bilalsm commited on
Commit
9074274
Β·
verified Β·
1 Parent(s): 61ebf27

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +200 -0
README.md ADDED
@@ -0,0 +1,200 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc-by-nc-nd-4.0
3
+ task_categories:
4
+ - other
5
+ tags:
6
+ - chemistry
7
+ - mass-spectrometry
8
+ - DOM
9
+ - formula-assignment
10
+ - knn
11
+ - dissolved-organic-matter
12
+ - molecular-formula
13
+ pretty_name: DOM Formula Assignment Dataset
14
+ size_categories:
15
+ - n<1K
16
+ ---
17
+
18
+ # DOM Formula Assignment Dataset
19
+
20
+ [![GitHub](https://img.shields.io/badge/GitHub-pcdslab/dom--formula--assignment--using--ml-blue?logo=github)](https://github.com/pcdslab/dom-formula-assignment-using-ml)
21
+
22
+ **Training and Testing Data for Machine Learning-Based Molecular Formula Assignment in Fulvic Acid DOM Mass Spectra**
23
+
24
+ > **Paper**: Under review
25
+
26
+ ---
27
+
28
+ ## Abstract
29
+
30
+ Dissolved organic matter (DOM) is a critical component of aquatic ecosystems, with the fulvic acid fraction (FA-DOM) exhibiting high mobility and ready bioavailability to microbial communities. While understanding the molecular composition is a vital area of study, the heterogeneity of the material, with a vast number of diverse compounds, makes this task challenging. Existing methods often struggle with incomplete formula assignment or reduced coverage highlighting the need for a better approach. In this study, we developed a machine learning approach using the k-nearest neighbors (KNN) algorithm to predict molecular formulas from ultra-high-resolution mass spectrometry data. The model was trained on chemical formulas assigned to multiple DOM samples using 7 Tesla(7T) and a 21 Tesla(21T) Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) system, and tested on an independent 9.4 T FT-ICR MS Fulvic Acid dataset. A synthetic dataset of plausible elemental combinations (C, H, O, N, S) was also generated to enhance generalization. Our approach achieved a 99.9% assignment rate on the labeled test set and assigned a total of 13,605 formulas for unlabeled peaks compared to the existing approach, which assigned 5914 formulas, achieving up to a 2.3X improvement in formula assignment coverage compared to existing methods.
31
+
32
+ ---
33
+
34
+ ## Dataset Description
35
+
36
+ This dataset contains training and testing data for Dissolved Organic Matter (DOM) formula assignment using K-Nearest Neighbors (KNN) machine learning models. The dataset includes mass spectrometry data from different sources and instruments (7T, 21T FT-ICR MS) used to train and evaluate KNN models for automated molecular formula assignment in DOM samples.
37
+
38
+ ### Dataset Structure
39
+
40
+ ```
41
+ β”œβ”€β”€ DOM_training_set_ver2/ # 7T FT-ICR MS training data
42
+ β”‚ β”œβ”€β”€ Table_Harney_River_*.xlsx # Harney River samples (5 files)
43
+ β”‚ β”œβ”€β”€ Table_Pantanal_*.xlsx # Pantanal samples (2 files)
44
+ β”‚ β”œβ”€β”€ Table_Suwannee_River_Fulvic_Acid_2.xlsx
45
+ β”‚ └── Families_Tables/ # Chemical family classifications
46
+ β”‚ β”œβ”€β”€ Families-Short-hr1.csv
47
+ β”‚ β”œβ”€β”€ Families-Short-hr5.csv
48
+ β”‚ β”œβ”€β”€ Families-Short-pantanal.csv
49
+ β”‚ └── Families-Short-srfa.csv
50
+ β”‚
51
+ β”œβ”€β”€ DOM_training_set_ver3/ # 21T FT-ICR MS training data
52
+ β”‚ β”œβ”€β”€ Table_Harney_River_*_21T.xlsx # 21T Harney River samples (5 files)
53
+ β”‚ └── Table_Suwannee_River_Fulvic_Acid_2_21T.xlsx
54
+ β”‚
55
+ β”œβ”€β”€ synthetic_data/ # Synthetic formula combinations
56
+ β”‚ └── formula_combinations_*.csv # 51 files covering m/z ranges 100-610
57
+ β”‚
58
+ β”œβ”€β”€ DOM_testing_set/ # Testing samples
59
+ β”‚ β”œβ”€β”€ Table_Pahokee_River_Fulvic_Acid.xlsx
60
+ β”‚ β”œβ”€β”€ Table_Suwannee_River_Fulvic_Acid_2_v2.xlsx
61
+ β”‚ └── Table_Suwannee_River_Fulvic_Acid_3.xlsx
62
+ β”‚
63
+ β”œβ”€β”€ DOM_testing_set_Peaklists/ # Detailed peaklists for testing
64
+ β”‚ β”œβ”€β”€ PPFA/ # Pahokee Peat Fulvic Acid
65
+ β”‚ β”œβ”€β”€ SRFA2/ # Suwannee River Fulvic Acid 2
66
+ β”‚ └── SRFA3/ # Suwannee River Fulvic Acid 3
67
+ ```
68
+
69
+ ---
70
+
71
+ ## Data Preview
72
+
73
+ ### Synthetic Data (formula_combinations_100-110.csv)
74
+ ```csv
75
+ Formula,Mass_Daltons
76
+ CH9OS2,100.0023
77
+ CHO2N4,100.0027
78
+ C3H3O3N,100.0041
79
+ C2H3O2N3,100.0153
80
+ ...
