|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import inspect |
|
|
from copy import copy |
|
|
from datetime import date, datetime, time |
|
|
from enum import Enum |
|
|
from tempfile import TemporaryDirectory |
|
|
from typing import Any |
|
|
from uuid import UUID |
|
|
|
|
|
import pytest |
|
|
from _decimal import Decimal |
|
|
from fastavro import reader, writer |
|
|
|
|
|
import pyiceberg.avro.file as avro |
|
|
from pyiceberg.avro.codecs.deflate import DeflateCodec |
|
|
from pyiceberg.avro.file import META_SCHEMA, AvroFileHeader |
|
|
from pyiceberg.io.pyarrow import PyArrowFileIO |
|
|
from pyiceberg.manifest import ( |
|
|
DEFAULT_BLOCK_SIZE, |
|
|
MANIFEST_ENTRY_SCHEMAS, |
|
|
DataFile, |
|
|
DataFileContent, |
|
|
FileFormat, |
|
|
ManifestEntry, |
|
|
ManifestEntryStatus, |
|
|
) |
|
|
from pyiceberg.schema import Schema |
|
|
from pyiceberg.typedef import Record |
|
|
from pyiceberg.types import ( |
|
|
BooleanType, |
|
|
DateType, |
|
|
DecimalType, |
|
|
DoubleType, |
|
|
FixedType, |
|
|
FloatType, |
|
|
IntegerType, |
|
|
LongType, |
|
|
NestedField, |
|
|
StringType, |
|
|
TimestampType, |
|
|
TimestamptzType, |
|
|
TimeType, |
|
|
UUIDType, |
|
|
) |
|
|
from pyiceberg.utils.schema_conversion import AvroSchemaConversion |
|
|
|
|
|
|
|
|
def get_deflate_compressor() -> None: |
|
|
header = AvroFileHeader(struct=META_SCHEMA) |
|
|
header[0] = bytes(0) |
|
|
header[1] = {"avro.codec": "deflate"} |
|
|
header[2] = bytes(16) |
|
|
assert header.compression_codec() == DeflateCodec |
|
|
|
|
|
|
|
|
def get_null_compressor() -> None: |
|
|
header = AvroFileHeader(struct=META_SCHEMA) |
|
|
header[0] = bytes(0) |
|
|
header[1] = {"avro.codec": "null"} |
|
|
header[2] = bytes(16) |
|
|
assert header.compression_codec() is None |
|
|
|
|
|
|
|
|
def test_unknown_codec() -> None: |
|
|
header = AvroFileHeader(struct=META_SCHEMA) |
|
|
header[0] = bytes(0) |
|
|
header[1] = {"avro.codec": "unknown"} |
|
|
header[2] = bytes(16) |
|
|
|
|
|
with pytest.raises(ValueError) as exc_info: |
|
|
header.compression_codec() |
|
|
|
|
|
assert "Unsupported codec: unknown" in str(exc_info.value) |
|
|
|
|
|
|
|
|
def test_missing_schema() -> None: |
|
|
header = AvroFileHeader(struct=META_SCHEMA) |
|
|
header[0] = bytes(0) |
|
|
header[1] = {} |
|
|
header[2] = bytes(16) |
|
|
|
|
|
with pytest.raises(ValueError) as exc_info: |
|
|
header.get_schema() |
|
|
|
|
|
assert "No schema found in Avro file headers" in str(exc_info.value) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def todict(obj: Any) -> Any: |
|
|
if isinstance(obj, dict): |
|
|
data = [] |
|
|
for k, v in obj.items(): |
|
|
data.append({"key": k, "value": v}) |
|
|
return data |
|
|
elif isinstance(obj, Enum): |
|
|
return obj.value |
|
|
elif hasattr(obj, "__iter__") and not isinstance(obj, str) and not isinstance(obj, bytes): |
|
|
return [todict(v) for v in obj] |
|
|
elif isinstance(obj, Record): |
|
|
return {key: todict(value) for key, value in inspect.getmembers(obj) if not callable(value) and not key.startswith("_")} |
|
|
else: |
|
|
return obj |
|
|
|
|
|
|
|
|
