| { | |
| "1": "Nodular lesions in bilateral lungs", | |
| "finding_id": 1, | |
| "mask_stats": [ | |
| { | |
| "z_span": [ | |
| 69, | |
| 71 | |
| ], | |
| "max_area_slice_index": 69, | |
| "bbox_xyxy": [ | |
| 401, | |
| 273, | |
| 409, | |
| 281 | |
| ], | |
| "max_area": 67, | |
| "total_voxels": 153, | |
| "num_slices_with_mask": 3, | |
| "entity_index": 0, | |
| "entity_value": 1, | |
| "selected_slices": [ | |
| 37, | |
| 46, | |
| 55, | |
| 64, | |
| 69, | |
| 79, | |
| 91, | |
| 100, | |
| 108, | |
| 117, | |
| 126, | |
| 135, | |
| 144, | |
| 153, | |
| 162, | |
| 171 | |
| ], | |
| "hit_slices": [ | |
| 69 | |
| ], | |
| "hit_slices_info": { | |
| "69": { | |
| "area": 67, | |
| "bbox_xyxy": [ | |
| 401, | |
| 273, | |
| 409, | |
| 281 | |
| ], | |
| "entity_value": 1, | |
| "used_fallback_union": false | |
| } | |
| }, | |
| "is_hit": 1, | |
| "export_source_csv": "/home/deeplearning/data/data2/wzc/LLM4SAM/Final_data_process_pipeline/data/ct_data_ori_npy_multi_finding/retrieval_by_mask_results_train_even_spacing/report_multi_mask_even_spacing_maxE3_ratio0.9_smooth9_minGap1.csv" | |
| }, | |
| { | |
| "z_span": [ | |
| 77, | |
| 83 | |
| ], | |
| "max_area_slice_index": 79, | |
| "bbox_xyxy": [ | |
| 165, | |
| 342, | |
| 181, | |
| 358 | |
| ], | |
| "max_area": 213, | |
| "total_voxels": 1227, | |
| "num_slices_with_mask": 7, | |
| "entity_index": 1, | |
| "entity_value": 2, | |
| "selected_slices": [ | |
| 37, | |
| 46, | |
| 55, | |
| 64, | |
| 69, | |
| 79, | |
| 91, | |
| 100, | |
| 108, | |
| 117, | |
| 126, | |
| 135, | |
| 144, | |
| 153, | |
| 162, | |
| 171 | |
| ], | |
| "hit_slices": [ | |
| 79 | |
| ], | |
| "hit_slices_info": { | |
| "79": { | |
| "area": 213, | |
| "bbox_xyxy": [ | |
| 165, | |
| 342, | |
| 181, | |
| 358 | |
| ], | |
| "entity_value": 2, | |
| "used_fallback_union": false | |
| } | |
| }, | |
| "is_hit": 1, | |
| "export_source_csv": "/home/deeplearning/data/data2/wzc/LLM4SAM/Final_data_process_pipeline/data/ct_data_ori_npy_multi_finding/retrieval_by_mask_results_train_even_spacing/report_multi_mask_even_spacing_maxE3_ratio0.9_smooth9_minGap1.csv" | |
| } | |
| ], | |
| "meta": { | |
| "case": "valid_1016_c_1.nii.gz", | |
| "split": "train" | |
| }, | |
| "accepted_seeds": [ | |
| { | |
| "mask_idx": 1, | |
| "seed_slice": 79, | |
| "max_area": 213.0, | |
| "replaced_slice": 82 | |
| }, | |
| { | |
| "mask_idx": 0, | |
| "seed_slice": 69, | |
| "max_area": 67.0, | |
| "replaced_slice": 73 | |
| } | |
| ], | |
| "dropped_seeds": [], | |
| "export_summary": { | |
| "num_masks": 2, | |
| "hit_mask_count": 2, | |
| "is_hit_any": 1, | |
| "selected_slices": [ | |
| 37, | |
| 46, | |
| 55, | |
| 64, | |
| 69, | |
| 79, | |
| 91, | |
| 100, | |
| 108, | |
| 117, | |
| 126, | |
| 135, | |
| 144, | |
| 153, | |
| 162, | |
| 171 | |
| ], | |
| "export_source_csv": "/home/deeplearning/data/data2/wzc/LLM4SAM/Final_data_process_pipeline/data/ct_data_ori_npy_multi_finding/retrieval_by_mask_results_train_even_spacing/report_multi_mask_even_spacing_maxE3_ratio0.9_smooth9_minGap1.csv" | |
| } | |
| } |