Datasets:

Languages:
English
Size:
n<1K
License:
srikarym commited on
Commit
9bae667
·
verified ·
1 Parent(s): b98423d

Upload folder using huggingface_hub

Browse files
Files changed (1) hide show
  1. ZoomLDM-demo-dataset.py +7 -18
ZoomLDM-demo-dataset.py CHANGED
@@ -86,41 +86,30 @@ class TCGADataset(datasets.GeneratorBasedBuilder):
86
  def _split_generators(self, dl_manager):
87
 
88
 
89
- original_script_dir = Path(self.base_path).resolve()
90
- mag_folder_name = self.config.data_dir
91
-
92
- mag_data_abs_path = original_script_dir / "data" / mag_folder_name
93
-
94
- print(f"base path: {self.base_path}")
95
- print(f"Original script directory: {original_script_dir}")
96
- print(f"Using data directory: {mag_folder_name}")
97
- print(f"Absolute path to data: {mag_data_abs_path}")
98
-
99
-
100
 
101
  return [
102
  datasets.SplitGenerator(
103
  name=datasets.Split.TRAIN,
104
  gen_kwargs={
105
- "mag_folder_abs_path": mag_data_abs_path,
106
  "mag_level": self.config.mag_level,
107
  },
108
  ),
109
  ]
110
 
111
- def _generate_examples(self, mag_folder_abs_path: Path, mag_level: str):
112
  idx = 0
113
  for i in range(16):
114
  img_filename = f"{i}.jpg"
115
  feat_filename = f"{i}_ssl_feat.npy"
116
 
117
- img_path = mag_folder_abs_path / img_filename
118
- img = Image.open(img_filename).convert("RGB")
119
  img_np = np.array(img)
120
- feat_path = mag_folder_abs_path / feat_filename
121
-
122
 
123
- ssl_feat_data = np.load(feat_filename)
 
124
  processed_feature = preprocess_features(ssl_feat_data)
125
 
126
  h = np.sqrt(processed_feature.shape[1]).astype(int)
 
86
  def _split_generators(self, dl_manager):
87
 
88
 
89
+ mag_folder = f"data/{self.config.mag_level}"
 
 
 
 
 
 
 
 
 
 
90
 
91
  return [
92
  datasets.SplitGenerator(
93
  name=datasets.Split.TRAIN,
94
  gen_kwargs={
95
+ "mag_folder": mag_folder,
96
  "mag_level": self.config.mag_level,
97
  },
98
  ),
99
  ]
100
 
101
+ def _generate_examples(self, mag_folder: Path, mag_level: str):
102
  idx = 0
103
  for i in range(16):
104
  img_filename = f"{i}.jpg"
105
  feat_filename = f"{i}_ssl_feat.npy"
106
 
107
+ img_path = f"{self.base_path}/{mag_folder}/{img_filename}"
108
+ img = Image.open(img_path).convert("RGB")
109
  img_np = np.array(img)
 
 
110
 
111
+ feat_path = f"{self.base_path}/{mag_folder}/{feat_filename}"
112
+ ssl_feat_data = np.load(feat_path)
113
  processed_feature = preprocess_features(ssl_feat_data)
114
 
115
  h = np.sqrt(processed_feature.shape[1]).astype(int)