def test_write_manifest_entry_with_iceberg_read_with_fastavro_v1() -> None: |
|
|
data_file = DataFile( |
|
|
content=DataFileContent.DATA, |
|
|
file_path="s3://some-path/some-file.parquet", |
|
|
file_format=FileFormat.PARQUET, |
|
|
partition=Record(), |
|
|
record_count=131327, |
|
|
file_size_in_bytes=220669226, |
|
|
column_sizes={1: 220661854}, |
|
|
value_counts={1: 131327}, |
|
|
null_value_counts={1: 0}, |
|
|
nan_value_counts={}, |
|
|
lower_bounds={1: b"aaaaaaaaaaaaaaaa"}, |
|
|
upper_bounds={1: b"zzzzzzzzzzzzzzzz"}, |
|
|
key_metadata=b"\xde\xad\xbe\xef", |
|
|
split_offsets=[4, 133697593], |
|
|
equality_ids=[], |
|
|
sort_order_id=4, |
|
|
) |
|
|
entry = ManifestEntry( |
|
|
status=ManifestEntryStatus.ADDED, |
|
|
snapshot_id=8638475580105682862, |
|
|
data_sequence_number=0, |
|
|
file_sequence_number=0, |
|
|
data_file=data_file, |
|
|
) |
|
|
|
|
|
additional_metadata = {"foo": "bar"} |
|
|
|
|
|
with TemporaryDirectory() as tmpdir: |
|
|
tmp_avro_file = tmpdir + "/manifest_entry.avro" |
|
|
|
|
|
with avro.AvroOutputFile[ManifestEntry]( |
|
|
output_file=PyArrowFileIO().new_output(tmp_avro_file), |
|
|
file_schema=MANIFEST_ENTRY_SCHEMAS[1], |
|
|
schema_name="manifest_entry", |
|
|
record_schema=MANIFEST_ENTRY_SCHEMAS[2], |
|
|
metadata=additional_metadata, |
|
|
) as out: |
|
|
out.write_block([entry]) |
|
|
|
|
|
with open(tmp_avro_file, "rb") as fo: |
|
|
r = reader(fo=fo) |
|
|
|
|
|
for k, v in additional_metadata.items(): |
|
|
assert k in r.metadata |
|
|
assert v == r.metadata[k] |
|
|
|
|
|
it = iter(r) |
|
|
|
|
|
fa_entry = next(it) |
|
|
|
|
|
v2_entry = todict(entry) |
|
|
|
|
|
|
|
|
del v2_entry["data_sequence_number"] |
|
|
del v2_entry["file_sequence_number"] |
|
|
del v2_entry["data_file"]["content"] |
|
|
del v2_entry["data_file"]["equality_ids"] |
|
|
|
|
|
|
|
|
v2_entry["data_file"]["block_size_in_bytes"] = DEFAULT_BLOCK_SIZE |
|
|
|
|
|
assert v2_entry == fa_entry |
|
|
|
|
|
|
|
|
def test_write_manifest_entry_with_iceberg_read_with_fastavro_v2() -> None: |
|
|
data_file = DataFile( |
|
|
content=DataFileContent.DATA, |
|
|
file_path="s3://some-path/some-file.parquet", |
|
|
file_format=FileFormat.PARQUET, |
|
|
partition=Record(), |
|
|
record_count=131327, |
|
|
file_size_in_bytes=220669226, |
|
|
column_sizes={1: 220661854}, |
|
|
value_counts={1: 131327}, |
|
|
null_value_counts={1: 0}, |
|
|
nan_value_counts={}, |
|
|
lower_bounds={1: b"aaaaaaaaaaaaaaaa"}, |
|
|
upper_bounds={1: b"zzzzzzzzzzzzzzzz"}, |
|
|
key_metadata=b"\xde\xad\xbe\xef", |
|
|
split_offsets=[4, 133697593], |
|
|
equality_ids=[], |
|
|
sort_order_id=4, |
|
|
) |
|
|
entry = ManifestEntry( |
|
|
status=ManifestEntryStatus.ADDED, |
|
|
snapshot_id=8638475580105682862, |
|
|
data_sequence_number=0, |
|
|
file_sequence_number=0, |
|
|
data_file=data_file, |
|
|
) |
|
|
|
|
|
additional_metadata = {"foo": "bar"} |
|
|
|
|
|
with TemporaryDirectory() as tmpdir: |
|
|
tmp_avro_file = tmpdir + "/manifest_entry.avro" |
|
|
|
|
|
with avro.AvroOutputFile[ManifestEntry]( |
|
|
output_file=PyArrowFileIO().new_output(tmp_avro_file), |
|
|
file_schema=MANIFEST_ENTRY_SCHEMAS[2], |
