Datasets:

Languages:
English
ArXiv:
License:
Krazybeautiful85 commited on
Commit
cfd8ae8
·
verified ·
1 Parent(s): f00baf5

Upload 3 files

Browse files
Files changed (3) hide show
  1. README (2).md +204 -0
  2. gitattributes (2).txt +27 -0
  3. samsum (2).py +112 -0
README (2).md ADDED
@@ -0,0 +1,204 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ annotations_creators:
3
+ - expert-generated
4
+ language_creators:
5
+ - expert-generated
6
+ language:
7
+ - en
8
+ license:
9
+ - cc-by-nc-nd-4.0
10
+ multilinguality:
11
+ - monolingual
12
+ size_categories:
13
+ - 10K<n<100K
14
+ source_datasets:
15
+ - original
16
+ task_categories:
17
+ - summarization
18
+ task_ids: []
19
+ paperswithcode_id: samsum-corpus
20
+ pretty_name: SAMSum Corpus
21
+ tags:
22
+ - conversations-summarization
23
+ dataset_info:
24
+ features:
25
+ - name: id
26
+ dtype: string
27
+ - name: dialogue
28
+ dtype: string
29
+ - name: summary
30
+ dtype: string
31
+ config_name: samsum
32
+ splits:
33
+ - name: train
34
+ num_bytes: 9479141
35
+ num_examples: 14732
36
+ - name: test
37
+ num_bytes: 534492
38
+ num_examples: 819
39
+ - name: validation
40
+ num_bytes: 516431
41
+ num_examples: 818
42
+ download_size: 2944100
43
+ dataset_size: 10530064
44
+ train-eval-index:
45
+ - config: samsum
46
+ task: summarization
47
+ task_id: summarization
48
+ splits:
49
+ eval_split: test
50
+ col_mapping:
51
+ dialogue: text
52
+ summary: target
53
+ ---
54
+
55
+ # Dataset Card for SAMSum Corpus
56
+
57
+ ## Table of Contents
58
+ - [Dataset Description](#dataset-description)
59
+ - [Dataset Summary](#dataset-summary)
60
+ - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
61
+ - [Languages](#languages)
62
+ - [Dataset Structure](#dataset-structure)
63
+ - [Data Instances](#data-instances)
64
+ - [Data Fields](#data-fields)
65
+ - [Data Splits](#data-splits)
66
+ - [Dataset Creation](#dataset-creation)
67
+ - [Curation Rationale](#curation-rationale)
68
+ - [Source Data](#source-data)
69
+ - [Annotations](#annotations)
70
+ - [Personal and Sensitive Information](#personal-and-sensitive-information)
71
+ - [Considerations for Using the Data](#considerations-for-using-the-data)
72
+ - [Social Impact of Dataset](#social-impact-of-dataset)
73
+ - [Discussion of Biases](#discussion-of-biases)
74
+ - [Other Known Limitations](#other-known-limitations)
75
+ - [Additional Information](#additional-information)
76
+ - [Dataset Curators](#dataset-curators)
77
+ - [Licensing Information](#licensing-information)
78
+ - [Citation Information](#citation-information)
79
+ - [Contributions](#contributions)
80
+
81
+ ## Dataset Description
82
+
83
+ - **Homepage:** https://arxiv.org/abs/1911.12237v2
84
+ - **Repository:** [Needs More Information]
85
+ - **Paper:** https://arxiv.org/abs/1911.12237v2
86
+ - **Leaderboard:** [Needs More Information]
87
+ - **Point of Contact:** [Needs More Information]
88
+
89
+ ### Dataset Summary
90
+
91
+ The SAMSum dataset contains about 16k messenger-like conversations with summaries. Conversations were created and written down by linguists fluent in English. Linguists were asked to create conversations similar to those they write on a daily basis, reflecting the proportion of topics of their real-life messenger convesations. The style and register are diversified - conversations could be informal, semi-formal or formal, they may contain slang words, emoticons and typos. Then, the conversations were annotated with summaries. It was assumed that summaries should be a concise brief of what people talked about in the conversation in third person.
92
+ The SAMSum dataset was prepared by Samsung R&D Institute Poland and is distributed for research purposes (non-commercial licence: CC BY-NC-ND 4.0).
