SuperCS's picture
Add files using upload-large-folder tool
7f2bd75 verified
import os
import time
from pprint import pformat
import colossalai
import torch
import torch.distributed as dist
from colossalai.cluster import DistCoordinator
from mmengine.runner import set_random_seed
from tqdm import tqdm
from opensora.acceleration.parallel_states import set_sequence_parallel_group
from opensora.datasets import save_sample
from opensora.datasets.aspect import get_image_size, get_num_frames
from opensora.datasets.utils import to_pil_images
from opensora.models.text_encoder.t5 import text_preprocessing
from opensora.registry import MODELS, SCHEDULERS, build_module
from opensora.utils.config_utils import parse_configs
from opensora.utils.inference_utils import (
add_watermark,
append_generated,
append_score_to_prompts,
apply_mask_strategy,
collect_references_batch,
dframe_to_frame,
extract_json_from_prompts,
extract_prompts_loop,
get_save_path_name,
load_prompts,
merge_prompt,
prepare_multi_resolution_info,
refine_prompts_by_openai,
split_prompt, initialize_condition_video,
)
from opensora.utils.misc import all_exists, create_logger, is_distributed, is_main_process, to_torch_dtype
def main():
torch.set_grad_enabled(False)
# ======================================================
# configs & runtime variables
# ======================================================
# == parse configs ==
cfg = parse_configs(training=False)
# == device and dtype ==
device = "cuda" if torch.cuda.is_available() else "cpu"
cfg_dtype = cfg.get("dtype", "fp32")
assert cfg_dtype in ["fp16", "bf16", "fp32"], f"Unknown mixed precision {cfg_dtype}"
dtype = to_torch_dtype(cfg.get("dtype", "bf16"))
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
# == init distributed env ==
if is_distributed():
colossalai.launch_from_torch({})
coordinator = DistCoordinator()
# enable_sequence_parallelism = coordinator.world_size > 1
enable_sequence_parallelism = False
if enable_sequence_parallelism:
set_sequence_parallel_group(dist.group.WORLD)
else:
coordinator = None
enable_sequence_parallelism = False
set_random_seed(seed=cfg.get("seed", 1024), diff_rank_seed=True)
# == init logger ==
logger = create_logger()
logger.info("Inference configuration:\n %s", pformat(cfg.to_dict()))
verbose = cfg.get("verbose", 1)
progress_wrap = tqdm if verbose == 1 else (lambda x: x)
# ======================================================
# build model & load weights
# ======================================================
logger.info("Building models...")
# == build text-encoder and vae ==
text_encoder = build_module(cfg.text_encoder, MODELS, device=device)
vae = build_module(cfg.vae, MODELS).to(device, dtype).eval()
# == prepare video size ==
image_size = cfg.get("image_size", None)
if image_size is None:
resolution = cfg.get("resolution", None)
aspect_ratio = cfg.get("aspect_ratio", None)
assert (
resolution is not None and aspect_ratio is not None
), "resolution and aspect_ratio must be provided if image_size is not provided"
image_size = get_image_size(resolution, aspect_ratio)
num_frames = get_num_frames(cfg.num_frames) # 2s -> 51 frames
num_ar_frames = None
if cfg.get("pa_vdm", False):
num_ar_frames = get_num_frames(cfg.get("num_ar_frames", '16s'))
# == build diffusion model ==
input_size = (num_frames, *image_size)
latent_size = vae.get_latent_size(input_size)
if cfg.get("pa_vdm", False):
num_ar_latent_frames = vae.get_latent_size((num_ar_frames, *image_size))[0]
print(f'num_frames: {num_frames}, num_ar_frames: {num_ar_frames}, num_ar_latent_frames: {num_ar_latent_frames}, latent_size: {latent_size}')
model = (
build_module(
cfg.model,
MODELS,
input_size=latent_size,
in_channels=vae.out_channels,
caption_channels=text_encoder.output_dim,
model_max_length=text_encoder.model_max_length,
enable_sequence_parallelism=enable_sequence_parallelism,
)
.to(device, dtype)
.eval()
)
text_encoder.y_embedder = model.y_embedder # HACK: for classifier-free guidance
# == build scheduler ==
scheduler = build_module(cfg.scheduler, SCHEDULERS)
# ======================================================
# inference
# ======================================================
# == load prompts ==
prompts = cfg.get("prompt", None)
start_idx = cfg.get("start_index", 0)
if prompts is None:
