RustRepoTrans
/
Dataset_Construction
/projects
/iceberg
/python
/pyiceberg
/utils
/schema_conversion.py
| # Licensed to the Apache Software Foundation (ASF) under one | |
| # or more contributor license agreements. See the NOTICE file | |
| # distributed with this work for additional information | |
| # regarding copyright ownership. The ASF licenses this file | |
| # to you under the Apache License, Version 2.0 (the | |
| # "License"); you may not use this file except in compliance | |
| # with the License. You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, | |
| # software distributed under the License is distributed on an | |
| # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | |
| # KIND, either express or implied. See the License for the | |
| # specific language governing permissions and limitations | |
| # under the License. | |
| """Utility class for converting between Avro and Iceberg schemas.""" | |
| import logging | |
| from typing import ( | |
| Any, | |
| Dict, | |
| List, | |
| Optional, | |
| Tuple, | |
| Union, | |
| ) | |
| from pyiceberg.schema import Schema, SchemaVisitorPerPrimitiveType, visit | |
| from pyiceberg.types import ( | |
| BinaryType, | |
| BooleanType, | |
| DateType, | |
| DecimalType, | |
| DoubleType, | |
| FixedType, | |
| FloatType, | |
| IcebergType, | |
| IntegerType, | |
| ListType, | |
| LongType, | |
| MapType, | |
| NestedField, | |
| PrimitiveType, | |
| StringType, | |
| StructType, | |
| TimestampType, | |
| TimestamptzType, | |
| TimeType, | |
| UUIDType, | |
| ) | |
| from pyiceberg.utils.decimal import decimal_required_bytes | |
| logger = logging.getLogger(__name__) | |
| PRIMITIVE_FIELD_TYPE_MAPPING: Dict[str, PrimitiveType] = { | |
| "boolean": BooleanType(), | |
| "bytes": BinaryType(), | |
| "double": DoubleType(), | |
| "float": FloatType(), | |
| "int": IntegerType(), | |
| "long": LongType(), | |
| "string": StringType(), | |
| "enum": StringType(), | |
| } | |
| LOGICAL_FIELD_TYPE_MAPPING: Dict[Tuple[str, str], PrimitiveType] = { | |
| ("date", "int"): DateType(), | |
| ("time-micros", "long"): TimeType(), | |
| ("timestamp-micros", "long"): TimestampType(), | |
| ("uuid", "fixed"): UUIDType(), | |
| } | |
| AvroType = Union[str, Any] | |
| class AvroSchemaConversion: | |
| def avro_to_iceberg(self, avro_schema: Dict[str, Any]) -> Schema: | |
| """Convert an Apache Avro into an Apache Iceberg schema equivalent. | |
| This expects to have field id's to be encoded in the Avro schema: | |
| { | |
| "type": "record", | |
| "name": "manifest_file", | |
| "fields": [ | |
| {"name": "manifest_path", "type": "string", "doc": "Location URI with FS scheme", "field-id": 500}, | |
| {"name": "manifest_length", "type": "long", "doc": "Total file size in bytes", "field-id": 501} | |
| ] | |
| } | |
| Example: | |
| This converts an Avro schema into an Iceberg schema: | |
| >>> avro_schema = AvroSchemaConversion().avro_to_iceberg({ | |
| ... "type": "record", | |
| ... "name": "manifest_file", | |
| ... "fields": [ | |
| ... {"name": "manifest_path", "type": "string", "doc": "Location URI with FS scheme", "field-id": 500}, | |
| ... {"name": "manifest_length", "type": "long", "doc": "Total file size in bytes", "field-id": 501} | |
| ... ] | |
| ... }) | |
| >>> iceberg_schema = Schema( | |
| ... NestedField( | |
| ... field_id=500, name="manifest_path", field_type=StringType(), required=False, doc="Location URI with FS scheme" | |
| ... ), | |
| ... NestedField( | |
