 |
+
self.strides_prob /= self.strides_prob.sum()
|
| 226 |
+
|
| 227 |
+
def __call__(self, num_frames: int, frames_meta=None):
|
| 228 |
+
global_start_idx, global_end_idx = 0, num_frames
|
| 229 |
+
if self.aligned:
|
| 230 |
+
assert frames_meta is not None
|
| 231 |
+
global_start_idx = frames_meta['start_idxs']
|
| 232 |
+
global_end_idx = frames_meta['end_idxs']
|
| 233 |
+
num_frames = global_end_idx - global_start_idx
|
| 234 |
+
|
| 235 |
+
if self.clip != 'simple':
|
| 236 |
+
sample_result = adptive_sample_framelen_and_stride(
|
| 237 |
+
num_frames=num_frames,
|
| 238 |
+
strides=self.strides,
|
| 239 |
+
strides_prob=self.strides_prob,
|
| 240 |
+
frame_lengths=self.frame_lengths,
|
| 241 |
+
frame_lengths_prob=self.frame_lengths_prob,
|
| 242 |
+
)
|
| 243 |
+
|
| 244 |
+
stride = sample_result["stride"]
|
| 245 |
+
length = sample_result["frame_length"]
|
| 246 |
+
else:
|
| 247 |
+
stride = self.strides[0]
|
| 248 |
+
length = self.frame_lengths[0][0]
|
| 249 |
+
|
| 250 |
+
# Choose start index.
|
| 251 |
+
min_start_index = 0
|
| 252 |
+
max_start_index = num_frames - 1 - stride * (length - 1)
|
| 253 |
+
mid_start_index = round((min_start_index + max_start_index) / 2)
|
| 254 |
+
jitter = round(np.random.normal(loc=0, scale=self.jitter))
|
| 255 |
+
|
| 256 |
+
if self.clip == 'simple':
|
| 257 |
+
start_index = global_start_idx
|
| 258 |
+
## can only load dump data, will fix further
|
| 259 |
+
# if self.clip == "center":
|
| 260 |
+
# start_index = mid_start_index + jitter
|
| 261 |
+
# elif self.clip == "uniform":
|
| 262 |
+
# start_index = np.random.randint(
|
| 263 |
+
# min_start_index, max_start_index + 1)
|
| 264 |
+
# else:
|
| 265 |
+
# raise NotImplementedError
|
| 266 |
+
# else:
|
| 267 |
+
# start_index += global_start_idx
|
| 268 |
+
# min_start_index += global_start_idx
|
| 269 |
+
# max_start_index += global_start_idx
|
| 270 |
+
# start_index = np.clip(start_index, min_start_index, max_start_index)
|
| 271 |
+
|
| 272 |
+
# Compute indices
|
| 273 |
+
indices = np.arange(start_index, start_index + length * stride, stride)
|
| 274 |
+
|
| 275 |
+
# Return indices and additional information to return to user.
|
| 276 |
+
return FrameSamplerOutput(
|
| 277 |
+
indices=indices.tolist(),
|
| 278 |
+
additional_info={
|
| 279 |
+
"stride": stride,
|
| 280 |
+
"start_frame": start_index,
|
| 281 |
+
"end_frame": start_index + length * stride,
|
| 282 |
+
"total_frames": num_frames,
|
| 283 |
+
},
|
| 284 |
+
)
|
| 285 |
+
|
| 286 |
+
|
| 287 |
+
def normalize_probabilities(
|
| 288 |
+
items: np.ndarray,
|
| 289 |
+
probs: np.ndarray,
|
| 290 |
+
masks: np.ndarray,
|
| 291 |
+
) -> Tuple[np.ndarray, np.ndarray]:
|
| 292 |
+
assert len(items), "Items must not be empty."
|
| 293 |
+
assert len(items) == len(masks) == len(probs), "Lengths must match."
|
| 294 |
+
assert isinstance(items, np.ndarray), "Items must be an np.ndarray."
|
| 295 |
+
assert isinstance(probs, np.ndarray), "Probs must be an np.ndarray."
|
| 296 |
+
assert isinstance(masks, np.ndarray), "Masks must be an np.ndarray."
|
| 297 |
+
assert masks.dtype == bool, "Masks must be boolean."
|
| 298 |
+
assert np.any(masks), "Masks must not be all False."
|
| 299 |
+
assert np.all(np.diff(masks.astype("int")) <=
|
| 300 |
+
0), "Masks must not break monotonicity."
|
| 301 |
+
|
| 302 |
+
ret_items = items[masks]
|
| 303 |
+
ret_probs = probs[masks]
|
| 304 |
+
|
| 305 |
+
# Accumulate the probabilities of infeasible items to the last feasible one.
|
| 306 |
+
ret_probs[-1] += probs[~masks].sum()
|
| 307 |
+
|
| 308 |
+
return ret_items, ret_probs
|
| 309 |
+
|
| 310 |
+
|
| 311 |
+
def adptive_sample_framelen_and_stride(
|
| 312 |
+
num_frames: int,
|
| 313 |
+
strides: np.ndarray,
|
| 314 |
+
strides_prob: np.ndarray,
|
| 315 |
+
frame_lengths: List[np.ndarray],
|
| 316 |
+
frame_lengths_prob: List[Optional[np.ndarray]],
|
| 317 |
+
) -> Dict[str, Any]:
|
| 318 |
+
"""Adaptively sample frame length and stride for a video.
|
| 319 |
+
|
| 320 |
+
Args:
|
| 321 |
+
num_frames: Number of frames in the current video.
|
| 322 |
+
strides: A list of strides.
|
| 323 |
+
strides_prob: The probability for each stride.
|
| 324 |
+
frame_lengths: The number of frames (sorted) to sample from at the current stride.
|
| 325 |
+
For example, `frame_length=10` at `stride=2` means that we need to have 20 frames.
|
| 326 |
+
When the number of frames to sample is infeasible, it will select the feasible frame
|
| 327 |
+
lengths and re-normalize the probability according to the feasible frames at hand.
