batalovme commited on
Commit
381a1cc
1 Parent(s): 5f578ac

fix download code

Browse files
Files changed (3) hide show
  1. README.md +43 -43
  2. dataset_infos.json +0 -1
  3. russian_super_glue.py +9 -7
README.md CHANGED
@@ -54,10 +54,10 @@ dataset_info:
54
  '1': not_entailment
55
  splits:
56
  - name: test
57
- num_bytes: 470306
58
  num_examples: 1104
59
- download_size: 47118
60
- dataset_size: 470306
61
  - config_name: rcb
62
  features:
63
  - name: premise
@@ -79,16 +79,16 @@ dataset_info:
79
  '2': neutral
80
  splits:
81
  - name: train
82
- num_bytes: 199712
83
  num_examples: 438
84
  - name: validation
85
- num_bytes: 97993
86
  num_examples: 220
87
  - name: test
88
- num_bytes: 207031
89
  num_examples: 438
90
- download_size: 136700
91
- dataset_size: 504736
92
  - config_name: parus
93
  features:
94
  - name: premise
@@ -109,16 +109,16 @@ dataset_info:
109
  '1': choice2
110
  splits:
111
  - name: train
112
- num_bytes: 74467
113
  num_examples: 400
114
  - name: validation
115
- num_bytes: 19397
116
  num_examples: 100
117
  - name: test
118
- num_bytes: 93192
119
  num_examples: 500
120
- download_size: 57585
121
- dataset_size: 187056
122
  - config_name: muserc
123
  features:
124
  - name: paragraph
@@ -143,16 +143,16 @@ dataset_info:
143
  '1': 'True'
144
  splits:
145
  - name: train
146
- num_bytes: 31651155
147
  num_examples: 11950
148
  - name: validation
149
- num_bytes: 5964157
150
  num_examples: 2235
151
  - name: test
152
- num_bytes: 19850930
153
  num_examples: 7614
154
- download_size: 1196720
155
- dataset_size: 57466242
156
  - config_name: terra
157
  features:
158
  - name: premise
@@ -169,16 +169,16 @@ dataset_info:
169
  '1': not_entailment
170
  splits:
171
  - name: train
172
- num_bytes: 1409243
173
  num_examples: 2616
174
  - name: validation
175
- num_bytes: 161485
176
  num_examples: 307
177
  - name: test
178
- num_bytes: 1713499
179
  num_examples: 3198
180
- download_size: 907346
181
- dataset_size: 3284227
182
  - config_name: russe
183
  features:
184
  - name: word
@@ -209,16 +209,16 @@ dataset_info:
209
  '1': 'True'
210
  splits:
211
  - name: train
212
- num_bytes: 6913280
213
  num_examples: 19845
214
  - name: validation
215
- num_bytes: 2957491
216
  num_examples: 8505
217
  - name: test
218
- num_bytes: 10046000
219
  num_examples: 18892
220
- download_size: 3806009
221
- dataset_size: 19916771
222
  - config_name: rwsd
223
  features:
224
  - name: text
@@ -241,16 +241,16 @@ dataset_info:
241
  '1': 'True'
242
  splits:
243
  - name: train
244
- num_bytes: 132274
245
  num_examples: 606
246
  - name: validation
247
- num_bytes: 87959
248
  num_examples: 204
249
  - name: test
250
- num_bytes: 59051
251
  num_examples: 154
252
- download_size: 40508
253
- dataset_size: 279284
254
  - config_name: danetqa
255
  features:
256
  - name: question
@@ -267,16 +267,16 @@ dataset_info:
267
  '1': 'True'
268
  splits:
269
  - name: train
270
- num_bytes: 2474006
271
  num_examples: 1749
272
  - name: validation
273
- num_bytes: 1076455
274
  num_examples: 821
275
  - name: test
276
- num_bytes: 1023062
277
  num_examples: 805
278
- download_size: 1293761
279
- dataset_size: 4573523
280
  - config_name: rucos
281
  features:
282
  - name: passage
@@ -295,16 +295,16 @@ dataset_info:
295
  dtype: int32
296
  splits:
297
  - name: train
298
- num_bytes: 160095378
299
  num_examples: 72193
300
  - name: validation
301
- num_bytes: 16980563
302
  num_examples: 7577
303
  - name: test
304
- num_bytes: 15535209
305
  num_examples: 7257
306
- download_size: 56208297
307
- dataset_size: 192611150
308
  tags:
309
  - glue
310
  - qa
 
