|
import os |
|
import einops |
|
from omegaconf import OmegaConf |
|
import torch |
|
import torch as th |
|
import torch.nn as nn |
|
from modules import devices, lowvram, shared |
|
|
|
from ldm.modules.diffusionmodules.util import ( |
|
conv_nd, |
|
linear, |
|
zero_module, |
|
timestep_embedding, |
|
) |
|
|
|
from ldm.modules.attention import SpatialTransformer |
|
from ldm.modules.diffusionmodules.openaimodel import UNetModel, TimestepEmbedSequential, ResBlock, Downsample, AttentionBlock |
|
from ldm.util import exists |
|
|
|
|
|
def load_state_dict(ckpt_path, location='cpu'): |
|
_, extension = os.path.splitext(ckpt_path) |
|
if extension.lower() == ".safetensors": |
|
import safetensors.torch |
|
state_dict = safetensors.torch.load_file(ckpt_path, device=location) |
|
else: |
|
state_dict = get_state_dict(torch.load( |
|
ckpt_path, map_location=torch.device(location))) |
|
state_dict = get_state_dict(state_dict) |
|
print(f'Loaded state_dict from [{ckpt_path}]') |
|
return state_dict |
|
|
|
|
|
def get_state_dict(d): |
|
return d.get('state_dict', d) |
|
|
|
|
|
def align(hint, size): |
|
b, c, h1, w1 = hint.shape |
|
h, w = size |
|
if h != h1 or w != w1: |
|
hint = torch.nn.functional.interpolate(hint, size=size, mode="nearest") |
|
return hint |
|
|
|
|
|
def get_node_name(name, parent_name): |
|
if len(name) <= len(parent_name): |
|
return False, '' |
|
p = name[:len(parent_name)] |
|
if p != parent_name: |
|
return False, '' |
|
return True, name[len(parent_name):] |
|
|
|
|
|
class PlugableControlModel(nn.Module): |
|
def __init__(self, model_path, config_path, weight=1.0, lowvram=False, base_model=None) -> None: |
|
super().__init__() |
|
|
|
config_path = "/mnt/workspace/stable-diffusion-webui/extensions/sd-webui-controlnet/models/cldm_v15.yaml" |
|
print(config_path) |
|
config = OmegaConf.load(config_path) |
|
|
|
self.control_model = ControlNet(**config.model.params.control_stage_config.params) |
|
state_dict = load_state_dict(model_path) |
|
|
|
if any([k.startswith("control_model.") for k, v in state_dict.items()]): |
|
|
|
is_diff_model = 'difference' in state_dict |
|
transfer_ctrl_opt = shared.opts.data.get("control_net_control_transfer", False) and \ |
|
any([k.startswith("model.diffusion_model.") for k, v in state_dict.items()]) |
|
|
|
if (is_diff_model or transfer_ctrl_opt) and base_model is not None: |
|
|
|
|
|
unet_state_dict = base_model.state_dict() |
|
unet_state_dict_keys = unet_state_dict.keys() |
|
final_state_dict = {} |
|
counter = 0 |
|
for key in state_dict.keys(): |
|
if not key.startswith("control_model."): |
|
continue |
|
|
|
p = state_dict[key] |
|
is_control, node_name = get_node_name(key, 'control_') |
|
key_name = node_name.replace("model.", "") if is_control else key |
|
|
|
if key_name in unet_state_dict_keys: |
|
if is_diff_model: |
|
|
|
p_new = p + unet_state_dict[key_name].clone().cpu() |
|
else: |
|
|
|
p_new = p + unet_state_dict[key_name].clone().cpu() - state_dict["model.diffusion_model."+key_name] |
|
counter += 1 |
|
else: |
|
p_new = p |
|
final_state_dict[key] = p_new |
|
|
|
print(f'Offset cloned: {counter} values') |
|
state_dict = final_state_dict |
|
|
|
state_dict = {k.replace("control_model.", ""): v for k, v in state_dict.items() if k.startswith("control_model.")} |
|
else: |
|
|
|
pass |
|
|
|
self.control_model.load_state_dict(state_dict) |
|
self.lowvram = lowvram |
|
self.weight = weight |
|
self.only_mid_control = False |
|
self.control = None |