| ... field_id=501, name="manifest_length", field_type=LongType(), required=False, doc="Total file size in bytes" | |
| ... ), | |
| ... schema_id=1 | |
| ... ) | |
| >>> avro_schema == iceberg_schema | |
| True | |
| Args: | |
| avro_schema (Dict[str, Any]): The JSON decoded Avro schema. | |
| Returns: | |
| Equivalent Iceberg schema. | |
| """ | |
| return Schema(*[self._convert_field(field) for field in avro_schema["fields"]], schema_id=1) | |
| def iceberg_to_avro(self, schema: Schema, schema_name: Optional[str] = None) -> AvroType: | |
| """Convert an Iceberg schema into an Avro dictionary that can be serialized to JSON.""" | |
| return visit(schema, ConvertSchemaToAvro(schema_name)) | |
| def _resolve_union( | |
| self, type_union: Union[Dict[str, str], List[Union[str, Dict[str, str]]], str] | |
| ) -> Tuple[Union[str, Dict[str, Any]], bool]: | |
| """ | |
| Convert Unions into their type and resolves if the field is required. | |
| Examples: | |
| >>> AvroSchemaConversion()._resolve_union('str') | |
| ('str', True) | |
| >>> AvroSchemaConversion()._resolve_union(['null', 'str']) | |
| ('str', False) | |
| >>> AvroSchemaConversion()._resolve_union([{'type': 'str'}]) | |
| ({'type': 'str'}, True) | |
| >>> AvroSchemaConversion()._resolve_union(['null', {'type': 'str'}]) | |
| ({'type': 'str'}, False) | |
| Args: | |
| type_union: The field, can be a string 'str', list ['null', 'str'], or dict {"type": 'str'}. | |
| Returns: | |
| A tuple containing the type and if required. | |
| Raises: | |
| TypeError: In the case non-optional union types are encountered. | |
| """ | |
| avro_types: Union[Dict[str, str], List[Union[Dict[str, str], str]]] | |
| if isinstance(type_union, str): | |
| # It is a primitive and required | |
| return type_union, True | |
| elif isinstance(type_union, dict): | |
| # It is a context and required | |
| return type_union, True | |
| else: | |
| avro_types = type_union | |
| if len(avro_types) > 2: | |
| raise TypeError(f"Non-optional types aren't part of the Iceberg specification: {avro_types}") | |
| # For the Iceberg spec it is required to set the default value to null | |
| # From https://iceberg.apache.org/spec/#avro | |
| # Optional fields must always set the Avro field default value to null. | |
| # | |
| # This means that null has to come first: | |
| # https://avro.apache.org/docs/current/spec.html | |
| # type of the default value must match the first element of the union. | |
| if "null" != avro_types[0]: | |
| raise TypeError("Only null-unions are supported") | |
| # Filter the null value and return the type | |
| return list(filter(lambda t: t != "null", avro_types))[0], False | |
| def _convert_schema(self, avro_type: Union[str, Dict[str, Any]]) -> IcebergType: | |
| """ | |
| Resolve the Avro type. | |
| Args: | |
| avro_type: The Avro type, can be simple or complex. | |
| Returns: | |
| The equivalent IcebergType. | |
| Raises: | |
| ValueError: When there are unknown types | |
| """ | |
| if isinstance(avro_type, str) and avro_type in PRIMITIVE_FIELD_TYPE_MAPPING: | |
| return PRIMITIVE_FIELD_TYPE_MAPPING[avro_type] | |
| elif isinstance(avro_type, dict): | |
| if "logicalType" in avro_type: | |
| return self._convert_logical_type(avro_type) | |
| else: | |
| # Resolve potential nested types | |
| while "type" in avro_type and isinstance(avro_type["type"], dict): | |
| avro_type = avro_type["type"] | |
| type_identifier = avro_type["type"] | |
| if type_identifier == "record": | |
| return self._convert_record_type(avro_type) | |