54
  '1': not_entailment
55
  splits:
56
  - name: test
57
+ num_bytes: 470282
58
  num_examples: 1104
59
+ download_size: 546821
60
+ dataset_size: 470282
61
  - config_name: rcb
62
  features:
63
  - name: premise
 
79
  '2': neutral
80
  splits:
81
  - name: train
82
+ num_bytes: 199696
83
  num_examples: 438
84
  - name: validation
85
+ num_bytes: 97977
86
  num_examples: 220
87
  - name: test
88
+ num_bytes: 207015
89
  num_examples: 438
90
+ download_size: 590169
91
+ dataset_size: 504688
92
  - config_name: parus
93
  features:
94
  - name: premise
 
109
  '1': choice2
110
  splits:
111
  - name: train
112
+ num_bytes: 74451
113
  num_examples: 400
114
  - name: validation
115
+ num_bytes: 19381
116
  num_examples: 100
117
  - name: test
118
+ num_bytes: 93176
119
  num_examples: 500
120
+ download_size: 238685
121
+ dataset_size: 187008
122
  - config_name: muserc
123
  features:
124
  - name: paragraph
 
143
  '1': 'True'
144
  splits:
145
  - name: train
146
+ num_bytes: 31651131
147
  num_examples: 11950
148
  - name: validation
149
+ num_bytes: 5964145
150
  num_examples: 2235
151
  - name: test
152
+ num_bytes: 19850918
153
  num_examples: 7614
154
+ download_size: 5236394
155
+ dataset_size: 57466194
156
  - config_name: terra
157
  features:
158
  - name: premise
 
169
  '1': not_entailment
170
  splits:
171
  - name: train
172
+ num_bytes: 1409235
173
  num_examples: 2616
174
  - name: validation
175
+ num_bytes: 161477
176
  num_examples: 307
177
  - name: test
178
+ num_bytes: 1713491
179
  num_examples: 3198
180
+ download_size: 3542264
181
+ dataset_size: 3284203
182
  - config_name: russe
183
  features:
184
  - name: word
 
209
  '1': 'True'
210
  splits:
211
  - name: train
212
+ num_bytes: 6913256
213
  num_examples: 19845
214
  - name: validation
215
+ num_bytes: 2957479
216
  num_examples: 8505
217
  - name: test
218
+ num_bytes: 10045976
219
  num_examples: 18892
220
+ download_size: 24773401
221
+ dataset_size: 19916711
222
  - config_name: rwsd
223
  features:
224
  - name: text
 
241
  '1': 'True'
242
  splits:
243
  - name: train
244
+ num_bytes: 132262
245
  num_examples: 606
246
  - name: validation
247
+ num_bytes: 87947
248
  num_examples: 204
249
  - name: test
250
+ num_bytes: 59039
251
  num_examples: 154
252
+ download_size: 366466
253
+ dataset_size: 279248
254
  - config_name: danetqa
255
  features:
256
  - name: question
 
267
  '1': 'True'
268
  splits:
269
  - name: train
270
+ num_bytes: 2473998
271
  num_examples: 1749
272
  - name: validation
273
+ num_bytes: 1076447
274
  num_examples: 821
275
  - name: test
276
+ num_bytes: 1023054
277
  num_examples: 805
278
+ download_size: 4695018
279
+ dataset_size: 4573499
280
  - config_name: rucos
281
  features:
282
  - name: passage
 