81
+ ```
82
+
83
+ ### Testing Set Peaklists (SRFA3_neg_8M_0.5s_5ppm_aFTk_PeakList_Rec.csv)
84
+ ```csv
85
+ m/z Exp.,Intensity
86
+ 101.0410446,0.002990723
87
+ 101.045957,0.006607056
88
+ 101.0480263,0.003494263
89
+ 101.0494431,0.006072998
90
+ ...
91
+ ```
92
+
93
+ ---
94
+
95
+ ## Data Sources
96
+
97
+ ### Training Data
98
+
99
+ - **7T FT-ICR MS Data (ver2)**: High-resolution mass spectrometry data from a 7 Tesla instrument
100
+ - 8 Excel files with assigned formulas
101
+
102
+ - **21T FT-ICR MS Data (ver3)**: Ultra-high resolution data from a 21 Tesla instrument
103
+ - 6 Excel files with assigned formulas
104
+ - Higher mass accuracy and resolution
105
+
106
+ - **Synthetic Data**: Computationally generated formula combinations
107
+ - 51 CSV files covering m/z range 100-610 Da
108
+ - Used to expand training coverage for underrepresented m/z regions
109
+
110
+ ### Testing Data
111
+
112
+ - **DOM Testing Set**: Independent samples for model validation
113
+ - Pahokee Peat Fulvic Acid (PPFA)
114
+ - Suwannee River Fulvic Acid standards (SRFA2, SRFA3)
115
+
116
+ - **Peaklists**: Detailed peak information with multiple acquisition methods
117
+ - Different pulse sequences (aFTk, aFTsk, dmFTk)
118
+ - CSV format with m/z and intensity data
119
+
120
+
121
+
122
+ ---
123
+
124
+ ## Usage
125
+
126
+ This dataset is designed to be used with the DOM KNN models available at:
127
+ [SaeedLab/dom-formula-assignment-using-knn](https://huggingface.co/SaeedLab/dom-formula-assignment-using-knn)
128
+
129
+ ### Loading the Dataset
130
+
131
+ ```python
132
+ from huggingface_hub import hf_hub_download
133
+ import pandas as pd
134
+
135
+ # Download a specific training file
136
+ file_path = hf_hub_download(
137
+ repo_id="SaeedLab/dom-formula-assignment-data",
138
+ filename="DOM_training_set_ver2/Table_Harney_River_1.xlsx",
139
+ repo_type="dataset"
140
+ )
141
+
142
+ # Load with pandas
143
+ df = pd.read_excel(file_path)
144
+ print(df.head())
145
+ ```
146
+
147
+ ### Download Synthetic Data
148
+
149
+ ```python
150
+ from huggingface_hub import hf_hub_download
151
+ import pandas as pd
152
+
153
+ # Download synthetic formula combinations
154
+ file_path = hf_hub_download(
155
+ repo_id="SaeedLab/dom-formula-assignment-data",
156
+ filename="synthetic_data/formula_combinations_200-210.csv",
157
+ repo_type="dataset"
158
+ )
159
+
160
+ df = pd.read_csv(file_path)
161
+ print(f"Loaded {len(df)} synthetic formulas")
162
+ ```
163
+
164
+ ### Download Entire Dataset
165
+
166
+ ```python
167
+ from huggingface_hub import snapshot_download
168
+
169
+ # Download all data
170
+ data_path = snapshot_download(
171
+ repo_id="SaeedLab/dom-formula-assignment-data",
172
+ repo_type="dataset"
173
+ )
174
+ print(f"Dataset downloaded to: {data_path}")
175
+ ```
176
+
177
+ ---
178
+
179
+ ## Citation
180
+
181
+ This dataset supports research on automated formula assignment in DOM analysis using machine learning. A manuscript describing the methodology is currently under review.
182
+
183
+ ---
184
+
185
+ ## License
186
+
187
+ This model and associated code are released under the CC-BY-NC-ND 4.0 license and may only be used for non-commercial, academic research purposes with proper attribution. Any commercial use, sale, or other monetization of this model and its derivatives, which include models trained on outputs from the model or datasets created from the model, is prohibited and requires prior approval. Downloading the model requires prior registration on Hugging Face and agreeing to the terms of use. By downloading this model, you agree not to distribute, publish or reproduce a copy of the model. If another user within your organization wishes to use the model, they must register as an individual user and agree to comply with the terms of use. Users may not attempt to re-identify the deidentified data used to develop the underlying model. If you are a commercial entity, please contact the corresponding author.
188
+
189
+ ---
190
+
191
+ ## Contact
192
+
193
+ For any additional questions or comments, contact Fahad Saeed (fsaeed@fiu.edu).
194
+
195
+ ---
196
+
197
+ ## Related Resources
198
+
199
+ - **Model Repository**: [SaeedLab/dom-formula-assignment-using-knn](https://huggingface.co/SaeedLab/dom-formula-assignment-using-knn)
200
+ - **GitHub Repository**: [pcdslab/dom-formula-assignment-using-ml](https://github.com/pcdslab/dom-formula-assignment-using-ml)