93
+
94
+ ### Supported Tasks and Leaderboards
95
+
96
+ [Needs More Information]
97
+
98
+ ### Languages
99
+
100
+ English
101
+
102
+ ## Dataset Structure
103
+
104
+ ### Data Instances
105
+
106
+ The created dataset is made of 16369 conversations distributed uniformly into 4 groups based on the number of utterances in con- versations: 3-6, 7-12, 13-18 and 19-30. Each utterance contains the name of the speaker. Most conversations consist of dialogues between two interlocutors (about 75% of all conversations), the rest is between three or more people
107
+
108
+ The first instance in the training set:
109
+ {'id': '13818513', 'summary': 'Amanda baked cookies and will bring Jerry some tomorrow.', 'dialogue': "Amanda: I baked cookies. Do you want some?\r\nJerry: Sure!\r\nAmanda: I'll bring you tomorrow :-)"}
110
+
111
+ ### Data Fields
112
+
113
+ - dialogue: text of dialogue.
114
+ - summary: human written summary of the dialogue.
115
+ - id: unique id of an example.
116
+
117
+ ### Data Splits
118
+
119
+ - train: 14732
120
+ - val: 818
121
+ - test: 819
122
+
123
+
124
+ ## Dataset Creation
125
+
126
+ ### Curation Rationale
127
+
128
+ In paper:
129
+ > In the first approach, we reviewed datasets from the following categories: chatbot dialogues, SMS corpora, IRC/chat data, movie dialogues, tweets, comments data (conversations formed by replies to comments), transcription of meetings, written discussions, phone dialogues and daily communication data. Unfortunately, they all differed in some respect from the conversations that are typ- ically written in messenger apps, e.g. they were too technical (IRC data), too long (comments data, transcription of meetings), lacked context (movie dialogues) or they were more of a spoken type, such as a dialogue between a petrol station assis- tant and a client buying petrol.
130
+ As a consequence, we decided to create a chat dialogue dataset by constructing such conversa- tions that would epitomize the style of a messenger app.
131
+
132
+ ### Source Data
133
+
134
+ #### Initial Data Collection and Normalization
135
+
136
+ In paper:
137
+ > We asked linguists to create conversations similar to those they write on a daily basis, reflecting the proportion of topics of their real-life messenger conversations. It includes chit-chats, gossiping about friends, arranging meetings, discussing politics, consulting university assignments with colleagues, etc. Therefore, this dataset does not contain any sensitive data or fragments of other corpora.
138
+
139
+ #### Who are the source language producers?
140
+
141
+ linguists
142
+
143
+ ### Annotations
144
+
145
+ #### Annotation process
146
+
147
+ In paper:
148
+ > Each dialogue was created by one person. After collecting all of the conversations, we asked language experts to annotate them with summaries, assuming that they should (1) be rather short, (2) extract important pieces of information, (3) include names of interlocutors, (4) be written in the third person. Each dialogue contains only one ref- erence summary.
149
+
150
+ #### Who are the annotators?
151
+
152
+ language experts
153
+
154
+ ### Personal and Sensitive Information
155
+
156
+ None, see above: Initial Data Collection and Normalization
157
+
158
+ ## Considerations for Using the Data
159
+
160
+ ### Social Impact of Dataset
161
+
162
+ [Needs More Information]
163
+
164
+ ### Discussion of Biases
165
+
166
+ [Needs More Information]
167
+
168
+ ### Other Known Limitations
169
+
170
+ [Needs More Information]
171
+
172
+ ## Additional Information
173
+
174
+ ### Dataset Curators
175
+
176
+ [Needs More Information]
177
+
178
+ ### Licensing Information
179
+
180
+ non-commercial licence: CC BY-NC-ND 4.0
181
+
182
+ ### Citation Information
183
+
184
+ ```
185
+ @inproceedings{gliwa-etal-2019-samsum,
186
+ title = "{SAMS}um Corpus: A Human-annotated Dialogue Dataset for Abstractive Summarization",
187
+ author = "Gliwa, Bogdan and
188
+ Mochol, Iwona and
189
+ Biesek, Maciej and
190
+ Wawer, Aleksander",
191
+ booktitle = "Proceedings of the 2nd Workshop on New Frontiers in Summarization",
192
+ month = nov,
193
+ year = "2019",
194
+ address = "Hong Kong, China",
195
+ publisher = "Association for Computational Linguistics",
196
+ url = "https://www.aclweb.org/anthology/D19-5409",
197
+ doi = "10.18653/v1/D19-5409",
198
+ pages = "70--79"
199
+ }
200
+ ```
201
+
202
+ ### Contributions
203
+
204
+ Thanks to [@cccntu](https://github.com/cccntu) for adding this dataset.