295
  dtype: int32
296
  splits:
297
  - name: train
298
+ num_bytes: 160095186
299
  num_examples: 72193
300
  - name: validation
301
+ num_bytes: 16980539
302
  num_examples: 7577
303
  - name: test
304
+ num_bytes: 15535185
305
  num_examples: 7257
306
+ download_size: 220047252
307
+ dataset_size: 192610910
308
  tags:
309
  - glue
310
  - qa
dataset_infos.json DELETED
@@ -1 +0,0 @@
1
- {"lidirus": {"description": "Recent advances in the field of universal language models and transformers require the development of a methodology for\ntheir broad diagnostics and testing for general intellectual skills - detection of natural language inference,\ncommonsense reasoning, ability to perform simple logical operations regardless of text subject or lexicon. For the first\ntime, a benchmark of nine tasks, collected and organized analogically to the SuperGLUE methodology, was developed from\nscratch for the Russian language. We provide baselines, human level evaluation, an open-source framework for evaluating\nmodels and an overall leaderboard of transformer models for the Russian language.\n\"LiDiRus (Linguistic Diagnostic for Russian) is a diagnostic dataset that covers a large volume of linguistic phenomena,\nwhile allowing you to evaluate information systems on a simple test of textual entailment recognition.\nSee more details diagnostics.\n", "citation": "\n@article{shavrina2020russiansuperglue,\n title={RussianSuperGLUE: A Russian Language Understanding Evaluation Benchmark},\n author={Shavrina, Tatiana and Fenogenova, Alena and Emelyanov, Anton and Shevelev, Denis and Artemova,\n Ekaterina and Malykh, Valentin and Mikhailov, Vladislav and Tikhonova, Maria and Chertok, Andrey and\n Evlampiev, Andrey},\n journal={arXiv preprint arXiv:2010.15925},\n year={2020}\n }\n", "homepage": "https://russiansuperglue.com/tasks/task_info/LiDiRus", "license": "", "features": {"sentence1": {"dtype": "string", "id": null, "_type": "Value"}, "sentence2": {"dtype": "string", "id": null, "_type": "Value"}, "knowledge": {"dtype": "string", "id": null, "_type": "Value"}, "lexical-semantics": {"dtype": "string", "id": null, "_type": "Value"}, "logic": {"dtype": "string", "id": null, "_type": "Value"}, "predicate-argument-structure": {"dtype": "string", "id": null, "_type": "Value"}, "idx": {"dtype": "int32", "id": null, "_type": "Value"}, "label": {"num_classes": 2, "names": ["entailment", "not_entailment"], "names_file": null, "id": null, "_type": "ClassLabel"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "russian_super_glue", "config_name": "lidirus", "version": {"version_str": "0.0.1", "description": null, "major": 0, "minor": 0, "patch": 1}, "splits": {"test": {"name": "test", "num_bytes": 470306, "num_examples": 1104, "dataset_name": "russian_super_glue"}}, "download_checksums": {"https://russiansuperglue.com/tasks/download/LiDiRus": {"num_bytes": 47118, "checksum": "e1bc2c55cadbc98b0e77a43e1560af8e2fe336ab4bc372f545f69cb48a479cdc"}}, "download_size": 47118, "post_processing_size": null, "dataset_size": 470306, "size_in_bytes": 517424}, "rcb": {"description": "Recent advances in the field of universal language models and transformers require the development of a methodology for\ntheir broad diagnostics and testing for general intellectual skills - detection of natural language inference,\ncommonsense reasoning, ability to perform simple logical operations regardless of text subject or lexicon. For the first\ntime, a benchmark of nine tasks, collected and organized analogically to the SuperGLUE methodology, was developed from\nscratch for the Russian language. We provide baselines, human level evaluation, an open-source framework for evaluating\nmodels and an overall leaderboard of transformer models for the Russian language.\nThe Russian Commitment Bank is a corpus of naturally occurring discourses whose final sentence contains\na clause-embedding predicate under an entailment canceling operator (question, modal, negation, antecedent\nof conditional).\n", "citation": "\n@article{shavrina2020russiansuperglue,\n title={RussianSuperGLUE: A Russian Language Understanding Evaluation Benchmark},\n author={Shavrina, Tatiana and Fenogenova, Alena and Emelyanov, Anton and Shevelev, Denis and Artemova,\n Ekaterina and Malykh, Valentin and Mikhailov, Vladislav and Tikhonova, Maria and Chertok, Andrey and\n Evlampiev, Andrey},\n journal={arXiv preprint arXiv:2010.15925},\n year={2020}\n }\n", "homepage": "https://russiansuperglue.com/tasks/task_info/RCB", "license": "", "features": {"premise": {"dtype": "string", "id": null, "_type": "Value"}, "hypothesis": {"dtype": "string", "id": null, "_type": "Value"}, "verb": {"dtype": "string", "id": null, "_type": "Value"}, "negation": {"dtype": "string", "id": null, "_type": "Value"}, "idx": {"dtype": "int32", "id": null, "_type": "Value"}, "label": {"num_classes": 