SuperCS's picture
Add files using upload-large-folder tool
b4feb07 verified
import math
import torch
import torch.nn.functional as F
import torchvision.transforms.functional as tvF
import numpy as np
def apply_low_pass_filter(
tensor: torch.Tensor,
filter_type: str,
# Gaussian Blur Params
blur_sigma: float,
blur_kernel_size: float, # Can be float (relative) or int (absolute)
# Down/Up Sampling Params
resize_factor: float,
):
"""
Applies the specified low-pass filtering operation to the input tensor.
Handles 4D ([B, C, H, W]) and 5D ([B, C, F, H, W]) tensors by temporarily
reshaping 5D tensors for spatial filtering.
"""
# --- Early Exits for No-Op Cases ---
if filter_type == "none":
return tensor
if filter_type == "down_up" and resize_factor == 1.0:
return tensor
if filter_type == "gaussian_blur" and blur_sigma == 0:
return tensor
# --- Reshape 5D tensor for spatial filtering ---
is_5d = tensor.ndim == 5
if is_5d:
B, C, K, H, W = tensor.shape
# Flatten frames into batch dimension using view
tensor = tensor.view(B * K, C, H, W)
else:
B, C, H, W = tensor.shape
# --- Apply Selected Filter ---
if filter_type == "gaussian_blur":
if isinstance(blur_kernel_size, float):
kernel_val = max(int(blur_kernel_size * H), 1)
else:
kernel_val = int(blur_kernel_size)
if kernel_val % 2 == 0:
kernel_val += 1
tensor = tvF.gaussian_blur(tensor, kernel_size=[kernel_val, kernel_val], sigma=[blur_sigma, blur_sigma])
elif filter_type == "down_up":
h0, w0 = tensor.shape[-2:]
h1 = max(1, int(round(h0 * resize_factor)))
w1 = max(1, int(round(w0 * resize_factor)))
tensor = F.interpolate(tensor, size=(h1, w1), mode="bilinear", align_corners=False, antialias=True)
tensor = F.interpolate(tensor, size=(h0, w0), mode="bilinear", align_corners=False, antialias=True)
# --- Restore original 5D shape if necessary ---
if is_5d:
tensor = tensor.view(B, C, K, H, W)
return tensor
def get_lp_strength(
step_index: int,
total_steps: int,
lp_strength_schedule_type: str,
# Interval params
schedule_interval_start_time: float,
schedule_interval_end_time: float,
# Linear params
schedule_linear_start_weight: float,
schedule_linear_end_weight: float,
schedule_linear_end_time: float,
# Exponential params
schedule_exp_decay_rate: float,
) -> float:
"""
Calculates the low-pass guidance strength multiplier for the current timestep
based on the specified schedule.
"""
step_norm = step_index / max(total_steps - 1, 1)
if lp_strength_schedule_type == "linear":
schedule_duration_fraction = schedule_linear_end_time
if schedule_duration_fraction <= 0:
return schedule_linear_start_weight
if step_norm >= schedule_duration_fraction:
current_strength = schedule_linear_end_weight
else:
progress = step_norm / schedule_duration_fraction
current_strength = schedule_linear_start_weight * (1 - progress) + schedule_linear_end_weight * progress
return current_strength
elif lp_strength_schedule_type == "interval":
if schedule_interval_start_time <= step_norm <= schedule_interval_end_time:
return 1.0
else:
return 0.0
elif lp_strength_schedule_type == "exponential":
decay_rate = schedule_exp_decay_rate
if decay_rate < 0:
print(f"Warning: Negative exponential_decay_rate ({decay_rate}) is unusual. Using abs value.")
decay_rate = abs(decay_rate)
return math.exp(-decay_rate * step_norm)
elif lp_strength_schedule_type == "none":
return 1.0
else:
print(f"Warning: Unknown lp_strength_schedule_type '{lp_strength_schedule_type}'. Using constant strength 1.0.")
return 1.0
def _generate_crop_size_list(base_size=256, patch_size=32, max_ratio=4.0):
"""generate crop size list (HunyuanVideo)
Args:
base_size (int, optional): the base size for generate bucket. Defaults to 256.
patch_size (int, optional): the stride to generate bucket. Defaults to 32.
max_ratio (float, optional): th max ratio for h or w based on base_size . Defaults to 4.0.
Returns:
list: generate crop size list
"""
num_patches = round((base_size / patch_size) ** 2)
assert max_ratio >= 1.0
crop_size_list = []
wp, hp = num_patches, 1
while wp > 0:
if max(wp, hp) / min(wp, hp) <= max_ratio:
crop_size_list.append((wp * patch_size, hp * patch_size))
if (hp + 1) * wp <= num_patches:
hp += 1
else:
wp -= 1
return crop_size_list
def _get_closest_ratio(height: float, width: float, ratios: list, buckets: list):
"""get the closest ratio in the buckets (HunyuanVideo)
Args:
height (float): video height
width (float): video width
ratios (list): video aspect ratio
buckets (list): buckets generate by `generate_crop_size_list`
Returns:
the closest ratio in the buckets and the corresponding ratio
"""
aspect_ratio = float(height) / float(width)
diff_ratios = ratios - aspect_ratio
if aspect_ratio >= 1:
indices = [(index, x) for index, x in enumerate(diff_ratios) if x <= 0]
else:
indices = [(index, x) for index, x in enumerate(diff_ratios) if x > 0]
closest_ratio_id = min(indices, key=lambda pair: abs(pair[1]))[0]
closest_size = buckets[closest_ratio_id]
closest_ratio = ratios[closest_ratio_id]
return closest_size, closest_ratio
def get_hunyuan_video_size(i2v_resolution, input_image):
"""
Map to target height and width based on resolution for HunyuanVideo
Args:
height (float): video height
width (float): video width
ratios (list): video aspect ratio
buckets (list): buckets generate by `generate_crop_size_list`
Returns:
the closest ratio in the buckets and the corresponding ratio
"""
if i2v_resolution == "720p":
bucket_hw_base_size = 960
elif i2v_resolution == "540p":
bucket_hw_base_size = 720
elif i2v_resolution == "360p":
bucket_hw_base_size = 480
origin_size = input_image.size
crop_size_list = _generate_crop_size_list(bucket_hw_base_size, 32)
aspect_ratios = np.array([round(float(h)/float(w), 5) for h, w in crop_size_list])
closest_size, _ = _get_closest_ratio(origin_size[1], origin_size[0], aspect_ratios, crop_size_list)
target_height, target_width = closest_size
return target_height, target_width