|
self.hint_cond = None |
|
|
|
if not self.lowvram: |
|
self.control_model.to(devices.get_device_for("controlnet")) |
|
|
|
def hook(self, model, parent_model): |
|
outer = self |
|
|
|
def forward(self, x, timesteps=None, context=None, **kwargs): |
|
only_mid_control = outer.only_mid_control |
|
|
|
|
|
|
|
if abs(x.shape[-1] - outer.hint_cond.shape[-1] // 8) > 8: |
|
only_mid_control = shared.opts.data.get("control_net_only_midctrl_hires", True) |
|
|
|
|
|
|
|
control = outer.control_model(x=x, hint=outer.hint_cond, timesteps=timesteps, context=context) |
|
assert timesteps is not None, ValueError(f"insufficient timestep: {timesteps}") |
|
hs = [] |
|
with torch.no_grad(): |
|
t_emb = timestep_embedding( |
|
timesteps, self.model_channels, repeat_only=False) |
|
emb = self.time_embed(t_emb) |
|
h = x.type(self.dtype) |
|
for module in self.input_blocks: |
|
h = module(h, emb, context) |
|
hs.append(h) |
|
h = self.middle_block(h, emb, context) |
|
|
|
h += control.pop() |
|
|
|
for i, module in enumerate(self.output_blocks): |
|
if only_mid_control: |
|
h = torch.cat([h, hs.pop()], dim=1) |
|
else: |
|
hs_input, control_input = hs.pop(), control.pop() |
|
h = align(h, hs_input.shape[-2:]) |
|
h = torch.cat([h, hs_input + control_input * outer.weight], dim=1) |
|
h = module(h, emb, context) |
|
|
|
h = h.type(x.dtype) |
|
return self.out(h) |
|
|
|
def forward2(*args, **kwargs): |
|
|
|
try: |
|
if shared.cmd_opts.lowvram: |
|
lowvram.send_everything_to_cpu() |
|
if self.lowvram: |
|
self.control_model.to(devices.get_device_for("controlnet")) |
|
return forward(*args, **kwargs) |
|
finally: |
|
if self.lowvram: |
|
self.control_model.cpu() |
|
|
|
model._original_forward = model.forward |
|
model.forward = forward2.__get__(model, UNetModel) |
|
|
|
def notify(self, cond_like, weight): |
|
self.hint_cond = cond_like |
|
self.weight = weight |
|
|
|
|
|
def restore(self, model): |
|
if not hasattr(model, "_original_forward"): |
|
|
|
return |
|
|
|
model.forward = model._original_forward |
|
del model._original_forward |
|
|
|
|
|
class ControlNet(nn.Module): |
|
def __init__( |
|
self, |
|
image_size, |
|
in_channels, |
|
model_channels, |
|
hint_channels, |
|
num_res_blocks, |
|
attention_resolutions, |
|
dropout=0, |
|
channel_mult=(1, 2, 4, 8), |
|
conv_resample=True, |
|
dims=2, |
|
use_checkpoint=False, |
|
use_fp16=False, |
|
num_heads=-1, |
|
num_head_channels=-1, |
|
num_heads_upsample=-1, |
|
use_scale_shift_norm=False, |
|
resblock_updown=False, |
|
use_new_attention_order=False, |
|
use_spatial_transformer=False, |
|
transformer_depth=1, |
|
context_dim=None, |
|
|
|
n_embed=None, |
|
legacy=True, |
|
disable_self_attentions=None, |
|
num_attention_blocks=None, |
|
disable_middle_self_attn=False, |
|
use_linear_in_transformer=False, |
|
): |
|
super().__init__() |
|
if use_spatial_transformer: |
|
assert context_dim is not None, 'Fool!! You forgot to include the dimension of your cross-attention conditioning...' |
|
|
|
if context_dim is not None: |
|
assert use_spatial_transformer, 'Fool!! You forgot to use the spatial transformer for your cross-attention conditioning...' |
|
from omegaconf.listconfig import ListConfig |
|
if type(context_dim) == ListConfig: |
|
context_dim = list(context_dim) |
|
|
|
if num_heads_upsample == -1: |
|
num_heads_upsample = num_heads |
|
|
|
if num_heads == -1: |
|
assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set' |
|
|
|
if num_head_channels == -1: |
