Datasets:
Create README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,187 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# XModBench: Benchmarking Cross-Modal Capabilities and Consistency in Omni-Language Models
|
| 2 |
+
|
| 3 |
+
[](https://arxiv.org/abs/2510.15148)
|
| 4 |
+
[](https://xingruiwang.github.io/projects/XModBench/)
|
| 5 |
+
[](https://huggingface.co/datasets/RyanWW/XModBench)
|
| 6 |
+
[](https://opensource.org/licenses/MIT)
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
XModBench is a comprehensive benchmark designed to evaluate the cross-modal capabilities and consistency of omni-language models. It systematically assesses model performance across multiple modalities (text, vision, audio) and various cognitive tasks, revealing critical gaps in current state-of-the-art models.
|
| 10 |
+
|
| 11 |
+
### Key Features
|
| 12 |
+
|
| 13 |
+
- **π― Multi-Modal Evaluation**: Comprehensive testing across text, vision, and audio modalities
|
| 14 |
+
- **π§© 5 Task Dimensions**: Perception, Spatial, Temporal, Linguistic, and Knowledge tasks
|
| 15 |
+
- **π 13 SOTA Models Evaluated**: Including Gemini 2.5 Pro, Qwen2.5-Omni, EchoInk-R1, and more
|
| 16 |
+
- **π Consistency Analysis**: Measures performance stability across different modal configurations
|
| 17 |
+
- **π₯ Human Performance Baseline**: Establishes human-level benchmarks for comparison
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
## π Quick Start
|
| 21 |
+
|
| 22 |
+
### Installation
|
| 23 |
+
|
| 24 |
+
```bash
|
| 25 |
+
# Clone the repository
|
| 26 |
+
git clone https://github.com/XingruiWang/XModBench.git
|
| 27 |
+
cd XModBench
|
| 28 |
+
|
| 29 |
+
# Install dependencies
|
| 30 |
+
pip install -r requirements.txt
|
| 31 |
+
```
|
| 32 |
+
|
| 33 |
+
## π Dataset Structure
|
| 34 |
+
|
| 35 |
+
```
|
| 36 |
+
XModBench/
|
| 37 |
+
βββ data/
|
| 38 |
+
β βββ text/
|
| 39 |
+
β β βββ perception/
|
| 40 |
+
β β βββ spatial/
|
| 41 |
+
β β βββ temporal/
|
| 42 |
+
β β βββ linguistic/
|
| 43 |
+
β β βββ knowledge/
|
| 44 |
+
β βββ vision/
|
| 45 |
+
β β βββ [same task categories]
|
| 46 |
+
β βββ audio/
|
| 47 |
+
β βββ [same task categories]
|
| 48 |
+
βββ models/
|
| 49 |
+
β βββ evaluation_scripts/
|
| 50 |
+
βββ results/
|
| 51 |
+
β βββ model_performances/
|
| 52 |
+
βββ analysis/
|
| 53 |
+
βββ visualization/
|
| 54 |
+
```
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
### Basic Usage
|
| 59 |
+
|
| 60 |
+
```bash
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
#!/bin/bash
|
| 64 |
+
#SBATCH --job-name=VLM_eval
|
| 65 |
+
#SBATCH --output=log/job_%j.out
|
| 66 |
+
#SBATCH --error=log/job_%j.log
|
| 67 |
+
#SBATCH --ntasks-per-node=1
|
| 68 |
+
#SBATCH --gpus-per-node=4
|
| 69 |
+
|
| 70 |
+
echo "Running on host: $(hostname)"
|
| 71 |
+
echo "CUDA_VISIBLE_DEVICES=$CUDA_VISIBLE_DEVICES"
|
| 72 |
+
|
| 73 |
+
module load conda
|
| 74 |
+
# conda activate vlm
|
| 75 |
+
conda activate omni
|
| 76 |
+
|
| 77 |
+
export audioBench='/home/xwang378/scratch/2025/AudioBench'
|
| 78 |
+
|
| 79 |
+
# python $audioBench/scripts/run.py \
|
| 80 |
+
# --model gemini \
|
| 81 |
+
# --task_name perception/vggss_audio_vision \
|
| 82 |
+
# --sample 1000
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
# python $audioBench/scripts/run.py \
|
| 86 |
+
# --model gemini \
|
| 87 |
+
# --task_name perception/vggss_vision_audio \
|
| 88 |
+
# --sample 1000
|
| 89 |
+
|
| 90 |
+
# python $audioBench/scripts/run.py \
|
| 91 |
+
# --model gemini \
|
| 92 |
+
# --task_name perception/vggss_vision_text \
|
| 93 |
+
# --sample 1000
|
| 94 |
+
|
| 95 |
+
# python $audioBench/scripts/run.py \
|
| 96 |
+
# --model gemini \
|
| 97 |
+
# --task_name perception/vggss_audio_text \
|
| 98 |