if cfg.get("prompt_path", None) is not None:
prompts = load_prompts(cfg.prompt_path, start_idx, cfg.get("end_index", None))
else:
prompts = [cfg.get("prompt_generator", "")] * 1_000_000 # endless loop
# == prepare reference ==
reference_path = cfg.get("reference_path", [""] * len(prompts))
mask_strategy = cfg.get("mask_strategy", [""] * len(prompts))
assert len(reference_path) == len(prompts), "Length of reference must be the same as prompts"
assert len(mask_strategy) == len(prompts), "Length of mask_strategy must be the same as prompts"
# == prepare arguments ==
fps = cfg.fps
save_fps = cfg.get("save_fps", fps // cfg.get("frame_interval", 1))
multi_resolution = cfg.get("multi_resolution", None)
batch_size = cfg.get("batch_size", 1)
num_sample = cfg.get("num_sample", 1)
loop = cfg.get("loop", 1)
condition_frame_length = cfg.get("condition_frame_length", 5)
condition_frame_edit = cfg.get("condition_frame_edit", 0.0)
align = cfg.get("align", None)
if is_main_process():
save_dir = cfg.save_dir
save_dir += '' if save_dir.endswith('/') else '/'
os.makedirs(save_dir, exist_ok=True)
sample_name = cfg.get("sample_name", None)
prompt_as_path = cfg.get("prompt_as_path", False)
global_prompts = prompts.copy()
if is_distributed():
# split prompts, mask_strategy, reference_path wrt. rank
prompts = prompts[coordinator.rank::coordinator.world_size]
mask_strategy = mask_strategy[coordinator.rank::coordinator.world_size]
reference_path = reference_path[coordinator.rank::coordinator.world_size]
video_results_rows = [[] for _ in range(len(global_prompts))] # one prompt per row
# == Iter over all samples ==
for i in progress_wrap(range(0, len(prompts), batch_size)): # iterate over prompts with batch size increments
# == prepare batch prompts ==
batch_prompts = prompts[i : i + batch_size]
ms = mask_strategy[i : i + batch_size]
refs = reference_path[i : i + batch_size]
# == get json from prompts ==
batch_prompts, refs, ms = extract_json_from_prompts(batch_prompts, refs, ms)
original_batch_prompts = batch_prompts
# == get reference for condition ==
refs = collect_references_batch(refs, vae, image_size)
# == multi-resolution info ==
model_args = prepare_multi_resolution_info(
multi_resolution, len(batch_prompts), image_size, num_frames, fps, device, dtype
)
# == Iter over number of sampling for one prompt ==
for k in range(num_sample):
# == prepare save paths ==
save_paths = [
get_save_path_name(
save_dir,
sample_name=sample_name,
sample_idx=start_idx + idx,
prompt=original_batch_prompts[idx],
prompt_as_path=prompt_as_path,
num_sample=num_sample,
k=k,
)
for idx in range(len(batch_prompts))
]
# NOTE: Skip if the sample already exists
# This is useful for resuming sampling VBench
if prompt_as_path and all_exists(save_paths):
continue
# == process prompts step by step ==
# 0. split prompt
# each element in the list is [prompt_segment_list, loop_idx_list]
batched_prompt_segment_list = []
batched_loop_idx_list = []
for prompt in batch_prompts:
prompt_segment_list, loop_idx_list = split_prompt(prompt)
batched_prompt_segment_list.append(prompt_segment_list)
batched_loop_idx_list.append(loop_idx_list)
# 1. refine prompt by openai
if cfg.get("llm_refine", False):
# only call openai API when
# 1. seq parallel is not enabled
# 2. seq parallel is enabled and the process is rank 0
if not enable_sequence_parallelism or (enable_sequence_parallelism and is_main_process()):
for idx, prompt_segment_list in enumerate(batched_prompt_segment_list):
batched_prompt_segment_list[idx] = refine_prompts_by_openai(prompt_segment_list)
# sync the prompt if using seq parallel
if enable_sequence_parallelism:
coordinator.block_all()
prompt_segment_length = [
len(prompt_segment_list) for prompt_segment_list in batched_prompt_segment_list
]
# flatten the prompt segment list
batched_prompt_segment_list = [
prompt_segment
for prompt_segment_list in batched_prompt_segment_list
for prompt_segment in prompt_segment_list
]
# create a list of size equal to world size
broadcast_obj_list = [batched_prompt_segment_list] * coordinator.world_size
dist.broadcast_object_list(broadcast_obj_list, 0)
# recover the prompt list
batched_prompt_segment_list = []
segment_start_idx = 0
all_prompts = broadcast_obj_list[0]
for num_segment in prompt_segment_length:
batched_prompt_segment_list.append(