| elif type_identifier == "array": | |
| return self._convert_array_type(avro_type) | |
| elif type_identifier == "map": | |
| return self._convert_map_type(avro_type) | |
| elif type_identifier == "fixed": | |
| return self._convert_fixed_type(avro_type) | |
| elif isinstance(type_identifier, str) and type_identifier in PRIMITIVE_FIELD_TYPE_MAPPING: | |
| return PRIMITIVE_FIELD_TYPE_MAPPING[type_identifier] | |
| else: | |
| raise TypeError(f"Unknown type: {avro_type}") | |
| else: | |
| raise TypeError(f"Unknown type: {avro_type}") | |
| def _convert_field(self, field: Dict[str, Any]) -> NestedField: | |
| """Convert an Avro field into an Iceberg equivalent field. | |
| Args: | |
| field: The Avro field. | |
| Returns: | |
| The Iceberg equivalent field. | |
| """ | |
| if "field-id" not in field: | |
| raise ValueError(f"Cannot convert field, missing field-id: {field}") | |
| plain_type, required = self._resolve_union(field["type"]) | |
| return NestedField( | |
| field_id=field["field-id"], | |
| name=field["name"], | |
| field_type=self._convert_schema(plain_type), | |
| required=required, | |
| doc=field.get("doc"), | |
| ) | |
| def _convert_record_type(self, record_type: Dict[str, Any]) -> StructType: | |
| """ | |
| Convert the fields from a record into an Iceberg struct. | |
| Examples: | |
| >>> from pyiceberg.utils.schema_conversion import AvroSchemaConversion | |
| >>> record_type = { | |
| ... "type": "record", | |
| ... "name": "r508", | |
| ... "fields": [{ | |
| ... "name": "contains_null", | |
| ... "type": "boolean", | |
| ... "doc": "True if any file has a null partition value", | |
| ... "field-id": 509, | |
| ... }, { | |
| ... "name": "contains_nan", | |
| ... "type": ["null", "boolean"], | |
| ... "doc": "True if any file has a nan partition value", | |
| ... "default": None, | |
| ... "field-id": 518, | |
| ... }], | |
| ... } | |
| >>> actual = AvroSchemaConversion()._convert_record_type(record_type) | |
| >>> expected = StructType( | |
| ... fields=( | |
| ... NestedField( | |
| ... field_id=509, | |
| ... name="contains_null", | |
| ... field_type=BooleanType(), | |
| ... required=False, | |
| ... doc="True if any file has a null partition value", | |
| ... ), | |
| ... NestedField( | |
| ... field_id=518, | |
| ... name="contains_nan", | |
| ... field_type=BooleanType(), | |
| ... required=True, | |
| ... doc="True if any file has a nan partition value", | |
| ... ), | |
| ... ) | |
| ... ) | |
| >>> expected == actual | |
| True | |
| Args: | |
| record_type: The record type itself. | |
| Returns: A StructType. | |
| """ | |
| if record_type["type"] != "record": | |
| raise ValueError(f"Expected record type, got: {record_type}") | |
| return StructType(*[self._convert_field(field) for field in record_type["fields"]]) | |
| def _convert_array_type(self, array_type: Dict[str, Any]) -> ListType: | |
| if "element-id" not in array_type: | |
| raise ValueError(f"Cannot convert array-type, missing element-id: {array_type}") | |
| plain_type, element_required = self._resolve_union(array_type["items"]) | |
| return ListType( | |
| element_id=array_type["element-id"], | |
| element_type=self._convert_schema(plain_type), | |
| element_required=element_required, | |
| ) | |
| def _convert_map_type(self, map_type: Dict[str, Any]) -> MapType: | |
| """Convert an avro map type into an Iceberg MapType. | |
| Args: | |
| map_type: The dict that describes the Avro map type. | |
| Examples: | |
| >>> from pyiceberg.utils.schema_conversion import AvroSchemaConversion | |