gitattributes (2).txt ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bin.* filter=lfs diff=lfs merge=lfs -text
5
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.model filter=lfs diff=lfs merge=lfs -text
12
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
13
+ *.onnx filter=lfs diff=lfs merge=lfs -text
14
+ *.ot filter=lfs diff=lfs merge=lfs -text
15
+ *.parquet filter=lfs diff=lfs merge=lfs -text
16
+ *.pb filter=lfs diff=lfs merge=lfs -text
17
+ *.pt filter=lfs diff=lfs merge=lfs -text
18
+ *.pth filter=lfs diff=lfs merge=lfs -text
19
+ *.rar filter=lfs diff=lfs merge=lfs -text
20
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
21
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
22
+ *.tflite filter=lfs diff=lfs merge=lfs -text
23
+ *.tgz filter=lfs diff=lfs merge=lfs -text
24
+ *.xz filter=lfs diff=lfs merge=lfs -text
25
+ *.zip filter=lfs diff=lfs merge=lfs -text
26
+ *.zstandard filter=lfs diff=lfs merge=lfs -text
27
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
samsum (2).py ADDED
@@ -0,0 +1,112 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """SAMSum dataset."""
16
+
17
+
18
+ import json
19
+
20
+ import py7zr
21
+
22
+ import datasets
23
+
24
+
25
+ _CITATION = """
26
+ @article{gliwa2019samsum,
27
+ title={SAMSum Corpus: A Human-annotated Dialogue Dataset for Abstractive Summarization},
28
+ author={Gliwa, Bogdan and Mochol, Iwona and Biesek, Maciej and Wawer, Aleksander},
29
+ journal={arXiv preprint arXiv:1911.12237},
30
+ year={2019}
31
+ }
32
+ """
33
+
34
+ _DESCRIPTION = """
35
+ SAMSum Corpus contains over 16k chat dialogues with manually annotated
36
+ summaries.
37
+ There are two features:
38
+ - dialogue: text of dialogue.
39
+ - summary: human written summary of the dialogue.
40
+ - id: id of a example.
41
+ """
42
+
43
+ _HOMEPAGE = "https://arxiv.org/abs/1911.12237"
44
+
45
+ _LICENSE = "CC BY-NC-ND 4.0"
46
+
47
+ _URL = "https://huggingface.co/datasets/samsum/resolve/main/data/corpus.7z"
48
+
49
+
50
+ class Samsum(datasets.GeneratorBasedBuilder):
51
+ """SAMSum Corpus dataset."""
52
+
53
+ VERSION = datasets.Version("1.1.0")
54
+
55
+ BUILDER_CONFIGS = [
56
+ datasets.BuilderConfig(name="samsum"),
57
+ ]
58
+
59
+ def _info(self):
60
+ features = datasets.Features(
61
+ {
62
+ "id": datasets.Value("string"),
63
+ "dialogue": datasets.Value("string"),
64
+ "summary": datasets.Value("string"),
65
+ }
66
+ )
67
+ return datasets.DatasetInfo(
68
+ description=_DESCRIPTION,
69
+ features=features,
70
+ supervised_keys=None,
71
+ homepage=_HOMEPAGE,
72
+ license=_LICENSE,
73
+ citation=_CITATION,
74
+ )
75
+
76
+ def _split_generators(self, dl_manager):
77
+ """Returns SplitGenerators."""
78
+ path = dl_manager.download(_URL)
79
+ return [
80
+ datasets.SplitGenerator(
81
+ name=datasets.Split.TRAIN,
82
+ gen_kwargs={
83
+ "filepath": (path, "train.json"),
84
+ "split": "train",
85
+ },
86
+ ),
87
+ datasets.SplitGenerator(
88
+ name=datasets.Split.TEST,
89
+ gen_kwargs={
90
+ "filepath": (path, "test.json"),
91
+ "split": "test",
92
+ },
93
+ ),
94
+ datasets.SplitGenerator(
95
+ name=datasets.Split.VALIDATION,
96
+ gen_kwargs={
97
+ "filepath": (path, "val.json"),
98
+ "split": "val",
99
+ },
100
+ ),
101
+ ]
102
+
103
+ def _generate_examples(self, filepath, split):
104
+ """Yields examples."""
105
+ path, fname = filepath
106
+ with open(path, "rb") as f:
107
+ with py7zr.SevenZipFile(f, "r") as z:
108
+ for name, bio in z.readall().items():
109
+ if name == fname:
110
+ data = json.load(bio)
111
+ for example in data:
112
+ yield example["id"], example