|
assert num_heads != -1, 'Either num_heads or num_head_channels has to be set' |
|
|
|
self.dims = dims |
|
self.image_size = image_size |
|
self.in_channels = in_channels |
|
self.model_channels = model_channels |
|
if isinstance(num_res_blocks, int): |
|
self.num_res_blocks = len(channel_mult) * [num_res_blocks] |
|
else: |
|
if len(num_res_blocks) != len(channel_mult): |
|
raise ValueError("provide num_res_blocks either as an int (globally constant) or " |
|
"as a list/tuple (per-level) with the same length as channel_mult") |
|
self.num_res_blocks = num_res_blocks |
|
if disable_self_attentions is not None: |
|
|
|
assert len(disable_self_attentions) == len(channel_mult) |
|
if num_attention_blocks is not None: |
|
assert len(num_attention_blocks) == len(self.num_res_blocks) |
|
assert all(map(lambda i: self.num_res_blocks[i] >= num_attention_blocks[i], range( |
|
len(num_attention_blocks)))) |
|
print(f"Constructor of UNetModel received num_attention_blocks={num_attention_blocks}. " |
|
f"This option has LESS priority than attention_resolutions {attention_resolutions}, " |
|
f"i.e., in cases where num_attention_blocks[i] > 0 but 2**i not in attention_resolutions, " |
|
f"attention will still not be set.") |
|
|
|
self.attention_resolutions = attention_resolutions |
|
self.dropout = dropout |
|
self.channel_mult = channel_mult |
|
self.conv_resample = conv_resample |
|
self.use_checkpoint = use_checkpoint |
|
self.dtype = th.float16 if use_fp16 else th.float32 |
|
self.num_heads = num_heads |
|
self.num_head_channels = num_head_channels |
|
self.num_heads_upsample = num_heads_upsample |
|
self.predict_codebook_ids = n_embed is not None |
|
|
|
time_embed_dim = model_channels * 4 |
|
self.time_embed = nn.Sequential( |
|
linear(model_channels, time_embed_dim), |
|
nn.SiLU(), |
|
linear(time_embed_dim, time_embed_dim), |
|
) |
|
|
|
self.input_blocks = nn.ModuleList( |
|
[ |
|
TimestepEmbedSequential( |
|
conv_nd(dims, in_channels, model_channels, 3, padding=1) |
|
) |
|
] |
|
) |
|
self.zero_convs = nn.ModuleList([self.make_zero_conv(model_channels)]) |
|
|
|
self.input_hint_block = TimestepEmbedSequential( |
|
conv_nd(dims, hint_channels, 16, 3, padding=1), |
|
nn.SiLU(), |
|
conv_nd(dims, 16, 16, 3, padding=1), |
|
nn.SiLU(), |
|
conv_nd(dims, 16, 32, 3, padding=1, stride=2), |
|
nn.SiLU(), |
|
conv_nd(dims, 32, 32, 3, padding=1), |
|
nn.SiLU(), |
|
conv_nd(dims, 32, 96, 3, padding=1, stride=2), |
|
nn.SiLU(), |
|
conv_nd(dims, 96, 96, 3, padding=1), |
|
nn.SiLU(), |
|
conv_nd(dims, 96, 256, 3, padding=1, stride=2), |
|
nn.SiLU(), |
|
zero_module(conv_nd(dims, 256, model_channels, 3, padding=1)) |
|
) |
|
|
|
self._feature_size = model_channels |
|
input_block_chans = [model_channels] |
|
ch = model_channels |
|
ds = 1 |
|
for level, mult in enumerate(channel_mult): |
|
for nr in range(self.num_res_blocks[level]): |
|
layers = [ |
|
ResBlock( |
|
ch, |
|
time_embed_dim, |
|
dropout, |
|
out_channels=mult * model_channels, |
|
dims=dims, |
|
use_checkpoint=use_checkpoint, |
|
use_scale_shift_norm=use_scale_shift_norm, |
|
) |
|
] |
|
ch = mult * model_channels |
|
if ds in attention_resolutions: |
|
if num_head_channels == -1: |
|
dim_head = ch // num_heads |
|
else: |
|
num_heads = ch // num_head_channels |
|
dim_head = num_head_channels |
|
if legacy: |
|
|
|
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels |
|
if exists(disable_self_attentions): |
|
disabled_sa = disable_self_attentions[level] |
|