all_prompts[segment_start_idx : segment_start_idx + num_segment]
)
segment_start_idx += num_segment
# 2. append score
for idx, prompt_segment_list in enumerate(batched_prompt_segment_list):
batched_prompt_segment_list[idx] = append_score_to_prompts(
prompt_segment_list,
aes=cfg.get("aes", None),
flow=cfg.get("flow", None),
camera_motion=cfg.get("camera_motion", None),
)
# 3. clean prompt with T5
for idx, prompt_segment_list in enumerate(batched_prompt_segment_list):
batched_prompt_segment_list[idx] = [text_preprocessing(prompt) for prompt in prompt_segment_list]
# 4. merge to obtain the final prompt
batch_prompts = []
for prompt_segment_list, loop_idx_list in zip(batched_prompt_segment_list, batched_loop_idx_list):
batch_prompts.append(merge_prompt(prompt_segment_list, loop_idx_list))
# == Iter over loop generation ==
video_clips = []
for loop_i in range(loop):
# == get prompt for loop i ==
batch_prompts_loop = extract_prompts_loop(batch_prompts, loop_i)
# == add condition frames for loop ==
if loop_i > 0:
refs, ms = append_generated(
vae, video_clips[-1], refs, ms, loop_i, condition_frame_length, condition_frame_edit
)
# == sampling ==
z = torch.randn(len(batch_prompts), vae.out_channels, *latent_size, device=device, dtype=dtype)
print(f"inference sampling, z shape: {z.shape}")
if cfg.get("pa_vdm", False):
masks = None
z = initialize_condition_video(z, refs)
samples = scheduler.sample_pavdm(
model,
text_encoder,
z=z,
prompts=batch_prompts_loop,
device=device,
additional_args=model_args,
progress=verbose >= 2,
mask=masks,
num_frames=latent_size[0],
num_ar_latent_frames=num_ar_latent_frames,
)
samples = vae.decode(samples.to(dtype), num_frames=num_ar_frames)
if z.device.index == 0:
print(f'after avd inference and decode, samples shape: {samples.shape}')
num_extra_frames = num_ar_frames % save_fps
samples = samples[:, :, :-num_extra_frames]
if z.device.index == 0:
print(f'after removing extra frames, samples shape: {samples.shape}')
else:
masks = apply_mask_strategy(z, refs, ms, loop_i, align=align)
samples = scheduler.sample(
model,
text_encoder,
z=z,
prompts=batch_prompts_loop,
device=device,
additional_args=model_args,
progress=verbose >= 2,
mask=masks,
)
samples = vae.decode(samples.to(dtype), num_frames=num_frames)
video_clips.append(samples)
# # gather video clips, batch_prompts, if distributed
# batch_prompts_list = [batch_prompts]
# video_clips_list = [video_clips]
# if is_distributed():
# video_clips_list = [None] * dist.get_world_size() if dist.get_rank() == 0 else None
# batch_prompts_list = [None] * dist.get_world_size() if dist.get_rank() == 0 else None
# dist.gather_object(video_clips, object_gather_list=video_clips_list, dst=0)
# dist.gather_object(batch_prompts, object_gather_list=batch_prompts_list, dst=0)
# # == save samples ==
# if is_main_process():
# for rank_i, (batch_prompts_rank, video_clips_rank) in enumerate(zip(batch_prompts_list, video_clips_list)):
# for idx, batch_prompt in enumerate(batch_prompts_rank): # iterate over batch size
# # handle loop
# video = [video_clips_rank[j][idx] for j in range(loop)]
# for j in range(1, loop):
# video[j] = video[j][:, dframe_to_frame(condition_frame_length) :] # remove the condition frames at the beginning. condition_frame_length=5 is converted to 17
# video = torch.cat(video, dim=1) # cat the looped videos together at the time dimension
# pil_images = to_pil_images(video)
# # columns store num_sample video results of the same prompt
# video_results_rows[i * dist.get_world_size() + rank_i * batch_size + idx].append(pil_images)
# == save samples ==
if is_main_process():
for idx, batch_prompt in enumerate(batch_prompts):
if verbose >= 2:
logger.info("Prompt: %s", batch_prompt)
save_path = save_paths[idx]
video = [video_clips[i][idx] for i in range(loop)]
for i in range(1, loop):
video[i] = video[i][:, dframe_to_frame(condition_frame_length) :]
video = torch.cat(video, dim=1)
save_path = save_sample(
video,
fps=save_fps,
save_path=save_path,
verbose=verbose >= 2,
)
if save_path.endswith(".mp4") and cfg.get("watermark", False):
time.sleep(1) # prevent loading previous generated video
add_watermark(save_path)
start_idx += len(batch_prompts)
if is_main_process():
logger.info("Inference finished.")
logger.info("Saved %s samples to %s", start_idx, save_dir)
if __name__ == "__main__":
main()