|
|
schema_name="manifest_entry", |
|
|
metadata=additional_metadata, |
|
|
) as out: |
|
|
out.write_block([entry]) |
|
|
|
|
|
with open(tmp_avro_file, "rb") as fo: |
|
|
r = reader(fo=fo) |
|
|
|
|
|
for k, v in additional_metadata.items(): |
|
|
assert k in r.metadata |
|
|
assert v == r.metadata[k] |
|
|
|
|
|
it = iter(r) |
|
|
|
|
|
fa_entry = next(it) |
|
|
|
|
|
assert todict(entry) == fa_entry |
|
|
|
|
|
|
|
|
@pytest.mark.parametrize("format_version", [1, 2]) |
|
|
def test_write_manifest_entry_with_fastavro_read_with_iceberg(format_version: int) -> None: |
|
|
data_file = DataFile( |
|
|
content=DataFileContent.DATA, |
|
|
file_path="s3://some-path/some-file.parquet", |
|
|
file_format=FileFormat.PARQUET, |
|
|
partition=Record(), |
|
|
record_count=131327, |
|
|
file_size_in_bytes=220669226, |
|
|
column_sizes={1: 220661854}, |
|
|
value_counts={1: 131327}, |
|
|
null_value_counts={1: 0}, |
|
|
nan_value_counts={}, |
|
|
lower_bounds={1: b"aaaaaaaaaaaaaaaa"}, |
|
|
upper_bounds={1: b"zzzzzzzzzzzzzzzz"}, |
|
|
key_metadata=b"\xde\xad\xbe\xef", |
|
|
split_offsets=[4, 133697593], |
|
|
equality_ids=[], |
|
|
sort_order_id=4, |
|
|
spec_id=3, |
|
|
) |
|
|
|
|
|
entry = ManifestEntry( |
|
|
status=ManifestEntryStatus.ADDED, |
|
|
snapshot_id=8638475580105682862, |
|
|
data_sequence_number=0, |
|
|
file_sequence_number=0, |
|
|
data_file=data_file, |
|
|
) |
|
|
|
|
|
with TemporaryDirectory() as tmpdir: |
|
|
tmp_avro_file = tmpdir + "/manifest_entry.avro" |
|
|
|
|
|
schema = AvroSchemaConversion().iceberg_to_avro(MANIFEST_ENTRY_SCHEMAS[format_version], schema_name="manifest_entry") |
|
|
|
|
|
with open(tmp_avro_file, "wb") as out: |
|
|
writer(out, schema, [todict(entry)]) |
|
|
|
|
|
|
|
|
with avro.AvroFile[ManifestEntry]( |
|
|
input_file=PyArrowFileIO().new_input(tmp_avro_file), |
|
|
read_schema=MANIFEST_ENTRY_SCHEMAS[2], |
|
|
read_types={-1: ManifestEntry, 2: DataFile}, |
|
|
) as avro_reader: |
|
|
it = iter(avro_reader) |
|
|
avro_entry = next(it) |
|
|
|
|
|
assert entry == avro_entry |
|
|
|
|
|
|
|
|
with avro.AvroFile[ManifestEntry]( |
|
|
input_file=PyArrowFileIO().new_input(tmp_avro_file), |
|
|
read_schema=MANIFEST_ENTRY_SCHEMAS[format_version], |
|
|
read_types={-1: ManifestEntry, 2: DataFile}, |
|
|
) as avro_reader: |
|
|
it = iter(avro_reader) |
|
|
avro_entry = next(it) |
|
|
|
|
|
if format_version == 1: |
|
|
v1_datafile = copy(data_file) |
|
|
|
|
|
v1_datafile.equality_ids = None |
|
|
|
|
|
assert avro_entry == ManifestEntry( |
|
|
status=ManifestEntryStatus.ADDED, |
|
|
snapshot_id=8638475580105682862, |
|
|
|
|
|
data_sequence_number=None, |
|
|
file_sequence_number=None, |
|
|
data_file=v1_datafile, |
|
|
) |
|
|
elif format_version == 2: |
|
|
assert entry == avro_entry |
|
|
else: |
|
|
raise ValueError(f"Unsupported version: {format_version}") |
|
|
|
|
|
|
|
|
@pytest.mark.parametrize("is_required", [True, False]) |
|
|
def test_all_primitive_types(is_required: bool) -> None: |
|
|
all_primitives_schema = Schema( |
|
|
NestedField(field_id=1, name="field_fixed", field_type=FixedType(16), required=is_required), |