else: |
|
disabled_sa = False |
|
|
|
if not exists(num_attention_blocks) or nr < num_attention_blocks[level]: |
|
layers.append( |
|
AttentionBlock( |
|
ch, |
|
use_checkpoint=use_checkpoint, |
|
num_heads=num_heads, |
|
num_head_channels=dim_head, |
|
use_new_attention_order=use_new_attention_order, |
|
) if not use_spatial_transformer else SpatialTransformer( |
|
ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim, |
|
disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer, |
|
use_checkpoint=use_checkpoint |
|
) |
|
) |
|
self.input_blocks.append(TimestepEmbedSequential(*layers)) |
|
self.zero_convs.append(self.make_zero_conv(ch)) |
|
self._feature_size += ch |
|
input_block_chans.append(ch) |
|
if level != len(channel_mult) - 1: |
|
out_ch = ch |
|
self.input_blocks.append( |
|
TimestepEmbedSequential( |
|
ResBlock( |
|
ch, |
|
time_embed_dim, |
|
dropout, |
|
out_channels=out_ch, |
|
dims=dims, |
|
use_checkpoint=use_checkpoint, |
|
use_scale_shift_norm=use_scale_shift_norm, |
|
down=True, |
|
) |
|
if resblock_updown |
|
else Downsample( |
|
ch, conv_resample, dims=dims, out_channels=out_ch |
|
) |
|
) |
|
) |
|
ch = out_ch |
|
input_block_chans.append(ch) |
|
self.zero_convs.append(self.make_zero_conv(ch)) |
|
ds *= 2 |
|
self._feature_size += ch |
|
|
|
if num_head_channels == -1: |
|
dim_head = ch // num_heads |
|
else: |
|
num_heads = ch // num_head_channels |
|
dim_head = num_head_channels |
|
if legacy: |
|
|
|
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels |
|
self.middle_block = TimestepEmbedSequential( |
|
ResBlock( |
|
ch, |
|
time_embed_dim, |
|
dropout, |
|
dims=dims, |
|
use_checkpoint=use_checkpoint, |
|
use_scale_shift_norm=use_scale_shift_norm, |
|
), |
|
AttentionBlock( |
|
ch, |
|
use_checkpoint=use_checkpoint, |
|
num_heads=num_heads, |
|
num_head_channels=dim_head, |
|
use_new_attention_order=use_new_attention_order, |
|
|
|
) if not use_spatial_transformer else SpatialTransformer( |
|
ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim, |
|
disable_self_attn=disable_middle_self_attn, use_linear=use_linear_in_transformer, |
|
use_checkpoint=use_checkpoint |
|
), |
|
ResBlock( |
|
ch, |
|
time_embed_dim, |
|
dropout, |
|
dims=dims, |
|
use_checkpoint=use_checkpoint, |
|
use_scale_shift_norm=use_scale_shift_norm, |
|
), |
|
) |
|
self.middle_block_out = self.make_zero_conv(ch) |
|
self._feature_size += ch |
|
|
|
def make_zero_conv(self, channels): |
|
return TimestepEmbedSequential(zero_module(conv_nd(self.dims, channels, channels, 1, padding=0))) |
|
|
|
def align(self, hint, h, w): |
|
c, h1, w1 = hint.shape |
|
if h != h1 or w != w1: |
|
hint = align(hint.unsqueeze(0), (h, w)) |
|
return hint.squeeze(0) |
|
return hint |
|
|
|
def forward(self, x, hint, timesteps, context, **kwargs): |
|
t_emb = timestep_embedding( |
|
timesteps, self.model_channels, repeat_only=False) |
|
emb = self.time_embed(t_emb) |
|
|
|
guided_hint = self.input_hint_block(hint, emb, context) |
|
outs = [] |
|
|
|
h1, w1 = x.shape[-2:] |
|
guided_hint = self.align(guided_hint, h1, w1) |
|
|
|
h = x.type(self.dtype) |
|
for module, zero_conv in zip(self.input_blocks, self.zero_convs): |
|
if guided_hint is not None: |
|
h = module(h, emb, context) |
|
h += guided_hint |
|
guided_hint = None |
|
else: |
|
h = module(h, emb, context) |
|
outs.append(zero_conv(h, emb, context)) |
|
|
|
h = self.middle_block(h, emb, context) |
|
outs.append(self.middle_block_out(h, emb, context)) |
|
|
|
return outs |