|
| 328 |
+
For example, if `num_frames=10`, `frame_lengths[stride2]=[4, 5]`,
|
| 329 |
+
`frame_lengths[stride3]=[1, 3, 5]`, we can sample frame lengths 1, 2, and 5 at
|
| 330 |
+
`stride=2` (2, 4, and 10 frames) but only frame lengths 1, 3 at `stride=3`. In this
|
| 331 |
+
case, we will add the probability of `frame_length=5` at `stride=3` to `frame_length=3`
|
| 332 |
+
at `stride=3`, making it more likely to be selected.
|
| 333 |
+
frame_lengths_prob: The frame probabilities to sample from the corresponding frame lengths.
|
| 334 |
+
Defaults to None for uniform sampling.
|
| 335 |
+
Returns:
|
| 336 |
+
dictionary: A dictionary containing the selected frames and strides. if none is feasible,
|
| 337 |
+
it will raise an exception.
|
| 338 |
+
"""
|
| 339 |
+
assert len(strides) == len(strides_prob) == len(
|
| 340 |
+
frame_lengths) == len(frame_lengths_prob)
|
| 341 |
+
|
| 342 |
+
# Prepare frame_lengths_mask for each stride.
|
| 343 |
+
frame_lengths_mask = [num_frames // s >=
|
| 344 |
+
l for s, l in zip(strides, frame_lengths)]
|
| 345 |
+
|
| 346 |
+
# Prepare stride mask and prob.
|
| 347 |
+
strides_idxs = np.arange(len(strides))
|
| 348 |
+
strides_mask = np.array([np.any(mask) for mask in frame_lengths_mask])
|
| 349 |
+
assert np.any(strides_mask), (
|
| 350 |
+
f"Cannot sample frames={num_frames} "
|
| 351 |
+
+ f"from strides={strides} and lengths={frame_lengths}"
|
| 352 |
+
)
|
| 353 |
+
|
| 354 |
+
# Drop infeasible strides and normalize probability.
|
| 355 |
+
strides_idxs, strides_prob = normalize_probabilities(
|
| 356 |
+
strides_idxs, strides_prob, strides_mask)
|
| 357 |
+
|
| 358 |
+
# Choose stride.
|
| 359 |
+
stride_idx = np.random.choice(strides_idxs, p=strides_prob)
|
| 360 |
+
stride = strides[stride_idx]
|
| 361 |
+
|
| 362 |
+
# Prepare frame_lengths mask and prob for the current stride.
|
| 363 |
+
lengths = frame_lengths[stride_idx]
|
| 364 |
+
lengths_mask = frame_lengths_mask[stride_idx]
|
| 365 |
+
lengths_prob = frame_lengths_prob[stride_idx]
|
| 366 |
+
if lengths_prob is None:
|
| 367 |
+
lengths_prob = np.full(len(lengths), 1.0 / len(lengths))
|
| 368 |
+
|
| 369 |
+
# Drop infeasible lengths and normalize probability.
|
| 370 |
+
lengths, lengths_prob = normalize_probabilities(
|
| 371 |
+
lengths, lengths_prob, lengths_mask)
|
| 372 |
+
|
| 373 |
+
# Choose frame length.
|
| 374 |
+
length = np.random.choice(lengths, p=lengths_prob)
|
| 375 |
+
return dict(stride=stride, frame_length=length)
|
dataset_code/sft_sftnews/offload/dataset_tool/parquet_dataset/samplers/text_sampler.py
ADDED
|
@@ -0,0 +1,332 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Text samplers.
|
| 3 |
+
"""
|
| 4 |
+
|
| 5 |
+
from bs4 import BeautifulSoup
|
| 6 |
+
import urllib.parse as ul
|
| 7 |
+
import html
|
| 8 |
+
import ftfy
|
| 9 |
+
import re
|
| 10 |
+
import numpy as np
|
| 11 |
+
|
| 12 |
+
from abc import ABC, abstractmethod
|
| 13 |
+
from typing import Dict, List, NamedTuple, Union
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
class TextSamplerOutput(NamedTuple):
|
| 17 |
+
"""
|
| 18 |
+
Return keys for text embedding,
|
| 19 |
+
and optionally additional information to return to user.
|
| 20 |
+
"""
|
| 21 |
+
|
| 22 |
+
keys: Union[str, List[str]]
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
class TextSampler(ABC):
|
| 26 |
+
"""
|
| 27 |
+
Text sampler base class.
|
| 28 |
+
|
| 29 |
+
Child class must implement __call__ method to return the embedding keys.
|
| 30 |
+
Or raise if the text cannot be sampled (key does not exist.)
|
| 31 |
+
"""
|
| 32 |
+
|
| 33 |
+
@abstractmethod
|
| 34 |
+
def __call__(self, text: Dict[str, str]) -> TextSamplerOutput:
|
| 35 |
+
raise NotImplementedError
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
class TextAllSampler(TextSampler):
|
| 39 |
+
"""
|
| 40 |
+
All text sampler. Returns all texts.
|
| 41 |
+
|
| 42 |
+
e.g.
|
| 43 |
+
text_sampler:
|
| 44 |
+
type: all
|
| 45 |
+
"""
|
| 46 |
+
|
| 47 |
+
def __init__(
|
| 48 |
+
self,
|
| 49 |
+
all: List[str] = None,
|
| 50 |
+
**kwargs,
|
| 51 |
+
):
|
| 52 |
+
self.all = all
|
| 53 |
+
|
| 54 |
+
def __call__(self, text: Dict[str, str]) -> TextSamplerOutput:
|
| 55 |
+
assert len(text) > 0, "The input text does not exist."
|
| 56 |
+
|
| 57 |
+
# Get keys.
|
| 58 |
+
keys = list(text.keys())
|
| 59 |
+
|
| 60 |
+
if self.all is not None:
|
| 61 |
+
keys = [key for key in self.all if key in keys]
|
| 62 |
+
assert len(
|
| 63 |
+
keys) > 0, f"No valid text sample found under keys: {text.keys()}."
|
| 64 |
+
|
| 65 |
+
return TextSamplerOutput(keys=keys)
|
| 66 |
+
|
| 67 |
+
|
| 68 |
+
class TextFrequencySampler(TextSampler):
|
| 69 |
+
"""
|
| 70 |
+
Sample text based on frequency.
|
| 71 |
+
|
| 72 |
+
e.g.
