Upload folder using huggingface_hub
Browse files- ZoomLDM-demo-dataset.py +7 -18
ZoomLDM-demo-dataset.py
CHANGED
|
@@ -86,41 +86,30 @@ class TCGADataset(datasets.GeneratorBasedBuilder):
|
|
| 86 |
def _split_generators(self, dl_manager):
|
| 87 |
|
| 88 |
|
| 89 |
-
|
| 90 |
-
mag_folder_name = self.config.data_dir
|
| 91 |
-
|
| 92 |
-
mag_data_abs_path = original_script_dir / "data" / mag_folder_name
|
| 93 |
-
|
| 94 |
-
print(f"base path: {self.base_path}")
|
| 95 |
-
print(f"Original script directory: {original_script_dir}")
|
| 96 |
-
print(f"Using data directory: {mag_folder_name}")
|
| 97 |
-
print(f"Absolute path to data: {mag_data_abs_path}")
|
| 98 |
-
|
| 99 |
-
|
| 100 |
|
| 101 |
return [
|
| 102 |
datasets.SplitGenerator(
|
| 103 |
name=datasets.Split.TRAIN,
|
| 104 |
gen_kwargs={
|
| 105 |
-
"
|
| 106 |
"mag_level": self.config.mag_level,
|
| 107 |
},
|
| 108 |
),
|
| 109 |
]
|
| 110 |
|
| 111 |
-
def _generate_examples(self,
|
| 112 |
idx = 0
|
| 113 |
for i in range(16):
|
| 114 |
img_filename = f"{i}.jpg"
|
| 115 |
feat_filename = f"{i}_ssl_feat.npy"
|
| 116 |
|
| 117 |
-
img_path =
|
| 118 |
-
img = Image.open(
|
| 119 |
img_np = np.array(img)
|
| 120 |
-
feat_path = mag_folder_abs_path / feat_filename
|
| 121 |
-
|
| 122 |
|
| 123 |
-
|
|
|
|
| 124 |
processed_feature = preprocess_features(ssl_feat_data)
|
| 125 |
|
| 126 |
h = np.sqrt(processed_feature.shape[1]).astype(int)
|
|
|
|
| 86 |
def _split_generators(self, dl_manager):
|
| 87 |
|
| 88 |
|
| 89 |
+
mag_folder = f"data/{self.config.mag_level}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 90 |
|
| 91 |
return [
|
| 92 |
datasets.SplitGenerator(
|
| 93 |
name=datasets.Split.TRAIN,
|
| 94 |
gen_kwargs={
|
| 95 |
+
"mag_folder": mag_folder,
|
| 96 |
"mag_level": self.config.mag_level,
|
| 97 |
},
|
| 98 |
),
|
| 99 |
]
|
| 100 |
|
| 101 |
+
def _generate_examples(self, mag_folder: Path, mag_level: str):
|
| 102 |
idx = 0
|
| 103 |
for i in range(16):
|
| 104 |
img_filename = f"{i}.jpg"
|
| 105 |
feat_filename = f"{i}_ssl_feat.npy"
|
| 106 |
|
| 107 |
+
img_path = f"{self.base_path}/{mag_folder}/{img_filename}"
|
| 108 |
+
img = Image.open(img_path).convert("RGB")
|
| 109 |
img_np = np.array(img)
|
|
|
|
|
|
|
| 110 |
|
| 111 |
+
feat_path = f"{self.base_path}/{mag_folder}/{feat_filename}"
|
| 112 |
+
ssl_feat_data = np.load(feat_path)
|
| 113 |
processed_feature = preprocess_features(ssl_feat_data)
|
| 114 |
|
| 115 |
h = np.sqrt(processed_feature.shape[1]).astype(int)
|