| >>> avro_field = { | |
| ... "type": "map", | |
| ... "values": ["null", "long"], | |
| ... "key-id": 101, | |
| ... "value-id": 102, | |
| ... } | |
| >>> actual = AvroSchemaConversion()._convert_map_type(avro_field) | |
| >>> expected = MapType( | |
| ... key_id=101, | |
| ... key_type=StringType(), | |
| ... value_id=102, | |
| ... value_type=LongType(), | |
| ... value_required=True | |
| ... ) | |
| >>> actual == expected | |
| True | |
| Returns: A MapType. | |
| """ | |
| value_type, value_required = self._resolve_union(map_type["values"]) | |
| return MapType( | |
| key_id=map_type["key-id"], | |
| # Avro only supports string keys | |
| key_type=StringType(), | |
| value_id=map_type["value-id"], | |
| value_type=self._convert_schema(value_type), | |
| value_required=value_required, | |
| ) | |
| def _convert_logical_type(self, avro_logical_type: Dict[str, Any]) -> IcebergType: | |
| """Convert a schema with a logical type annotation into an IcebergType. | |
| For the decimal and map we need to fetch more keys from the dict, and for | |
| the simple ones we can just look it up in the mapping. | |
| Examples: | |
| >>> from pyiceberg.utils.schema_conversion import AvroSchemaConversion | |
| >>> avro_logical_type = { | |
| ... "type": "int", | |
| ... "logicalType": "date" | |
| ... } | |
| >>> actual = AvroSchemaConversion()._convert_logical_type(avro_logical_type) | |
| >>> actual == DateType() | |
| True | |
| Args: | |
| avro_logical_type: The logical type. | |
| Returns: | |
| The converted logical type. | |
| Raises: | |
| ValueError: When the logical type is unknown. | |
| """ | |
| logical_type = avro_logical_type["logicalType"] | |
| physical_type = avro_logical_type["type"] | |
| if logical_type == "decimal": | |
| return self._convert_logical_decimal_type(avro_logical_type) | |
| elif logical_type == "map": | |
| return self._convert_logical_map_type(avro_logical_type) | |
| elif logical_type == "timestamp-micros": | |
| if avro_logical_type.get("adjust-to-utc", False) is True: | |
| return TimestamptzType() | |
| else: | |
| return TimestampType() | |
| elif (logical_type, physical_type) in LOGICAL_FIELD_TYPE_MAPPING: | |
| return LOGICAL_FIELD_TYPE_MAPPING[(logical_type, physical_type)] | |
| else: | |
| raise ValueError(f"Unknown logical/physical type combination: {avro_logical_type}") | |
| def _convert_logical_decimal_type(self, avro_type: Dict[str, Any]) -> DecimalType: | |
| """Convert an avro type to an Iceberg DecimalType. | |
| Args: | |
| avro_type: The Avro type. | |
| Examples: | |
| >>> from pyiceberg.utils.schema_conversion import AvroSchemaConversion | |
| >>> avro_decimal_type = { | |
| ... "type": "bytes", | |
| ... "logicalType": "decimal", | |
| ... "precision": 19, | |
| ... "scale": 25 | |
| ... } | |
| >>> actual = AvroSchemaConversion()._convert_logical_decimal_type(avro_decimal_type) | |
| >>> expected = DecimalType( | |
| ... precision=19, | |
| ... scale=25 | |
| ... ) | |
| >>> actual == expected | |
| True | |
| Returns: | |
| A Iceberg DecimalType. | |
| """ | |
| return DecimalType(precision=avro_type["precision"], scale=avro_type["scale"]) | |
| def _convert_logical_map_type(self, avro_type: Dict[str, Any]) -> MapType: | |
| """Convert an avro map type to an Iceberg MapType. | |
| In the case where a map hasn't a key as a type you can use a logical map to still encode this in Avro. | |
| Args: | |
| avro_type: The Avro Type. | |
| Examples: | |
| >>> from pyiceberg.utils.schema_conversion import AvroSchemaConversion | |