|
| 73 |
+
text_sampler:
|
| 74 |
+
type: frequency
|
| 75 |
+
frequency:
|
| 76 |
+
no_title_qwen_caption_en_v2_text: 0.9
|
| 77 |
+
no_title_qwen_caption_en_text: 0.9
|
| 78 |
+
origin_caption: 0.1
|
| 79 |
+
|
| 80 |
+
# support regular expression
|
| 81 |
+
-----
|
| 82 |
+
.+qwen_caption_en.+: 0.95
|
| 83 |
+
origin_caption: 0.05
|
| 84 |
+
-----
|
| 85 |
+
.+caption_qwen_recaption_cn_long_2_82_text: 0.9
|
| 86 |
+
.+caption_qwen_recaption_cn_2_95_text: 0.9
|
| 87 |
+
origin_caption: 0.1
|
| 88 |
+
-----
|
| 89 |
+
"""
|
| 90 |
+
|
| 91 |
+
def __init__(
|
| 92 |
+
self,
|
| 93 |
+
frequency: Dict[str, float] = {},
|
| 94 |
+
):
|
| 95 |
+
self.frequency = frequency
|
| 96 |
+
# Get regular expression.
|
| 97 |
+
self.patterns = (
|
| 98 |
+
{k: re.compile(k) for k in frequency.keys()
|
| 99 |
+
} if frequency is not None else None
|
| 100 |
+
)
|
| 101 |
+
|
| 102 |
+
def __call__(self, text: Dict[str, str]) -> TextSamplerOutput:
|
| 103 |
+
|
| 104 |
+
assert len(text) > 0, "The input text does not exist."
|
| 105 |
+
|
| 106 |
+
# Get keys.
|
| 107 |
+
keys = list(text.keys())
|
| 108 |
+
|
| 109 |
+
# Get weights.
|
| 110 |
+
if self.frequency is None or len(self.frequency) == 0:
|
| 111 |
+
weights = np.array([1.0] * len(keys))
|
| 112 |
+
else:
|
| 113 |
+
matchs = {k: (False, "") for k in text.keys()}
|
| 114 |
+
counter = {k: 0 for k in self.frequency.keys()}
|
| 115 |
+
for k in keys:
|
| 116 |
+
for pstr, pat in self.patterns.items():
|
| 117 |
+
if pat.match(k) is not None:
|
| 118 |
+
matchs[k] = (True, pstr)
|
| 119 |
+
counter[pstr] += 1
|
| 120 |
+
break
|
| 121 |
+
weights = np.array(
|
| 122 |
+
[
|
| 123 |
+
self.frequency[matchs[k][1]] /
|
| 124 |
+
counter[matchs[k][1]] if matchs[k][0] else 0.0
|
| 125 |
+
for k in keys
|
| 126 |
+
]
|
| 127 |
+
)
|
| 128 |
+
weights_sum = weights.sum()
|
| 129 |
+
assert weights_sum > 0, f"No valid text sample found under keys: {keys}."
|
| 130 |
+
weights /= weights_sum
|
| 131 |
+
|
| 132 |
+
# Sample key.
|
| 133 |
+
keys = str(np.random.choice(keys, p=weights))
|
| 134 |
+
return TextSamplerOutput(keys=keys)
|
| 135 |
+
|
| 136 |
+
|
| 137 |
+
class TextPrioritySampler(TextSampler):
|
| 138 |
+
"""
|
| 139 |
+
Sample text based on priority.
|
| 140 |
+
|
| 141 |
+
e.g.
|
| 142 |
+
text_sampler:
|
| 143 |
+
type: priority
|
| 144 |
+
priority:
|
| 145 |
+
- no_title_qwen_caption_en_v2_text
|
| 146 |
+
- no_title_qwen_caption_en_text
|
| 147 |
+
- origin_caption
|
| 148 |
+
"""
|
| 149 |
+
|
| 150 |
+
def __init__(
|
| 151 |
+
self,
|
| 152 |
+
priority: List[str] = [],
|
| 153 |
+
):
|
| 154 |
+
self.priority = priority
|
| 155 |
+
|
| 156 |
+
def __call__(self, text: Dict[str, str]) -> TextSamplerOutput:
|
| 157 |
+
|
| 158 |
+
assert len(text) > 0, "The input text does not exist."
|
| 159 |
+
|
| 160 |
+
# Get keys.
|
| 161 |
+
keys = list(text.keys())
|
| 162 |
+
|
| 163 |
+
# Get priorities.
|
| 164 |
+
priorities = [key for key in self.priority if key in keys]
|
| 165 |
+
|
| 166 |
+
# Select key.
|
| 167 |
+
if priorities:
|
| 168 |
+
keys = priorities[0]
|
| 169 |
+
else:
|
| 170 |
+
keys = str(np.random.choice(keys))
|
| 171 |
+
|
| 172 |
+
return TextSamplerOutput(keys=keys)
|
| 173 |
+
|
| 174 |
+
|
| 175 |
+
"""
|
| 176 |
+
Text cleaner. Copied from DeepFloyd IF.
