Sreyan88 commited on
Commit
b2ec8b4
1 Parent(s): 89a9fc5

Upload librispeech_asr.py

Browse files
Files changed (1) hide show
  1. librispeech_asr.py +252 -0
librispeech_asr.py ADDED
@@ -0,0 +1,252 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2021 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ # Lint as: python3
17
+ """Librispeech automatic speech recognition dataset."""
18
+
19
+
20
+ import os
21
+
22
+ import datasets
23
+ from datasets.tasks import AutomaticSpeechRecognition
24
+
25
+
26
+ _CITATION = """\
27
+ @inproceedings{panayotov2015librispeech,
28
+ title={Librispeech: an ASR corpus based on public domain audio books},
29
+ author={Panayotov, Vassil and Chen, Guoguo and Povey, Daniel and Khudanpur, Sanjeev},
30
+ booktitle={Acoustics, Speech and Signal Processing (ICASSP), 2015 IEEE International Conference on},
31
+ pages={5206--5210},
32
+ year={2015},
33
+ organization={IEEE}
34
+ }
35
+ """
36
+
37
+ _DESCRIPTION = """\
38
+ LibriSpeech is a corpus of approximately 1000 hours of read English speech with sampling rate of 16 kHz,
39
+ prepared by Vassil Panayotov with the assistance of Daniel Povey. The data is derived from read
40
+ audiobooks from the LibriVox project, and has been carefully segmented and aligned.87
41
+ """
42
+
43
+ _URL = "http://www.openslr.org/12"
44
+ _DL_URL = "http://www.openslr.org/resources/12/"
45
+
46
+
47
+ _DL_URLS = {
48
+ "clean": {
49
+ "dev": _DL_URL + "dev-clean.tar.gz",
50
+ },
51
+ "other": {
52
+ "test": _DL_URL + "test-other.tar.gz",
53
+ "dev": _DL_URL + "dev-other.tar.gz",
54
+ "train.500": _DL_URL + "train-other-500.tar.gz",
55
+ },
56
+ "all": {
57
+ "dev.clean": _DL_URL + "dev-clean.tar.gz",
58
+ "dev.other": _DL_URL + "dev-other.tar.gz",
59
+ "test.clean": _DL_URL + "test-clean.tar.gz",
60
+ "test.other": _DL_URL + "test-other.tar.gz",
61
+ "train.clean.100": _DL_URL + "train-clean-100.tar.gz",
62
+ "train.clean.360": _DL_URL + "train-clean-360.tar.gz",
63
+ "train.other.500": _DL_URL + "train-other-500.tar.gz",
64
+ },
65
+ }
66
+
67
+
68
+ class LibrispeechASRConfig(datasets.BuilderConfig):
69
+ """BuilderConfig for LibriSpeechASR."""
70
+
71
+ def __init__(self, **kwargs):
72
+ """
73
+ Args:
74
+ data_dir: `string`, the path to the folder containing the files in the
75
+ downloaded .tar
76
+ citation: `string`, citation for the data set
77
+ url: `string`, url for information about the data set
78
+ **kwargs: keyword arguments forwarded to super.
79
+ """
80
+ super(LibrispeechASRConfig, self).__init__(version=datasets.Version("2.1.0", ""), **kwargs)
81
+
82
+
83
+ class LibrispeechASR(datasets.GeneratorBasedBuilder):
84
+ """Librispeech dataset."""
85
+
86
+ DEFAULT_WRITER_BATCH_SIZE = 256
87
+ DEFAULT_CONFIG_NAME = "all"
88
+ BUILDER_CONFIGS = [
89
+ LibrispeechASRConfig(name="clean", description="'Clean' speech."),
90
+ LibrispeechASRConfig(name="other", description="'Other', more challenging, speech."),
91
+ LibrispeechASRConfig(name="all", description="Combined clean and other dataset."),
92
+ ]
93
+
94
+ def _info(self):
95
+ return datasets.DatasetInfo(
96
+ description=_DESCRIPTION,
97
+ features=datasets.Features(
98
+ {
99
+ "file": datasets.Value("string"),
100
+ "audio": datasets.Audio(sampling_rate=16_000),
101
+ "text": datasets.Value("string"),
102
+ "speaker_id": datasets.Value("int64"),
103
+ "chapter_id": datasets.Value("int64"),
104
+ "id": datasets.Value("string"),
105
+ }
106
+ ),
107
+ supervised_keys=("file", "text"),
108
+ homepage=_URL,
109
+ citation=_CITATION,
110
+ task_templates=[AutomaticSpeechRecognition(audio_column="audio", transcription_column="text")],
111
+ )
112
+
113
+ def _split_generators(self, dl_manager):
114
+ archive_path = dl_manager.download(_DL_URLS[self.config.name])
115
+ # (Optional) In non-streaming mode, we can extract the archive locally to have actual local audio files:
116
+ local_extracted_archive = dl_manager.extract(archive_path) if not dl_manager.is_streaming else {}
117
+
118
+ if self.config.name == "clean":
119
+ dev_splits = [
120
+ datasets.SplitGenerator(
121
+ name=datasets.Split.VALIDATION,
122
