Datasets:

Modalities:
Text
Libraries:
Datasets
License:
NER-BAILII-UK-CCA / NER-BAILII-UK-CCA.py
Waleed-bin-Qamar's picture
Upload NER-BAILII-UK-CCA.py
0ba220d
raw
history blame
6.59 kB
# coding=utf-8
# Copyright 2020 HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
"""Waleed-bin-Qamar/NER-BAILII-UK-CCA. Criminal court appeals of uk"""
import csv
import json
import os
import datasets
logger = datasets.logging.get_logger(__name__)
_CITATION = """\
@inproceedings{title = "A great new dataset",
author = "A great new dataset",
booktitle = "A great new dataset",
month = sep,
year = "2050",
address = "a,b",
publisher = "Association in b",
doi = " ",
pages = " ",
abstract = " ",
}
"""
_DESCRIPTION = """\
A great new dataset
"""
# due privacy issues private addresses are used
_URL = "https://drive.google.com/"
_TRAINING_FILE_URL = "uc?id=1Hn30-V5tm_JxKB7Q09BpZJu1VylinpGu&export=download"
_DEV_FILE_URL = "uc?id=1saGAPzk0zaj6dIo5FKa1rb5SCdHwJnAq&export=download"
_TEST_FILE_URL = "uc?id=1stsN0Iq1guKNH0oJc0ZjqIj57ExR_iYT&export=download"
class NER_BAILIIConfig(datasets.BuilderConfig):
def __init__(self, **kwargs):
"""BuilderConfig for NER_BAILIIConfig.
Args:
**kwargs: keyword arguments forwarded to super.
"""
super(NER_BAILIIConfig, self).__init__(**kwargs)
class NER_BAILII(datasets.GeneratorBasedBuilder):
"""NER-BAILII-UK-CCA. Criminal court appeals of uk"""
BUILDER_CONFIGS = [
NER_BAILIIConfig(
name="NER-BAILII-UK-CCA", version=datasets.Version("1.0.0"), description="The NER-BAILII-UK-CCA Name Entities recognization Dataset"
)
]
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{"id": datasets.Value("string"),
"tokens": datasets.Sequence(datasets.Value("string")),
"ner_tags": datasets.Sequence(
datasets.features.ClassLabel(
names=[
'O',
'B-defendant_pleaded_guilty',
'I-defendant_pleaded_guilty',
'B-appeal_against_sentence',
'I-appeal_against_sentence',
'B-defendant',
'I-defendant',
'B-date_of_original_trial_or_conviction',
'I-date_of_original_trial_or_conviction',
'B-offence',
'I-offence',
'B-defendant_original_sentence',
'I-defendant_original_sentence',
'B-decision_granted',
'I-decision_granted',
'B-date_of_crime',
'I-date_of_crime',
'B-decision_refused',
'I-decision_refused',
'B-expert_witness_used_at_original_trail',
'I-expert_witness_used_at_original_trail',
'B-victim_age',
'I-victim_age',
'B-defendant_is_female',
'I-defendant_is_female',
'B-appeal_against_conviction',
'I-appeal_against_conviction',
'B-defendant_custodial_sentence_years',
'I-defendant_custodial_sentence_years',
'B-date_of_offence',
'I-date_of_offence',
'B-decision_quashed',
'I-decision_quashed',
'B-defendant_gender',
'B-victim_is_male',
'B-victim_is_female',
'B-victim_gender',
'B-previous_convictions',
'I-previous_convictions',
'I-s_age',
]
)
)
}
),
supervised_keys=None,
homepage="http://linkedin",
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
#_TEST_FILE_URL
#_DEV_FILE_URL
#_TRAINING_FILE_URL
urls_to_download = {
"train": f"{_URL}{_TRAINING_FILE_URL}",
"dev": f"{_URL}{_DEV_FILE_URL}",
"test": f"{_URL}{_TEST_FILE_URL}",
}
downloaded_files = dl_manager.download_and_extract(urls_to_download)
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}),
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"]}),
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}),
]
def _generate_examples(self, filepath):
logger.info("⏳ Generating examples from = %s", filepath)
with open(filepath, encoding="utf-8") as f:
current_tokens = []
current_labels = []
sentence_counter = 0
for row in f:
row = row.rstrip()
if row:
token, label = row.split("\t")
current_tokens.append(token)
current_labels.append(label)
else:
# New sentence
if not current_tokens:
# Consecutive empty lines will cause empty sentences
continue
assert len(current_tokens) == len(current_labels), "💔 between len of tokens & labels"
sentence = (
sentence_counter,
{
"id": str(sentence_counter),
"tokens": current_tokens,
"ner_tags": current_labels,
},
)
sentence_counter += 1
current_tokens = []
current_labels = []
yield sentence
# Don't forget last sentence in dataset 🧐
if current_tokens:
yield sentence_counter, {
"id": str(sentence_counter),
"tokens": current_tokens,
"ner_tags": current_labels,
}