|
| 177 |
+
(https://github.com/deep-floyd/IF/blob/develop/deepfloyd_if/modules/t5.py#L125)
|
| 178 |
+
"""
|
| 179 |
+
|
| 180 |
+
|
| 181 |
+
class TextCleaner:
|
| 182 |
+
"""
|
| 183 |
+
Clear up a caption with strange/improper contents
|
| 184 |
+
"""
|
| 185 |
+
|
| 186 |
+
bad_punct_regex = re.compile(
|
| 187 |
+
r"["
|
| 188 |
+
+ "#®•©™&@·º½¾¿¡§~"
|
| 189 |
+
+ r"\)"
|
| 190 |
+
+ r"\("
|
| 191 |
+
+ r"\]"
|
| 192 |
+
+ r"\["
|
| 193 |
+
+ r"\}"
|
| 194 |
+
+ r"\{"
|
| 195 |
+
+ r"\|"
|
| 196 |
+
+ "\\"
|
| 197 |
+
+ r"\/"
|
| 198 |
+
+ r"\*"
|
| 199 |
+
+ r"]{1,}"
|
| 200 |
+
)
|
| 201 |
+
|
| 202 |
+
def __call__(self, text):
|
| 203 |
+
# The exact text cleaning as was in the training stage:
|
| 204 |
+
text = self.clean_caption(text)
|
| 205 |
+
text = self.clean_caption(text)
|
| 206 |
+
return text
|
| 207 |
+
|
| 208 |
+
@staticmethod
|
| 209 |
+
def basic_clean(text):
|
| 210 |
+
text = ftfy.fix_text(text)
|
| 211 |
+
text = html.unescape(html.unescape(text))
|
| 212 |
+
return text.strip()
|
| 213 |
+
|
| 214 |
+
def clean_caption(self, caption):
|
| 215 |
+
caption = str(caption)
|
| 216 |
+
caption = ul.unquote_plus(caption)
|
| 217 |
+
caption = caption.strip().lower()
|
| 218 |
+
caption = re.sub("<person>", "person", caption)
|
| 219 |
+
caption = re.sub("<br>", " ", caption)
|
| 220 |
+
# urls:
|
| 221 |
+
caption = re.sub(
|
| 222 |
+
r"\b((?:https?:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))", # noqa: E501
|
| 223 |
+
"",
|
| 224 |
+
caption,
|
| 225 |
+
) # regex for urls
|
| 226 |
+
caption = re.sub(
|
| 227 |
+
r"\b((?:www:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))", # noqa: E501
|
| 228 |
+
"",
|
| 229 |
+
caption,
|
| 230 |
+
) # regex for urls
|
| 231 |
+
# html:
|
| 232 |
+
caption = BeautifulSoup(caption, features="html.parser").text
|
| 233 |
+
|
| 234 |
+
# @<nickname>
|
| 235 |
+
caption = re.sub(r"@[\w\d]+\b", "", caption)
|
| 236 |
+
|
| 237 |
+
# 31C0—31EF CJK Strokes
|
| 238 |
+
# 31F0—31FF Katakana Phonetic Extensions
|
| 239 |
+
# 3200—32FF Enclosed CJK Letters and Months
|
| 240 |
+
# 3300—33FF CJK Compatibility
|
| 241 |
+
# 3400—4DBF CJK Unified Ideographs Extension A
|
| 242 |
+
# 4DC0—4DFF Yijing Hexagram Symbols
|
| 243 |
+
# 4E00—9FFF CJK Unified Ideographs
|
| 244 |
+
caption = re.sub(r"[\u31c0-\u31ef]+", "", caption)
|
| 245 |
+
caption = re.sub(r"[\u31f0-\u31ff]+", "", caption)
|
| 246 |
+
caption = re.sub(r"[\u3200-\u32ff]+", "", caption)
|
| 247 |
+
caption = re.sub(r"[\u3300-\u33ff]+", "", caption)
|
| 248 |
+
caption = re.sub(r"[\u3400-\u4dbf]+", "", caption)
|
| 249 |
+
caption = re.sub(r"[\u4dc0-\u4dff]+", "", caption)
|
| 250 |
+
caption = re.sub(r"[\u4e00-\u9fff]+", "", caption)
|
| 251 |
+
#######################################################
|
| 252 |
+
|
| 253 |
+
# все виды тире / all types of dash --> "-"
|
| 254 |
+
caption = re.sub(
|
| 255 |
+
r"[\u002D\u058A\u05BE\u1400\u1806\u2010-\u2015\u2E17\u2E1A\u2E3A\u2E3B\u2E40\u301C\u3030\u30A0\uFE31\uFE32\uFE58\uFE63\uFF0D]+", # noqa: E501
|
| 256 |
+
# noqa
|
| 257 |
+
"-",
|
| 258 |
+
caption,
|
| 259 |
+
)
|
| 260 |
+
|
| 261 |
+
# кавычки к одному стандарту
|
| 262 |
+
caption = re.sub(r"[`´«»“”¨]", '"', caption)
|
| 263 |
+
caption = re.sub(r"[‘’]", "'", caption)
|
| 264 |
+
|
| 265 |
+
# "
|
| 266 |
+
caption = re.sub(r""?", "", caption)
|
| 267 |
+
# &
|
| 268 |
+
caption = re.sub(r"&", "", caption)
|
| 269 |
+
|
| 270 |
+
# ip adresses:
|
| 271 |
+
caption = re.sub(r"\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}", " ", caption)
|
| 272 |
+
|
| 273 |
+
# article ids:
|
| 274 |
+
caption = re.sub(r"\d:\d\d\s+$", "", caption)
|
| 275 |
+
|
| 276 |
+
# \n
|
| 277 |
+
caption = re.sub(r"\\n", " ", caption)
|
| 278 |
+
|
| 279 |
+
# "#123"
|
| 280 |
+
caption = re.sub(r"#\d{1,3}\b", "", caption)
|
| 281 |
+
# "#12345.."
|
| 282 |
+
caption = re.sub(r"#\d{5,}\b", "", caption)
|
| 283 |
+
# "123456.."
|
| 284 |
+
caption = re.sub(r"\b\d{6,}\b", "", caption)
|
| 285 |
+
# filenames:
|
| 286 |
+
caption = re.sub(
|
| 287 |
+
r"[\S]+\.(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)", "", caption)
|
| 288 |
+
|
| 289 |
+
#
|
| 290 |
+
caption = re.sub(r"[\"\']{2,}", r'"', caption) # """AUSVERKAUFT"""
|
| 291 |
+
caption = re.sub(r"[\.]{2,}", r" ", caption) # """AUSVERKAUFT"""
|
| 292 |
+
|
| 293 |
+
# ***AUSVERKAUFT***, #AUSVERKAUFT
|
| 294 |
+
caption = re.sub(self.bad_punct_regex, r" ", caption)
|
| 295 |
+
caption = re.sub(r"\s+\.\s+", r" ", caption) # " . "
|
| 296 |
+
|
| 297 |
+
# this-is-my-cute-cat / this_is_my_cute_cat
|
| 298 |
+
regex2 = re.compile(r"(?:\-|\_)")
|
| 299 |
+
if len(re.findall(regex2, caption)) > 3:
|
| 300 |
+
caption = re.sub(regex2, " ", caption)
|
| 301 |
+
|
| 302 |
+
caption = self.basic_clean(caption)
|
| 303 |
+
|
| 304 |
+
caption = re.sub(r"\b[a-zA-Z]{1,3}\d{3,15}\b", "", caption) # jc6640
|
| 305 |
+
caption = re.sub(r"\b[a-zA-Z]+\d+[a-zA-Z]+\b", "", caption) # jc6640vc
|
| 306 |
+
caption = re.sub(r"\b\d+[a-zA-Z]+\d+\b", "", caption) # 6640vc231
|
| 307 |
+
|
| 308 |
+
caption = re.sub(r"(worldwide\s+)?(free\s+)?shipping", "", caption)
|
| 309 |
+
caption = re.sub(r"(free\s)?download(\sfree)?", "", caption)
|
| 310 |
+
caption = re.sub(r"\bclick\b\s(?:for|on)\s\w+", "", caption)
|
| 311 |
+
caption = re.sub(
|
| 312 |
+
r"\b(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)(\simage[s]?)?", "", caption)
|
| 313 |
+
caption = re.sub(r"\bpage\s+\d+\b", "", caption)