3, "names": ["entailment", "contradiction", "neutral"], "names_file": null, "id": null, "_type": "ClassLabel"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "russian_super_glue", "config_name": "rcb", "version": {"version_str": "0.0.1", "description": null, "major": 0, "minor": 0, "patch": 1}, "splits": {"train": {"name": "train", "num_bytes": 199712, "num_examples": 438, "dataset_name": "russian_super_glue"}, "validation": {"name": "validation", "num_bytes": 97993, "num_examples": 220, "dataset_name": "russian_super_glue"}, "test": {"name": "test", "num_bytes": 207031, "num_examples": 438, "dataset_name": "russian_super_glue"}}, "download_checksums": {"https://russiansuperglue.com/tasks/download/RCB": {"num_bytes": 136700, "checksum": "9ecc0bd0cc04e04922349212452166404b5a75b67be9e6aa996c80c64beb6ddb"}}, "download_size": 136700, "post_processing_size": null, "dataset_size": 504736, "size_in_bytes": 641436}, "parus": {"description": "Recent advances in the field of universal language models and transformers require the development of a methodology for\ntheir broad diagnostics and testing for general intellectual skills - detection of natural language inference,\ncommonsense reasoning, ability to perform simple logical operations regardless of text subject or lexicon. For the first\ntime, a benchmark of nine tasks, collected and organized analogically to the SuperGLUE methodology, was developed from\nscratch for the Russian language. We provide baselines, human level evaluation, an open-source framework for evaluating\nmodels and an overall leaderboard of transformer models for the Russian language.\nChoice of Plausible Alternatives for Russian language\nChoice of Plausible Alternatives for Russian language (PARus) evaluation provides researchers with a tool for assessing\nprogress in open-domain commonsense causal reasoning. Each question in PARus is composed of a premise and two\nalternatives, where the task is to select the alternative that more plausibly has a causal relation with the premise.\nThe correct alternative is randomized so that the expected performance of randomly guessing is 50%.\n", "citation": "\n@article{shavrina2020russiansuperglue,\n title={RussianSuperGLUE: A Russian Language Understanding Evaluation Benchmark},\n author={Shavrina, Tatiana and Fenogenova, Alena and Emelyanov, Anton and Shevelev, Denis and Artemova,\n Ekaterina and Malykh, Valentin and Mikhailov, Vladislav and Tikhonova, Maria and Chertok, Andrey and\n Evlampiev, Andrey},\n journal={arXiv preprint arXiv:2010.15925},\n year={2020}\n }\n", "homepage": "https://russiansuperglue.com/tasks/task_info/PARus", "license": "", "features": {"premise": {"dtype": "string", "id": null, "_type": "Value"}, "choice1": {"dtype": "string", "id": null, "_type": "Value"}, "choice2": {"dtype": "string", "id": null, "_type": "Value"}, "question": {"dtype": "string", "id": null, "_type": "Value"}, "idx": {"dtype": "int32", "id": null, "_type": "Value"}, "label": {"num_classes": 2, "names": ["choice1", "choice2"], "names_file": null, "id": null, "_type": "ClassLabel"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "russian_super_glue", "config_name": "parus", "version": {"version_str": "0.0.1", "description": null, "major": 0, "minor": 0, "patch": 1}, "splits": {"train": {"name": "train", "num_bytes": 74467, "num_examples": 400, "dataset_name": "russian_super_glue"}, "validation": {"name": "validation", "num_bytes": 19397, "num_examples": 100, "dataset_name": "russian_super_glue"}, "test": {"name": "test", "num_bytes": 93192, "num_examples": 500, "dataset_name": "russian_super_glue"}}, "download_checksums": {"https://russiansuperglue.com/tasks/download/PARus": {"num_bytes": 57585, "checksum": "7093c859a6ab07eab54c86cdd686b7b14afffee46abcd3e2d43876b1fdb8fa59"}}, "download_size": 57585, "post_processing_size": null, "dataset_size": 187056, "size_in_bytes": 244641}, "muserc": {"description": "Recent advances in the field of universal language models and transformers require the development of a methodology for\ntheir broad diagnostics and testing for general intellectual skills - detection of natural language inference,\ncommonsense reasoning, ability to perform simple logical operations regardless of text subject or lexicon. For the first\ntime, a benchmark of nine tasks, collected and organized analogically to the SuperGLUE methodology, was developed from\nscratch for the Russian language. We provide baselines, human level evaluation, an open-source framework for evaluating\nmodels and an overall leaderboard of transformer models for the Russian language.