Delete download_datasets_in_wav_or_mp3_and_create_csv.ipynb
Browse files
download_datasets_in_wav_or_mp3_and_create_csv.ipynb
DELETED
|
@@ -1,71 +0,0 @@
|
|
| 1 |
-
{
|
| 2 |
-
"cells": [
|
| 3 |
-
{
|
| 4 |
-
"cell_type": "code",
|
| 5 |
-
"execution_count": null,
|
| 6 |
-
"metadata": {},
|
| 7 |
-
"outputs": [],
|
| 8 |
-
"source": [
|
| 9 |
-
"from datasets import load_dataset\n",
|
| 10 |
-
"import soundfile as sf, os, re, neologdn\n",
|
| 11 |
-
"from tqdm import tqdm\n",
|
| 12 |
-
"\n",
|
| 13 |
-
"max = 20.0\n",
|
| 14 |
-
"min = 1.0\n",
|
| 15 |
-
"\n",
|
| 16 |
-
"dataset = load_dataset(\"Sin2pi/JA_audio_JA_text_180k_samples\", split=\"train\", trust_remote_code=True, streaming=True)\n",
|
| 17 |
-
"\n",
|
| 18 |
-
"name = \"gvs\"\n",
|
| 19 |
-
"ouput_dir = \"./datasets/\"\n",
|
| 20 |
-
"output_file = 'metadata.csv' # create metadata file with file names and transcripts\n",
|
| 21 |
-
"os.makedirs(ouput_dir + name, exist_ok=True)\n",
|
| 22 |
-
"folder_path = ouput_dir + name # Create a folder to store the audio and transcription files\n",
|
| 23 |
-
"\n",
|
| 24 |
-
"char = '[ 0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ1234567890♬♪♩♫]'\n",
|
| 25 |
-
"special_characters = '[“%‘”~゛#$%&()*+:;〈=〉@^_{|}~\"█』『.;:<>_()*&^$#@`, ]' #「」\n",
|
| 26 |
-
"\n",
|
| 27 |
-
"for i, sample in tqdm(enumerate(dataset)): # Process each sample in the filtered dataset\n",
|
| 28 |
-
" audio_sample = name + f'_{i}.mp3' # or wav\n",
|
| 29 |
-
" audio_path = os.path.join(folder_path, audio_sample)\n",
|
| 30 |
-
" transcription_path = os.path.join(folder_path, out_file) # Path to save transcription file \n",
|
| 31 |
-
" if not os.path.exists(audio_path):\n",
|
| 32 |
-
" patterns = [(r\"…\",'。'), (r\"!!\",'!'), (special_characters,\"\"), (r\"\\s+\", \"\")] # (r\"(.)\\1{2}\")\n",
|
| 33 |
-
" for pattern, replace in patterns:\n",
|
| 34 |
-
" sample[\"sentence\"] = re.sub(pattern, replace, sample[\"sentence\"])\n",
|
| 35 |
-
" sample[\"sentence\"] = (neologdn.normalize(sample[\"sentence\"], repeat=1)) # for Japanese only, repeat number reduces repeat characters\n",
|
| 36 |
-
" sample[\"sentence_length\"] = len(sample[\"sentence\"]) # Get sentence lengths \n",
|
| 37 |
-
" sample[\"audio_length\"] = len(sample[\"audio\"][\"array\"]) / sample[\"audio\"][\"sampling_rate\"] # Get audio length, remove if not needed\n",
|
| 38 |
-
" if bool(sample[\"sentence\"]) and max > sample[\"audio_length\"] > min and not re.search(char, sample[\"sentence\"]) and sample[\"sentence_length\"] > min_char:\n",
|
| 39 |
-
" sf.write(audio_path, sample['audio']['array'], sample['audio']['sampling_rate']) # Get files \n",
|
| 40 |
-
" # process_directory(folder_path, (folder_path + \"/trimmed/\")) # for use with audio sample silence removal script\n",
|
| 41 |
-
" if os.path.isfile(audio_path):\n",
|
| 42 |
-
" os.remove(audio_path)\n",
|
| 43 |
-
" with open(transcription_path, 'a', encoding='utf-8') as transcription_file:\n",
|
| 44 |
-
" transcription_file.write(audio_sample+\",\") # Save transcription file name \n",
|
| 45 |
-
" transcription_file.write(sample['sentence']) # Save transcription \n",
|
| 46 |
-
" transcription_file.write('\\n')"
|
| 47 |
-
]
|
| 48 |
-
}
|
| 49 |
-
],
|
| 50 |
-
"metadata": {
|
| 51 |
-
"kernelspec": {
|
| 52 |
-
"display_name": "Python 3",
|
| 53 |
-
"language": "python",
|
| 54 |
-
"name": "python3"
|
| 55 |
-
},
|
| 56 |
-
"language_info": {
|
| 57 |
-
"codemirror_mode": {
|
| 58 |
-
"name": "ipython",
|
| 59 |
-
"version": 3
|
| 60 |
-
},
|
| 61 |
-
"file_extension": ".py",
|
| 62 |
-
"mimetype": "text/x-python",
|
| 63 |
-
"name": "python",
|
| 64 |
-
"nbconvert_exporter": "python",
|
| 65 |
-
"pygments_lexer": "ipython3",
|
| 66 |
-
"version": "3.10.0"
|
| 67 |
-
}
|
| 68 |
-
},
|
| 69 |
-
"nbformat": 4,
|
| 70 |
-
"nbformat_minor": 2
|
| 71 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|