|
| 314 |
+
|
| 315 |
+
# j2d1a2a...
|
| 316 |
+
caption = re.sub(
|
| 317 |
+
r"\b\d*[a-zA-Z]+\d+[a-zA-Z]+\d+[a-zA-Z\d]*\b", r" ", caption)
|
| 318 |
+
|
| 319 |
+
caption = re.sub(r"\b\d+\.?\d*[xх×]\d+\.?\d*\b", "", caption)
|
| 320 |
+
|
| 321 |
+
caption = re.sub(r"\b\s+\:\s+", r": ", caption)
|
| 322 |
+
caption = re.sub(r"(\D[,\./])\b", r"\1 ", caption)
|
| 323 |
+
caption = re.sub(r"\s+", " ", caption)
|
| 324 |
+
|
| 325 |
+
caption.strip()
|
| 326 |
+
|
| 327 |
+
caption = re.sub(r"^[\"\']([\w\W]+)[\"\']$", r"\1", caption)
|
| 328 |
+
caption = re.sub(r"^[\'\_,\-\:;]", r"", caption)
|
| 329 |
+
caption = re.sub(r"[\'\_,\-\:\-\+]$", r"", caption)
|
| 330 |
+
caption = re.sub(r"^\.\S+$", "", caption)
|
| 331 |
+
|
| 332 |
+
return caption.strip()
|
dataset_code/sft_sftnews/offload/dataset_tool/parquet_dataset/samplers/utils.py
ADDED
|
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from omegaconf import DictConfig, OmegaConf
|
| 2 |
+
|
| 3 |
+
from .text_sampler import (TextAllSampler,
|
| 4 |
+
TextFrequencySampler,
|
| 5 |
+
TextPrioritySampler,
|
| 6 |
+
TextSampler,
|
| 7 |
+
)
|
| 8 |
+
from .frame_sampler import (AdaptiveAdvancedFrameSampler,
|
| 9 |
+
AdaptiveAdvancedFrameSamplerStrategy,
|
| 10 |
+
AdaptiveFrameSampler,
|
| 11 |
+
AllFrameSampler,
|
| 12 |
+
FrameSampler,
|
| 13 |
+
)
|
| 14 |
+
|
| 15 |
+
TEXT_SAMPLER_TYPES = {
|
| 16 |
+
"all": TextAllSampler,
|
| 17 |
+
"frequency": TextFrequencySampler,
|
| 18 |
+
"priority": TextPrioritySampler,
|
| 19 |
+
}
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
def create_text_sampler(config: dict) -> TextSampler:
|
| 23 |
+
config = OmegaConf.to_object(config)
|
| 24 |
+
sampler_type = config.pop("type")
|
| 25 |
+
return TEXT_SAMPLER_TYPES[sampler_type](**config)
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
FRAME_SAMPLER_TYPES = {
|
| 29 |
+
"all": AllFrameSampler,
|
| 30 |
+
"adaptive": AdaptiveFrameSampler,
|
| 31 |
+
"adaptive_advanced": AdaptiveAdvancedFrameSampler,
|
| 32 |
+
}
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
def create_frame_sampler(config: dict) -> FrameSampler:
|
| 36 |
+
config = OmegaConf.to_object(config)
|
| 37 |
+
sampler_type = config.pop("type")
|
| 38 |
+
if sampler_type == "adaptive_advanced":
|
| 39 |
+
config["strategies"] = [
|
| 40 |
+
AdaptiveAdvancedFrameSamplerStrategy(**s) for s in config["strategies"]
|
| 41 |
+
]
|
| 42 |
+
return FRAME_SAMPLER_TYPES[sampler_type](**config)
|
dataset_code/sft_sftnews/offload/dataset_tool/parquet_dataset/tos_client.py
ADDED
|
@@ -0,0 +1,192 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import logging
|
| 2 |
+
import os
|
| 3 |
+
import yaml
|
| 4 |
+
import hashlib
|
| 5 |
+
import traceback
|
| 6 |
+
from typing import Any, Union, List, Optional
|
| 7 |
+
import bytedtos
|
| 8 |
+
import io
|
| 9 |
+
import decord
|
| 10 |
+
import torch
|
| 11 |
+
from pyarrow import fs
|
| 12 |
+
|
| 13 |
+
def hdfs_read(file_path) -> bytes:
|
| 14 |
+
fp = str(file_path)
|
| 15 |
+
filesystem = resolve_fs(fp)
|
| 16 |
+
|
| 17 |
+
with filesystem.open_input_stream(fp) as f:
|
| 18 |
+
content = f.readall()
|
| 19 |
+
return content
|
| 20 |
+
|
| 21 |
+
def sha256_hashs(b: bytes, nbytes=32, bit_len=128) -> bytes:
|
| 22 |
+
m = hashlib.sha256()
|
| 23 |
+
m.update(b)
|
| 24 |
+
mb = m.digest()
|
| 25 |
+
bb = mb[:nbytes]
|
| 26 |
+
truncated_hashs = bb[: bit_len // 8]
|
| 27 |
+
return truncated_hashs.hex().lower()
|
| 28 |
+
|
| 29 |
+
def retry(func, retry=3):
|
| 30 |
+
if retry == 0:
|
| 31 |
+
return func
|
| 32 |
+
|
| 33 |
+
def wrapper(*args, **kwargs):
|
| 34 |
+
for i in range(retry):
|
| 35 |
+
error = ''
|
| 36 |
+
try:
|
| 37 |
+
return func(*args, **kwargs)
|
| 38 |
+
except KeyboardInterrupt:
|
| 39 |
+
raise KeyboardInterrupt
|
| 40 |
+
except:
|
| 41 |
+
print(f"In {__file__}, retry {i + 1} times!")