| >>> avro_type = { | |
| ... "type": "array", | |
| ... "logicalType": "map", | |
| ... "items": { | |
| ... "type": "record", | |
| ... "name": "k101_v102", | |
| ... "fields": [ | |
| ... {"name": "key", "type": "int", "field-id": 101}, | |
| ... {"name": "value", "type": "string", "field-id": 102}, | |
| ... ], | |
| ... }, | |
| ... } | |
| >>> actual = AvroSchemaConversion()._convert_logical_map_type(avro_type) | |
| >>> expected = MapType( | |
| ... key_id=101, | |
| ... key_type=IntegerType(), | |
| ... value_id=102, | |
| ... value_type=StringType(), | |
| ... value_required=False | |
| ... ) | |
| >>> actual == expected | |
| True | |
| .. _Apache Iceberg specification: | |
| https://iceberg.apache.org/spec/#appendix-a-format-specific-requirements | |
| Returns: | |
| The logical map. | |
| """ | |
| fields = avro_type["items"]["fields"] | |
| if len(fields) != 2: | |
| raise ValueError(f'Invalid key-value pair schema: {avro_type["items"]}') | |
| key = self._convert_field(list(filter(lambda f: f["name"] == "key", fields))[0]) | |
| value = self._convert_field(list(filter(lambda f: f["name"] == "value", fields))[0]) | |
| return MapType( | |
| key_id=key.field_id, | |
| key_type=key.field_type, | |
| value_id=value.field_id, | |
| value_type=value.field_type, | |
| value_required=value.required, | |
| ) | |
| def _convert_fixed_type(self, avro_type: Dict[str, Any]) -> FixedType: | |
| """ | |
| Convert Avro Type to the equivalent Iceberg fixed type. | |
| - https://avro.apache.org/docs/current/spec.html#Fixed | |
| Args: | |
| avro_type: The Avro type. | |
| Examples: | |
| >>> from pyiceberg.utils.schema_conversion import AvroSchemaConversion | |
| >>> avro_fixed_type = { | |
| ... "name": "md5", | |
| ... "type": "fixed", | |
| ... "size": 16 | |
| ... } | |
| >>> FixedType(length=16) == AvroSchemaConversion()._convert_fixed_type(avro_fixed_type) | |
| True | |
| Returns: | |
| An Iceberg equivalent fixed type. | |
| """ | |
| return FixedType(length=avro_type["size"]) | |
| class ConvertSchemaToAvro(SchemaVisitorPerPrimitiveType[AvroType]): | |
| """Convert an Iceberg schema to an Avro schema.""" | |
| schema_name: Optional[str] | |
| last_list_field_id: int | |
| last_map_key_field_id: int | |
| last_map_value_field_id: int | |
| def __init__(self, schema_name: Optional[str]) -> None: | |
| """Convert an Iceberg schema to an Avro schema. | |
| Args: | |
| schema_name: The name of the root record. | |
| """ | |
| self.schema_name = schema_name | |
| def schema(self, schema: Schema, struct_result: AvroType) -> AvroType: | |
| if isinstance(struct_result, dict) and self.schema_name is not None: | |
| struct_result["name"] = self.schema_name | |
| return struct_result | |
| def before_list_element(self, element: NestedField) -> None: | |
| self.last_list_field_id = element.field_id | |
| def before_map_key(self, key: NestedField) -> None: | |
| self.last_map_key_field_id = key.field_id | |
| def before_map_value(self, value: NestedField) -> None: | |
| self.last_map_value_field_id = value.field_id | |
| def struct(self, struct: StructType, field_results: List[AvroType]) -> AvroType: | |
| return {"type": "record", "fields": field_results} | |
| def field(self, field: NestedField, field_result: AvroType) -> AvroType: | |
| # Sets the schema name | |
| if isinstance(field_result, dict) and field_result.get("type") == "record": | |
| field_result["name"] = f"r{field.field_id}" | |
| result = { | |
| "name": field.name, | |