+ gen_kwargs={
123
+ "local_extracted_archive": local_extracted_archive.get("dev"),
124
+ "files": dl_manager.iter_archive(archive_path["dev"]),
125
+ },
126
+ )
127
+ ]
128
+
129
+ elif self.config.name == "other":
130
+ train_splits = [
131
+ datasets.SplitGenerator(
132
+ name="train.500",
133
+ gen_kwargs={
134
+ "local_extracted_archive": local_extracted_archive.get("train.500"),
135
+ "files": dl_manager.iter_archive(archive_path["train.500"]),
136
+ },
137
+ )
138
+ ]
139
+ dev_splits = [
140
+ datasets.SplitGenerator(
141
+ name=datasets.Split.VALIDATION,
142
+ gen_kwargs={
143
+ "local_extracted_archive": local_extracted_archive.get("dev"),
144
+ "files": dl_manager.iter_archive(archive_path["dev"]),
145
+ },
146
+ )
147
+ ]
148
+ test_splits = [
149
+ datasets.SplitGenerator(
150
+ name=datasets.Split.TEST,
151
+ gen_kwargs={
152
+ "local_extracted_archive": local_extracted_archive.get("test"),
153
+ "files": dl_manager.iter_archive(archive_path["test"]),
154
+ },
155
+ )
156
+ ]
157
+ elif self.config.name == "all":
158
+ train_splits = [
159
+ datasets.SplitGenerator(
160
+ name="train.clean.100",
161
+ gen_kwargs={
162
+ "local_extracted_archive": local_extracted_archive.get("train.clean.100"),
163
+ "files": dl_manager.iter_archive(archive_path["train.clean.100"]),
164
+ },
165
+ ),
166
+ datasets.SplitGenerator(
167
+ name="train.clean.360",
168
+ gen_kwargs={
169
+ "local_extracted_archive": local_extracted_archive.get("train.clean.360"),
170
+ "files": dl_manager.iter_archive(archive_path["train.clean.360"]),
171
+ },
172
+ ),
173
+ datasets.SplitGenerator(
174
+ name="train.other.500",
175
+ gen_kwargs={
176
+ "local_extracted_archive": local_extracted_archive.get("train.other.500"),
177
+ "files": dl_manager.iter_archive(archive_path["train.other.500"]),
178
+ },
179
+ ),
180
+ ]
181
+ dev_splits = [
182
+ datasets.SplitGenerator(
183
+ name="validation.clean",
184
+ gen_kwargs={
185
+ "local_extracted_archive": local_extracted_archive.get("validation.clean"),
186
+ "files": dl_manager.iter_archive(archive_path["dev.clean"]),
187
+ },
188
+ ),
189
+ datasets.SplitGenerator(
190
+ name="validation.other",
191
+ gen_kwargs={
192
+ "local_extracted_archive": local_extracted_archive.get("validation.other"),
193
+ "files": dl_manager.iter_archive(archive_path["dev.other"]),
194
+ },
195
+ ),
196
+ ]
197
+ test_splits = [
198
+ datasets.SplitGenerator(
199
+ name="test.clean",
200
+ gen_kwargs={
201
+ "local_extracted_archive": local_extracted_archive.get("test.clean"),
202
+ "files": dl_manager.iter_archive(archive_path["test.clean"]),
203
+ },
204
+ ),
205
+ datasets.SplitGenerator(
206
+ name="test.other",
207
+ gen_kwargs={
208
+ "local_extracted_archive": local_extracted_archive.get("test.other"),
209
+ "files": dl_manager.iter_archive(archive_path["test.other"]),
210
+ },
211
+ ),
212
+ ]
213
+
214
+ return train_splits + dev_splits + test_splits
215
+
216
+ def _generate_examples(self, files, local_extracted_archive):
217
+ """Generate examples from a LibriSpeech archive_path."""
218
+ key = 0
219
+ audio_data = {}
220
+ transcripts = []
221
+ for path, f in files:
222
+ if path.endswith(".flac"):
223
+ id_ = path.split("/")[-1][: -len(".flac")]
224
+ audio_data[id_] = f.read()
225
+ elif path.endswith(".trans.txt"):
226
+ for line in f:
227
+ if line:
228
+ line = line.decode("utf-8").strip()
229
+ id_, transcript = line.split(" ", 1)
230
+ audio_file = f"{id_}.flac"
231
+ speaker_id, chapter_id = [int(el) for el in id_.split("-")[:2]]
232
+ audio_file = (
233
+ os.path.join(local_extracted_archive, audio_file)
234
+ if local_extracted_archive
235
+ else audio_file
236
+ )
237
+ transcripts.append(
238
+ {
239
+ "id": id_,
240
+ "speaker_id": speaker_id,
241
+ "chapter_id": chapter_id,
242
+ "file": audio_file,
243
+ "text": transcript,
244
+ }
245
+ )
246
+ if audio_data and len(audio_data) == len(transcripts):
247
+ for transcript in transcripts:
248
+ audio = {"path": transcript["file"], "bytes": audio_data[transcript["id"]]}
249
+ yield key, {"audio": audio, **transcript}
250
+ key += 1
251
+ audio_data = {}
252
+ transcripts = []