|
| 42 |
+
error = traceback.format_exc()
|
| 43 |
+
raise Exception(f"Traceback: {error}")
|
| 44 |
+
|
| 45 |
+
return wrapper
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
def resolve_fs(paths: Union[str, list[str]]) -> fs.FileSystem:
|
| 49 |
+
_p: str = paths # type: ignore
|
| 50 |
+
if isinstance(paths, list):
|
| 51 |
+
_p = paths[0]
|
| 52 |
+
_p = "/".join(_p.split("/")[:3])
|
| 53 |
+
filesystem, _ = fs._resolve_filesystem_and_path(_p)
|
| 54 |
+
|
| 55 |
+
return filesystem
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
class BaseClient:
|
| 60 |
+
def __init__(self, retry=0, **kwargs):
|
| 61 |
+
self.retry = retry
|
| 62 |
+
|
| 63 |
+
def __call__(self, keys: Union[str, List[str]], hashs: Optional[Union[str, List[str]]]=None) -> Union[bytes, List[bytes]]:
|
| 64 |
+
"""
|
| 65 |
+
Read bytes from remote data source.
|
| 66 |
+
Args:
|
| 67 |
+
keys (str or list[str]): tos keys or hdfs uri or etc.
|
| 68 |
+
hashs (str or list[str]): hashs of the data.
|
| 69 |
+
Returns:
|
| 70 |
+
bytes (or list[bytes]]): bytes read from remote data source.
|
| 71 |
+
"""
|
| 72 |
+
if isinstance(keys, str):
|
| 73 |
+
assert hashs is None or isinstance(hashs, str)
|
| 74 |
+
keys = [keys]
|
| 75 |
+
hashs = [hashs] if hashs is not None else None
|
| 76 |
+
return_list = False
|
| 77 |
+
else:
|
| 78 |
+
return_list = True
|
| 79 |
+
|
| 80 |
+
if hashs is not None:
|
| 81 |
+
bytes_get = retry(self.get_bytes_and_check, retry=3)(keys, hashs)
|
| 82 |
+
else:
|
| 83 |
+
bytes_get = retry(self.get_bytes, retry=self.retry)(keys)
|
| 84 |
+
|
| 85 |
+
if return_list:
|
| 86 |
+
return bytes_get
|
| 87 |
+
else:
|
| 88 |
+
return bytes_get[0]
|
| 89 |
+
|
| 90 |
+
def get_bytes_and_check(self, keys: List[bytes], hashs: List[bytes]) -> List[bytes]:
|
| 91 |
+
bytes_get = self.get_bytes(keys)
|
| 92 |
+
for k, b, h in zip(keys, bytes_get, hashs):
|
| 93 |
+
if sha256_hashs(b) != h:
|
| 94 |
+
raise Exception(f"hashs check failed on keyss {k}, {sha256_hashs(b)} != {h}!")
|
| 95 |
+
return bytes_get
|
| 96 |
+
|
| 97 |
+
def get_bytes(self, keys: List[bytes]) -> List[bytes]:
|
| 98 |
+
"""
|
| 99 |
+
Read bytes from remote data source.
|
| 100 |
+
Args:
|
| 101 |
+
keyss: tos keys or hdfs uri or etc.
|
| 102 |
+
Returns:
|
| 103 |
+
bytes: bytes read from remote data source.
|
| 104 |
+
"""
|
| 105 |
+
raise NotImplementedError
|
| 106 |
+
|
| 107 |
+
class TosClient(BaseClient):
|
| 108 |
+
def __init__(
|
| 109 |
+
self,
|
| 110 |
+
ak,
|
| 111 |
+
bucket,
|
| 112 |
+
idc,
|
| 113 |
+
timeout=10,
|
| 114 |
+
**kwargs,
|
| 115 |
+
):
|
| 116 |
+
super().__init__(**kwargs)
|
| 117 |
+
self.tos_client = bytedtos.Client(bucket, ak, timeout=timeout, idc=idc)
|
| 118 |
+
|
| 119 |
+
# Input => toskeys
|
| 120 |
+
def get_bytes(self, keys: List[bytes]) -> List[bytes]:
|
| 121 |
+
"""
|
| 122 |
+
Read bytes from tos keys.
|
| 123 |
+
Args:
|
| 124 |
+
keys (str or list[str]): tos keys.
|
| 125 |
+
Returns:
|
| 126 |
+
bytes (or list[bytes]]): bytes read from tos.
|
| 127 |
+
"""
|
| 128 |
+
return [self.tos_client.get_object(keys).data for keys in keys]
|
| 129 |
+
|
| 130 |
+
class NebuTosClient(TosClient):
|
| 131 |
+
default_config = {
|
| 132 |
+
"nebudata-us": "hdfs://harunava/home/byte_icaip_nebudata/proj/nebudata/conf/nebuconfig_va_20240925.yaml",
|
| 133 |
+
"nebudata-sg": "hdfs://harunasg/home/byte_icaip_nebudata_sg/proj/nebudata/conf/nebuconfig_sg_20240925.yaml", # Default
|
| 134 |
+
}
|
| 135 |
+
|
| 136 |
+
def __init__(
|
| 137 |
+
self,
|
| 138 |
+
ref_tos_bucket: Union[str, None] = None,
|
| 139 |
+
idc: Union[str, None] = None,
|
| 140 |
+
**kwargs,
|
| 141 |
+
):
|
| 142 |
+
logging.info(f"NebuTos config: {ref_tos_bucket=} {idc=}")
|
| 143 |
+
if idc is None:
|
| 144 |
+
idc = os.environ.get("RUNTIME_IDC_NAME", "my2")
|
| 145 |
+
|
| 146 |
+
if ref_tos_bucket is not None:
|
| 147 |
+
assert ref_tos_bucket in self.default_config, f"Unknow tos_bucket {ref_tos_bucket}, please use one of {self.default_config.keyss()}."