| "field-id": field.field_id, | |
| "type": field_result if field.required else ["null", field_result], | |
| } | |
| if field.write_default is not None: | |
| result["default"] = field.write_default # type: ignore | |
| elif field.optional: | |
| result["default"] = None | |
| if field.doc is not None: | |
| result["doc"] = field.doc | |
| return result | |
| def list(self, list_type: ListType, element_result: AvroType) -> AvroType: | |
| # Sets the schema name in case of a record | |
| if isinstance(element_result, dict) and element_result.get("type") == "record": | |
| element_result["name"] = f"r{self.last_list_field_id}" | |
| return {"type": "array", "element-id": self.last_list_field_id, "items": element_result} | |
| def map(self, map_type: MapType, key_result: AvroType, value_result: AvroType) -> AvroType: | |
| if isinstance(key_result, StringType): | |
| # Avro Maps does not support other keys than a String, | |
| return { | |
| "type": "map", | |
| "values": value_result, | |
| "key-id": self.last_map_key_field_id, | |
| "value-id": self.last_map_value_field_id, | |
| } | |
| else: | |
| # Creates a logical map that's a list of schema's | |
| # binary compatible | |
| return { | |
| "type": "array", | |
| "items": { | |
| "type": "record", | |
| "name": f"k{self.last_map_key_field_id}_v{self.last_map_value_field_id}", | |
| "fields": [ | |
| {"name": "key", "type": key_result, "field-id": self.last_map_key_field_id}, | |
| {"name": "value", "type": value_result, "field-id": self.last_map_value_field_id}, | |
| ], | |
| }, | |
| "logicalType": "map", | |
| } | |
| def visit_fixed(self, fixed_type: FixedType) -> AvroType: | |
| return {"type": "fixed", "size": len(fixed_type), "name": f"fixed_{len(fixed_type)}"} | |
| def visit_decimal(self, decimal_type: DecimalType) -> AvroType: | |
| return { | |
| "type": "fixed", | |
| "size": decimal_required_bytes(decimal_type.precision), | |
| "logicalType": "decimal", | |
| "precision": decimal_type.precision, | |
| "scale": decimal_type.scale, | |
| "name": f"decimal_{decimal_type.precision}_{decimal_type.scale}", | |
| } | |
| def visit_boolean(self, boolean_type: BooleanType) -> AvroType: | |
| return "boolean" | |
| def visit_integer(self, integer_type: IntegerType) -> AvroType: | |
| return "int" | |
| def visit_long(self, long_type: LongType) -> AvroType: | |
| return "long" | |
| def visit_float(self, float_type: FloatType) -> AvroType: | |
| return "float" | |
| def visit_double(self, double_type: DoubleType) -> AvroType: | |
| return "double" | |
| def visit_date(self, date_type: DateType) -> AvroType: | |
| return {"type": "int", "logicalType": "date"} | |
| def visit_time(self, time_type: TimeType) -> AvroType: | |
| return {"type": "long", "logicalType": "time-micros"} | |
| def visit_timestamp(self, timestamp_type: TimestampType) -> AvroType: | |
| # Iceberg only supports micro's | |
| return {"type": "long", "logicalType": "timestamp-micros", "adjust-to-utc": False} | |
| def visit_timestamptz(self, timestamptz_type: TimestamptzType) -> AvroType: | |
| # Iceberg only supports micro's | |
| return {"type": "long", "logicalType": "timestamp-micros", "adjust-to-utc": True} | |
| def visit_string(self, string_type: StringType) -> AvroType: | |
| return "string" | |
| def visit_uuid(self, uuid_type: UUIDType) -> AvroType: | |
| return {"type": "fixed", "size": 16, "logicalType": "uuid", "name": "uuid_fixed"} | |
| def visit_binary(self, binary_type: BinaryType) -> AvroType: | |
| return "bytes" | |