|
|
NestedField(field_id=2, name="field_decimal", field_type=DecimalType(6, 2), required=is_required), |
|
|
NestedField(field_id=3, name="field_bool", field_type=BooleanType(), required=is_required), |
|
|
NestedField(field_id=4, name="field_int", field_type=IntegerType(), required=True), |
|
|
NestedField(field_id=5, name="field_long", field_type=LongType(), required=is_required), |
|
|
NestedField(field_id=6, name="field_float", field_type=FloatType(), required=is_required), |
|
|
NestedField(field_id=7, name="field_double", field_type=DoubleType(), required=is_required), |
|
|
NestedField(field_id=8, name="field_date", field_type=DateType(), required=is_required), |
|
|
NestedField(field_id=9, name="field_time", field_type=TimeType(), required=is_required), |
|
|
NestedField(field_id=10, name="field_timestamp", field_type=TimestampType(), required=is_required), |
|
|
NestedField(field_id=11, name="field_timestamptz", field_type=TimestamptzType(), required=is_required), |
|
|
NestedField(field_id=12, name="field_string", field_type=StringType(), required=is_required), |
|
|
NestedField(field_id=13, name="field_uuid", field_type=UUIDType(), required=is_required), |
|
|
schema_id=1, |
|
|
) |
|
|
|
|
|
class AllPrimitivesRecord(Record): |
|
|
field_fixed: bytes |
|
|
field_decimal: Decimal |
|
|
field_bool: bool |
|
|
field_int: int |
|
|
field_long: int |
|
|
field_float: float |
|
|
field_double: float |
|
|
field_date: date |
|
|
field_time: time |
|
|
field_timestamp: datetime |
|
|
field_timestamptz: datetime |
|
|
field_string: str |
|
|
field_uuid: UUID |
|
|
|
|
|
def __init__(self, *data: Any, **named_data: Any) -> None: |
|
|
super().__init__(*data, **{"struct": all_primitives_schema.as_struct(), **named_data}) |
|
|
|
|
|
record = AllPrimitivesRecord( |
|
|
b"\x124Vx\x124Vx\x124Vx\x124Vx", |
|
|
Decimal("123.45"), |
|
|
True, |
|
|
123, |
|
|
429496729622, |
|
|
123.22000122070312, |
|
|
429496729622.314, |
|
|
19052, |
|
|
69922000000, |
|
|
1677629965000000, |
|
|
1677629965000000, |
|
|
"this is a sentence", |
|
|
UUID("12345678-1234-5678-1234-567812345678"), |
|
|
) |
|
|
|
|
|
with TemporaryDirectory() as tmpdir: |
|
|
tmp_avro_file = tmpdir + "/all_primitives.avro" |
|
|
|
|
|
with avro.AvroOutputFile[AllPrimitivesRecord]( |
|
|
PyArrowFileIO().new_output(tmp_avro_file), all_primitives_schema, "all_primitives_schema" |
|
|
) as out: |
|
|
out.write_block([record]) |
|
|
|
|
|
|
|
|
with avro.AvroFile[AllPrimitivesRecord]( |
|
|
PyArrowFileIO().new_input(tmp_avro_file), |
|
|
all_primitives_schema, |
|
|
{-1: AllPrimitivesRecord}, |
|
|
) as avro_reader: |
|
|
it = iter(avro_reader) |
|
|
avro_entry = next(it) |
|
|
|
|
|
|
|
|
with open(tmp_avro_file, "rb") as fo: |
|
|
r = reader(fo=fo) |
|
|
it_fastavro = iter(r) |
|
|
avro_entry_read_with_fastavro = list(next(it_fastavro).values()) |
|
|
|
|
|
for idx, field in enumerate(all_primitives_schema.as_struct()): |
|
|
assert record[idx] == avro_entry[idx], f"Invalid {field}" |
|
|
assert record[idx] == avro_entry_read_with_fastavro[idx], f"Invalid {field} read with fastavro" |
|
|
|