SuperCS's picture
Add files using upload-large-folder tool
fff3baa verified
from causvid.ode_data.create_lmdb_iterative import get_array_shape_from_lmdb, retrieve_row_from_lmdb
from torch.utils.data import Dataset
import numpy as np
import torch
import lmdb
class TextDataset(Dataset):
def __init__(self, data_path):
self.texts = []
with open(data_path, "r") as f:
for line in f:
self.texts.append(line.strip())
def __len__(self):
return len(self.texts)
def __getitem__(self, idx):
return self.texts[idx]
class ODERegressionDataset(Dataset):
def __init__(self, data_path, max_pair=int(1e8)):
self.data_dict = torch.load(data_path, weights_only=False)
self.max_pair = max_pair
def __len__(self):
return min(len(self.data_dict['prompts']), self.max_pair)
def __getitem__(self, idx):
"""
Outputs:
- prompts: List of Strings
- latents: Tensor of shape (num_denoising_steps, num_frames, num_channels, height, width). It is ordered from pure noise to clean image.
"""
return {
"prompts": self.data_dict['prompts'][idx],
"ode_latent": self.data_dict['latents'][idx].squeeze(0),
}
class ODERegressionLMDBDataset(Dataset):
def __init__(self, data_path: str, max_pair: int = int(1e8)):
self.env = lmdb.open(data_path, readonly=True,
lock=False, readahead=False, meminit=False)
self.latents_shape = get_array_shape_from_lmdb(self.env, 'latents')
self.max_pair = max_pair
def __len__(self):
return min(self.latents_shape[0], self.max_pair)
def __getitem__(self, idx):
"""
Outputs:
- prompts: List of Strings
- latents: Tensor of shape (num_denoising_steps, num_frames, num_channels, height, width). It is ordered from pure noise to clean image.
"""
latents = retrieve_row_from_lmdb(
self.env,
"latents", np.float16, idx, shape=self.latents_shape[1:]
)
if len(latents.shape) == 4:
latents = latents[None, ...]
prompts = retrieve_row_from_lmdb(
self.env,
"prompts", str, idx
)
return {
"prompts": prompts,
"ode_latent": torch.tensor(latents, dtype=torch.float32)
}