|
| 148 |
+
nebuconfig_file = self.default_config.get(ref_tos_bucket)
|
| 149 |
+
else:
|
| 150 |
+
arnold_base_dir = os.environ.get("ARNOLD_BASE_DIR", "hdfs://harunasg")
|
| 151 |
+
for ref_tos_bucket, nebuconfig_file in self.default_config.items():
|
| 152 |
+
if arnold_base_dir in nebuconfig_file:
|
| 153 |
+
break
|
| 154 |
+
|
| 155 |
+
nebuconfig = yaml.safe_load(hdfs_read(nebuconfig_file).decode("utf-8"))
|
| 156 |
+
default_access_keys = nebuconfig['tos_user_access_key']
|
| 157 |
+
tos_ak = os.environ.get("TOS_USER_ACCESS_key", default_access_keys)
|
| 158 |
+
|
| 159 |
+
super().__init__(tos_ak, ref_tos_bucket, idc, **kwargs)
|
| 160 |
+
|
| 161 |
+
|
| 162 |
+
if __name__ == "__main__":
|
| 163 |
+
client = NebuTosClient(ref_tos_bucket="nebudata-sg", idc="my2")
|
| 164 |
+
# toskey = 'cas/596ccf6d8de5d16e0ca5a91c0610d9bd'
|
| 165 |
+
toskey = 'cas/0c862903f94897a08bde81ee10104c48'
|
| 166 |
+
results = [client(toskey, hashs=toskey.split('cas/')[-1])]
|
| 167 |
+
# with open('output_video.mp4', 'wb') as f:
|
| 168 |
+
# f.write(results[0])
|
| 169 |
+
# np_array = np.frombuffer(results[0], dtype=np.uint8)
|
| 170 |
+
file_io = io.BytesIO(results[0])
|
| 171 |
+
reader = decord.VideoReader(file_io, ctx=decord.cpu(0))
|
| 172 |
+
video_length = len(reader)
|
| 173 |
+
# sampler = FrameSamplerCollection(data_configs['samplers'])
|
| 174 |
+
# video_idxs, structure = self.sampler(video_length, params)
|
| 175 |
+
# frames_idxs = copy.deepcopy(video_idxs)
|
| 176 |
+
# in_range_len = len(video_idxs)
|
| 177 |
+
# out_range_idxs = self.add_out_range_sample(
|
| 178 |
+
# video_idxs, video_length, params)
|
| 179 |
+
# video_idxs = video_idxs + out_range_idxs
|
| 180 |
+
# video_idxs_array = np.array(video_idxs)
|
| 181 |
+
# video_idxs_valid_mask = video_idxs_array >= 0
|
| 182 |
+
# valid_indices = video_idxs_array[video_idxs_valid_mask]
|
| 183 |
+
valid_indices = list(range(121))
|
| 184 |
+
frames_batch = reader.get_batch(valid_indices).asnumpy()
|
| 185 |
+
frames_tensor = torch.from_numpy(frames_batch).float()
|
| 186 |
+
frames_tensor = (frames_tensor / 127.5) - 1
|
| 187 |
+
frames_tensor = frames_tensor.permute(0, 3, 1, 2)
|
| 188 |
+
del reader
|
| 189 |
+
|
| 190 |
+
# 'clip_toskey': 'cas/596ccf6d8de5d16e0ca5a91c0610d9bd'
|
| 191 |
+
# 'clip_tosurl': 'https://tosv.byted.org/obj/nebudata-sg/cas/596ccf6d8de5d16e0ca5a91c0610d9bd'
|
| 192 |
+
# 'clip_url': 'https://tosv-sg.tiktok-row.org/obj/nebudata-sg/cas/596ccf6d8de5d16e0ca5a91c0610d9bd'
|
dataset_code/sft_sftnews/offload/dataset_tool/parquet_dataset/utils/__pycache__/distributed_utils.cpython-310.pyc
ADDED
|
Binary file (4.04 kB). View file
|
|
|
dataset_code/sft_sftnews/offload/dataset_tool/parquet_dataset/utils/__pycache__/distributed_utils.cpython-311.pyc
ADDED
|
Binary file (6.4 kB). View file
|
|
|
dataset_code/sft_sftnews/offload/dataset_tool/parquet_dataset/utils/__pycache__/hdfs_utils.cpython-310.pyc
ADDED
|
Binary file (6.93 kB). View file
|
|
|
dataset_code/sft_sftnews/offload/dataset_tool/parquet_dataset/utils/__pycache__/hdfs_utils.cpython-311.pyc
ADDED
|
Binary file (12.5 kB). View file
|
|
|
dataset_code/sft_sftnews/offload/dataset_tool/parquet_dataset/utils/__pycache__/partition_utils.cpython-310.pyc
ADDED
|
Binary file (1.73 kB). View file
|
|
|
dataset_code/sft_sftnews/offload/dataset_tool/parquet_dataset/utils/__pycache__/partition_utils.cpython-311.pyc
ADDED
|
Binary file (2.45 kB). View file
|
|
|
dataset_code/sft_sftnews/offload/dataset_tool/parquet_dataset/utils/distributed_utils.py
ADDED
|
@@ -0,0 +1,149 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Distributed basic functions.
|
| 3 |
+
"""
|
| 4 |
+
|
| 5 |
+
import os
|
| 6 |
+
import torch
|
| 7 |
+
import torch.distributed as dist
|
| 8 |
+
|
| 9 |
+
from typing import Optional
|
| 10 |
+
from torch.nn.parallel import DistributedDataParallel
|
| 11 |
+
|
| 12 |
+
_DATA_PARALLEL_GROUP = None
|
| 13 |
+
_SEQUENCE_PARALLEL_GROUP = None
|
| 14 |
+
_SEQUENCE_PARALLEL_CPU_GROUP = None
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
def get_global_rank() -> int:
|
| 18 |
+
"""
|
| 19 |
+
Get the global rank, the global index of the GPU.