+
# --sample 1000
|
| 99 |
+
|
| 100 |
+
# Qwen2.5-Omni
|
| 101 |
+
|
| 102 |
+
# python $audioBench/scripts/run.py \
|
| 103 |
+
# --model qwen2.5_omni \
|
| 104 |
+
# --task_name perception/vggss_audio_text \
|
| 105 |
+
# --sample 1000
|
| 106 |
+
|
| 107 |
+
python $audioBench/scripts/run.py \
|
| 108 |
+
--model qwen2.5_omni \
|
| 109 |
+
--task_name perception/vggss_vision_text \
|
| 110 |
+
--sample 1000
|
| 111 |
+
|
| 112 |
+
|
| 113 |
+
```
|
| 114 |
+
|
| 115 |
+
|
| 116 |
+
|
| 117 |
+
## π Benchmark Results
|
| 118 |
+
|
| 119 |
+
### Overall Performance Comparison
|
| 120 |
+
|
| 121 |
+
| Model | Perception | Spatial | Temporal | Linguistic | Knowledge | Average |
|
| 122 |
+
|-------|------------|---------|----------|------------|-----------|---------|
|
| 123 |
+
| **Gemini 2.5 Pro** | 75.9% | 50.1% | 60.8% | 76.8% | 89.3% | 70.6% |
|
| 124 |
+
| **Human Performance** | 91.0% | 89.7% | 88.9% | 93.9% | 93.9% | 91.5% |
|
| 125 |
+
|
| 126 |
+
### Key Findings
|
| 127 |
+
|
| 128 |
+
#### 1οΈβ£ Task Competence Gaps
|
| 129 |
+
- **Strong Performance**: Perception and linguistic tasks (~75% for best models)
|
| 130 |
+
- **Weak Performance**: Spatial (50.1%) and temporal reasoning (60.8%)
|
| 131 |
+
- **Performance Drop**: 15-25 points decrease in spatial/temporal vs. perception tasks
|
| 132 |
+
|
| 133 |
+
#### 2οΈβ£ Modality Disparity
|
| 134 |
+
- **Audio vs. Text**: 20-49 point performance drop
|
| 135 |
+
- **Audio vs. Vision**: 33-point average gap
|
| 136 |
+
- **Vision vs. Text**: ~15-point disparity
|
| 137 |
+
- **Consistency**: Best models show 10-12 point standard deviation
|
| 138 |
+
|
| 139 |
+
#### 3οΈβ£ Directional Imbalance
|
| 140 |
+
- **VisionβText**: 9-17 point gaps between directions
|
| 141 |
+
- **AudioβText**: 6-8 point asymmetries
|
| 142 |
+
- **Root Cause**: Training data imbalance favoring image-to-text over inverse directions
|
| 143 |
+
|
| 144 |
+
## π Citation
|
| 145 |
+
|
| 146 |
+
If you use XModBench in your research, please cite our paper:
|
| 147 |
+
|
| 148 |
+
```bibtex
|
| 149 |
+
@article{wang2024xmodbench,
|
| 150 |
+
title={XModBench: Benchmarking Cross-Modal Capabilities and Consistency in Omni-Language Models},
|
| 151 |
+
author={Wang, Xingrui and Others},
|
| 152 |
+
journal={arXiv preprint arXiv:xxxx.xxxxx},
|
| 153 |
+
year={2024}
|
| 154 |
+
}
|
| 155 |
+
```
|
| 156 |
+
|
| 157 |
+
## π License
|
| 158 |
+
|
| 159 |
+
This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.
|
| 160 |
+
|
| 161 |
+
## π Acknowledgments
|
| 162 |
+
|
| 163 |
+
We thank all contributors and the research community for their valuable feedback and suggestions.
|
| 164 |
+
|
| 165 |
+
## π§ Contact
|
| 166 |
+
|
| 167 |
+
- **Project Lead**: Xingrui Wang
|
| 168 |
+
- **Email**: [xingrui.wang@example.edu]
|
| 169 |
+
- **Website**: [https://xingruiwang.github.io/projects/XModBench/](https://xingruiwang.github.io/projects/XModBench/)
|
| 170 |
+
|
| 171 |
+
## π Links
|
| 172 |
+
|
| 173 |
+
- [Project Website](https://xingruiwang.github.io/projects/XModBench/)
|
| 174 |
+
- [Paper](https://arxiv.org/abs/xxxx.xxxxx)
|
| 175 |
+
- [Leaderboard](https://xingruiwang.github.io/projects/XModBench/leaderboard)
|
| 176 |
+
- [Documentation](https://xingruiwang.github.io/projects/XModBench/docs)
|
| 177 |
+
|
| 178 |
+
|
| 179 |
+
## Todo
|
| 180 |
+
|
| 181 |
+
- [ ] Release Huggingface data
|
| 182 |
+
- [x] Release data processing code
|
| 183 |
+
- [x] Release data evaluation code
|
| 184 |
+
---
|
| 185 |
+
|
| 186 |
+
**Note**: XModBench is actively maintained and regularly updated with new models and evaluation metrics. For the latest updates, please check our [releases](https://github.com/XingruiWang/XModBench/releases) page.
|
| 187 |
+
|