|
|
|
|
|
import csv |
|
import json |
|
import os |
|
|
|
import datasets |
|
|
|
_CITATION = """\ |
|
@InProceedings{huggingface:dataset, |
|
title = {Boat dataset}, |
|
author={Tzu-Chi Chen, Inc.}, |
|
year={2024} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
This dataset is designed to solve an object detection task with images of boats. |
|
""" |
|
|
|
_HOMEPAGE = "https://huggingface.co/datasets/zhuchi76/Boat_dataset/resolve/main" |
|
|
|
_LICENSE = "" |
|
|
|
_URLS = { |
|
"classes": f"{_HOMEPAGE}/data/classes.txt", |
|
"train": f"{_HOMEPAGE}/data/instances_train2023.jsonl", |
|
"val": f"{_HOMEPAGE}/data/instances_val2023.jsonl", |
|
"test": f"{_HOMEPAGE}/data/instances_val2023r.jsonl" |
|
} |
|
|
|
class BoatDataset(datasets.GeneratorBasedBuilder): |
|
|
|
VERSION = datasets.Version("1.1.0") |
|
|
|
BUILDER_CONFIGS = [ |
|
datasets.BuilderConfig(name="Boat_dataset", version=VERSION, description="Dataset for detecting boats in aerial images."), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "Boat_dataset" |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features({ |
|
'image_id': datasets.Value('int32'), |
|
'image_path': datasets.Value('string'), |
|
'width': datasets.Value('int32'), |
|
'height': datasets.Value('int32'), |
|
'objects': datasets.Features({ |
|
'id': datasets.Sequence(datasets.Value('int32')), |
|
'area': datasets.Sequence(datasets.Value('float32')), |
|
'bbox': datasets.Sequence(datasets.Sequence(datasets.Value('float32'), length=4)), |
|
'category': datasets.Sequence(datasets.Value('int32')) |
|
}), |
|
}), |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
|
|
downloaded_files = dl_manager.download_and_extract(_URLS) |
|
|
|
|
|
with open('classes.txt', 'r') as file: |
|
classes = [line.strip() for line in file.readlines()] |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"annotations_file": downloaded_files["train"], |
|
"classes": classes, |
|
"split": "train", |
|
} |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"annotations_file": downloaded_files["val"], |
|
"classes": classes, |
|
"split": "val", |
|
} |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"annotations_file": downloaded_files["test"], |
|
"classes": classes, |
|
"split": "val_real", |
|
} |
|
), |
|
] |
|
|
|
def _generate_examples(self, annotations_file, classes, split): |
|
|
|
with open(annotations_file, encoding="utf-8") as f: |
|
for key, row in enumerate(f): |
|
try: |
|
data = json.loads(row.strip()) |
|
yield key, { |
|
"image_id": data["image_id"], |
|
"image_path": data["image_path"], |
|
"width": data["width"], |
|
"height": data["height"], |
|
"objects": data["objects"], |
|
} |
|
except json.JSONDecodeError: |
|
print(f"Skipping invalid JSON at line {key + 1}: {row}") |
|
continue |
|
|