system HF staff commited on
Commit
6ab081c
·
1 Parent(s): a7f53d7

Update files from the datasets library (from 1.3.0)

Browse files

Release notes: https://github.com/huggingface/datasets/releases/tag/1.3.0

Files changed (1) hide show
  1. README.md +149 -0
README.md ADDED
@@ -0,0 +1,149 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ ---
3
+
4
+ # Dataset Card for "emo"
5
+
6
+ ## Table of Contents
7
+ - [Dataset Description](#dataset-description)
8
+ - [Dataset Summary](#dataset-summary)
9
+ - [Supported Tasks](#supported-tasks)
10
+ - [Languages](#languages)
11
+ - [Dataset Structure](#dataset-structure)
12
+ - [Data Instances](#data-instances)
13
+ - [Data Fields](#data-fields)
14
+ - [Data Splits Sample Size](#data-splits-sample-size)
15
+ - [Dataset Creation](#dataset-creation)
16
+ - [Curation Rationale](#curation-rationale)
17
+ - [Source Data](#source-data)
18
+ - [Annotations](#annotations)
19
+ - [Personal and Sensitive Information](#personal-and-sensitive-information)
20
+ - [Considerations for Using the Data](#considerations-for-using-the-data)
21
+ - [Social Impact of Dataset](#social-impact-of-dataset)
22
+ - [Discussion of Biases](#discussion-of-biases)
23
+ - [Other Known Limitations](#other-known-limitations)
24
+ - [Additional Information](#additional-information)
25
+ - [Dataset Curators](#dataset-curators)
26
+ - [Licensing Information](#licensing-information)
27
+ - [Citation Information](#citation-information)
28
+ - [Contributions](#contributions)
29
+
30
+ ## [Dataset Description](#dataset-description)
31
+
32
+ - **Homepage:** [https://www.aclweb.org/anthology/S19-2005/](https://www.aclweb.org/anthology/S19-2005/)
33
+ - **Repository:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
34
+ - **Paper:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
35
+ - **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
36
+ - **Size of downloaded dataset files:** 3.21 MB
37
+ - **Size of the generated dataset:** 2.72 MB
38
+ - **Total amount of disk used:** 5.93 MB
39
+
40
+ ### [Dataset Summary](#dataset-summary)
41
+
42
+ In this dataset, given a textual dialogue i.e. an utterance along with two previous turns of context, the goal was to infer the underlying emotion of the utterance by choosing from four emotion classes - Happy, Sad, Angry and Others.
43
+
44
+ ### [Supported Tasks](#supported-tasks)
45
+
46
+ [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
47
+
48
+ ### [Languages](#languages)
49
+
50
+ [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
51
+
52
+ ## [Dataset Structure](#dataset-structure)
53
+
54
+ We show detailed information for up to 5 configurations of the dataset.
55
+
56
+ ### [Data Instances](#data-instances)
57
+
58
+ #### emo2019
59
+
60
+ - **Size of downloaded dataset files:** 3.21 MB
61
+ - **Size of the generated dataset:** 2.72 MB
62
+ - **Total amount of disk used:** 5.93 MB
63
+
64
+ An example of 'train' looks as follows.
65
+ ```
66
+ {
67
+ "label": 0,
68
+ "text": "don't worry i'm girl hmm how do i know if you are what's ur name"
69
+ }
70
+ ```
71
+
72
+ ### [Data Fields](#data-fields)
73
+
74
+ The data fields are the same among all splits.
75
+
76
+ #### emo2019
77
+ - `text`: a `string` feature.
78
+ - `label`: a classification label, with possible values including `others` (0), `happy` (1), `sad` (2), `angry` (3).
79
+
80
+ ### [Data Splits Sample Size](#data-splits-sample-size)
81
+
82
+ | name |train|test|
83
+ |-------|----:|---:|
84
+ |emo2019|30160|5509|
85
+
86
+ ## [Dataset Creation](#dataset-creation)
87
+
88
+ ### [Curation Rationale](#curation-rationale)
89
+
90
+ [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
91
+
92
+ ### [Source Data](#source-data)
93
+
94
+ [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
95
+
96
+ ### [Annotations](#annotations)
97
+
98
+ [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
99
+
100
+ ### [Personal and Sensitive Information](#personal-and-sensitive-information)
101
+
102
+ [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
103
+
104
+ ## [Considerations for Using the Data](#considerations-for-using-the-data)
105
+
106
+ ### [Social Impact of Dataset](#social-impact-of-dataset)
107
+
108
+ [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
109
+
110
+ ### [Discussion of Biases](#discussion-of-biases)
111
+
112
+ [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
113
+
114
+ ### [Other Known Limitations](#other-known-limitations)
115
+
116
+ [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
117
+
118
+ ## [Additional Information](#additional-information)
119
+
120
+ ### [Dataset Curators](#dataset-curators)
121
+
122
+ [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
123
+
124
+ ### [Licensing Information](#licensing-information)
125
+
126
+ [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
127
+
128
+ ### [Citation Information](#citation-information)
129
+
130
+ ```
131
+ @inproceedings{chatterjee-etal-2019-semeval,
132
+ title={SemEval-2019 Task 3: EmoContext Contextual Emotion Detection in Text},
133
+ author={Ankush Chatterjee and Kedhar Nath Narahari and Meghana Joshi and Puneet Agrawal},
134
+ booktitle={Proceedings of the 13th International Workshop on Semantic Evaluation},
135
+ year={2019},
136
+ address={Minneapolis, Minnesota, USA},
137
+ publisher={Association for Computational Linguistics},
138
+ url={https://www.aclweb.org/anthology/S19-2005},
139
+ doi={10.18653/v1/S19-2005},
140
+ pages={39--48},
141
+ abstract={In this paper, we present the SemEval-2019 Task 3 - EmoContext: Contextual Emotion Detection in Text. Lack of facial expressions and voice modulations make detecting emotions in text a challenging problem. For instance, as humans, on reading ''Why don't you ever text me!'' we can either interpret it as a sad or angry emotion and the same ambiguity exists for machines. However, the context of dialogue can prove helpful in detection of the emotion. In this task, given a textual dialogue i.e. an utterance along with two previous turns of context, the goal was to infer the underlying emotion of the utterance by choosing from four emotion classes - Happy, Sad, Angry and Others. To facilitate the participation in this task, textual dialogues from user interaction with a conversational agent were taken and annotated for emotion classes after several data processing steps. A training data set of 30160 dialogues, and two evaluation data sets, Test1 and Test2, containing 2755 and 5509 dialogues respectively were released to the participants. A total of 311 teams made submissions to this task. The final leader-board was evaluated on Test2 data set, and the highest ranked submission achieved 79.59 micro-averaged F1 score. Our analysis of systems submitted to the task indicate that Bi-directional LSTM was the most common choice of neural architecture used, and most of the systems had the best performance for the Sad emotion class, and the worst for the Happy emotion class}
142
+ }
143
+
144
+ ```
145
+
146
+
147
+ ### Contributions
148
+
149
+ Thanks to [@thomwolf](https://github.com/thomwolf), [@lordtt13](https://github.com/lordtt13), [@lhoestq](https://github.com/lhoestq) for adding this dataset.