|
| 20 |
+
"""
|
| 21 |
+
return int(os.environ.get("RANK", "0"))
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
def get_local_rank() -> int:
|
| 25 |
+
"""
|
| 26 |
+
Get the local rank, the local index of the GPU.
|
| 27 |
+
"""
|
| 28 |
+
return int(os.environ.get("LOCAL_RANK", "0"))
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
def get_world_size() -> int:
|
| 32 |
+
"""
|
| 33 |
+
Get the world size, the total amount of GPUs.
|
| 34 |
+
"""
|
| 35 |
+
return int(os.environ.get("WORLD_SIZE", "1"))
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
def get_device() -> torch.device:
|
| 39 |
+
"""
|
| 40 |
+
Get current rank device.
|
| 41 |
+
"""
|
| 42 |
+
return torch.device("cuda", get_local_rank())
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
def barrier_if_distributed(*args, **kwargs):
|
| 46 |
+
"""
|
| 47 |
+
Synchronizes all processes if under distributed context.
|
| 48 |
+
"""
|
| 49 |
+
if dist.is_initialized():
|
| 50 |
+
return dist.barrier(*args, **kwargs)
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
def init_torch(cudnn_benchmark=True):
|
| 54 |
+
"""
|
| 55 |
+
Common PyTorch initialization configuration.
|
| 56 |
+
"""
|
| 57 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
| 58 |
+
torch.backends.cudnn.allow_tf32 = True
|
| 59 |
+
torch.backends.cudnn.benchmark = cudnn_benchmark
|
| 60 |
+
torch.cuda.set_device(get_local_rank())
|
| 61 |
+
dist.init_process_group(
|
| 62 |
+
backend="nccl",
|
| 63 |
+
rank=get_global_rank(),
|
| 64 |
+
world_size=get_world_size(),
|
| 65 |
+
)
|
| 66 |
+
|
| 67 |
+
|
| 68 |
+
def convert_to_ddp(module: torch.nn.Module, **kwargs) -> DistributedDataParallel:
|
| 69 |
+
return DistributedDataParallel(
|
| 70 |
+
module=module,
|
| 71 |
+
device_ids=[get_local_rank()],
|
| 72 |
+
output_device=get_local_rank(),
|
| 73 |
+
**kwargs,
|
| 74 |
+
)
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
def get_data_parallel_group() -> Optional[dist.ProcessGroup]:
|
| 78 |
+
"""
|
| 79 |
+
Get data parallel process group.
|
| 80 |
+
"""
|
| 81 |
+
return _DATA_PARALLEL_GROUP
|
| 82 |
+
|
| 83 |
+
|
| 84 |
+
def get_sequence_parallel_group() -> Optional[dist.ProcessGroup]:
|
| 85 |
+
"""
|
| 86 |
+
Get sequence parallel process group.
|
| 87 |
+
"""
|
| 88 |
+
return _SEQUENCE_PARALLEL_GROUP
|
| 89 |
+
|
| 90 |
+
|
| 91 |
+
def get_sequence_parallel_cpu_group() -> Optional[dist.ProcessGroup]:
|
| 92 |
+
"""
|
| 93 |
+
Get sequence parallel CPU process group.
|
| 94 |
+
"""
|
| 95 |
+
return _SEQUENCE_PARALLEL_CPU_GROUP
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
def get_data_parallel_rank() -> int:
|
| 99 |
+
"""
|
| 100 |
+
Get data parallel rank.
|
| 101 |
+
"""
|
| 102 |
+
group = get_data_parallel_group()
|
| 103 |
+
return dist.get_rank(group) if group else get_global_rank()
|
| 104 |
+
|
| 105 |
+
|
| 106 |
+
def get_data_parallel_world_size() -> int:
|
| 107 |
+
"""
|
| 108 |
+
Get data parallel world size.
|
| 109 |
+
"""
|
| 110 |
+
group = get_data_parallel_group()
|
| 111 |
+
return dist.get_world_size(group) if group else get_world_size()
|
| 112 |
+
|
| 113 |
+
|
| 114 |
+
def get_sequence_parallel_rank() -> int:
|
| 115 |
+
"""
|
| 116 |
+
Get sequence parallel rank.
|
| 117 |
+
"""
|
| 118 |
+
group = get_sequence_parallel_group()
|
| 119 |
+
return dist.get_rank(group) if group else 0
|
| 120 |
+
|
| 121 |
+
|
| 122 |
+
def get_sequence_parallel_world_size() -> int:
|
| 123 |
+
"""
|
| 124 |
+
Get sequence parallel world size.
|
| 125 |
+
"""
|
| 126 |
+
group = get_sequence_parallel_group()
|
| 127 |
+
return dist.get_world_size(group) if group else 1
|
| 128 |
+
|
| 129 |
+
|
| 130 |
+
def init_sequence_parallel(sequence_parallel_size: int):
|
| 131 |
+
"""
|
| 132 |
+
Initialize sequence parallel.
|
| 133 |
+
"""
|
| 134 |
+
global _DATA_PARALLEL_GROUP
|
| 135 |
+
global _SEQUENCE_PARALLEL_GROUP
|
| 136 |
+
global _SEQUENCE_PARALLEL_CPU_GROUP
|
| 137 |
+
assert dist.is_initialized()
|
| 138 |
+
world_size = dist.get_world_size()
|
| 139 |
+
rank = dist.get_rank()
|
| 140 |
+
data_parallel_size = world_size // sequence_parallel_size
|
| 141 |
+
for i in range(data_parallel_size):
|
| 142 |
+
start_rank = i * sequence_parallel_size
|
| 143 |
+
end_rank = (i + 1) * sequence_parallel_size
|
| 144 |
+
ranks = range(start_rank, end_rank)
|
| 145 |
+
group = dist.new_group(ranks)
|
| 146 |
+
cpu_group = dist.new_group(ranks, backend="gloo")
|
| 147 |
+
if rank in ranks:
|
| 148 |
+
_SEQUENCE_PARALLEL_GROUP = group
|
| 149 |
+
_SEQUENCE_PARALLEL_CPU_GROUP = cpu_group
|