\nWe present a reading comprehension challenge in which questions can only be answered by taking into account information\nfrom multiple sentences. The dataset is the first to study multi-sentence inference at scale, with an open-ended set of\nquestion types that requires reasoning skills.\n", "citation": "@inproceedings{fenogenova-etal-2020-read,\n title = \"Read and Reason with {M}u{S}e{RC} and {R}u{C}o{S}: Datasets for Machine Reading Comprehension for {R}ussian\",\n author = \"Fenogenova, Alena and\n Mikhailov, Vladislav and\n Shevelev, Denis\",\n booktitle = \"Proceedings of the 28th International Conference on Computational Linguistics\",\n month = dec,\n year = \"2020\",\n address = \"Barcelona, Spain (Online)\",\n publisher = \"International Committee on Computational Linguistics\",\n url = \"https://aclanthology.org/2020.coling-main.570\",\n doi = \"10.18653/v1/2020.coling-main.570\",\n pages = \"6481--6497\",\n abstract = \"The paper introduces two Russian machine reading comprehension (MRC) datasets, called MuSeRC and RuCoS,\n which require reasoning over multiple sentences and commonsense knowledge to infer the answer. The former follows\n the design of MultiRC, while the latter is a counterpart of the ReCoRD dataset. The datasets are included\n in RussianSuperGLUE, the Russian general language understanding benchmark. We provide a comparative analysis\n and demonstrate that the proposed tasks are relatively more complex as compared to the original ones for English.\n Besides, performance results of human solvers and BERT-based models show that MuSeRC and RuCoS represent a challenge\n for recent advanced neural models. We thus hope to facilitate research in the field of MRC for Russian and prompt\n the study of multi-hop reasoning in a cross-lingual scenario.\",\n}\n\n@article{shavrina2020russiansuperglue,\n title={RussianSuperGLUE: A Russian Language Understanding Evaluation Benchmark},\n author={Shavrina, Tatiana and Fenogenova, Alena and Emelyanov, Anton and Shevelev, Denis and Artemova,\n Ekaterina and Malykh, Valentin and Mikhailov, Vladislav and Tikhonova, Maria and Chertok, Andrey and\n Evlampiev, Andrey},\n journal={arXiv preprint arXiv:2010.15925},\n year={2020}\n }\n", "homepage": "https://russiansuperglue.com/tasks/task_info/MuSeRC", "license": "", "features": {"paragraph": {"dtype": "string", "id": null, "_type": "Value"}, "question": {"dtype": "string", "id": null, "_type": "Value"}, "answer": {"dtype": "string", "id": null, "_type": "Value"}, "idx": {"paragraph": {"dtype": "int32", "id": null, "_type": "Value"}, "question": {"dtype": "int32", "id": null, "_type": "Value"}, "answer": {"dtype": "int32", "id": null, "_type": "Value"}}, "label": {"num_classes": 2, "names": ["False", "True"], "names_file": null, "id": null, "_type": "ClassLabel"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "russian_super_glue", "config_name": "muserc", "version": {"version_str": "0.0.1", "description": null, "major": 0, "minor": 0, "patch": 1}, "splits": {"train": {"name": "train", "num_bytes": 31651155, "num_examples": 11950, "dataset_name": "russian_super_glue"}, "validation": {"name": "validation", "num_bytes": 5964157, "num_examples": 2235, "dataset_name": "russian_super_glue"}, "test": {"name": "test", "num_bytes": 19850930, "num_examples": 7614, "dataset_name": "russian_super_glue"}}, "download_checksums": {"https://russiansuperglue.com/tasks/download/MuSeRC": {"num_bytes": 1196720, "checksum": "679d69df99113d8ca6416eda5583a81ab324f5438097216a416d09e745d2f668"}}, "download_size": 1196720, "post_processing_size": null, "dataset_size": 57466242, "size_in_bytes": 58662962}, "terra": {"description": "Recent advances in the field of universal language models and transformers require the development of a methodology for\ntheir broad diagnostics and testing for general intellectual skills - detection of natural language inference,\ncommonsense reasoning, ability to perform simple logical operations regardless of text subject or lexicon. For the first\ntime, a benchmark of nine tasks, collected and organized analogically to the SuperGLUE methodology, was developed from\nscratch for the Russian language. We provide baselines, human level evaluation, an open-source framework for evaluating\nmodels and an overall leaderboard of transformer models for the Russian language.\nTextual Entailment Recognition has been proposed recently as a generic task that captures major semantic inference\nneeds across many NLP applications, such as Question Answering, Information Retrieval, Information Extraction,\nand Text Summarization. This task requires to recognize, given two text fragments, whether the meaning of one text is\nentailed (can be inferred) from the other text.\n", "citation": "\n@article{shavrina2020russiansuperglue,\n title={RussianSuperGLUE: A Russian Language Understanding Evaluation Benchmark},\n author={Shavrina, Tatiana and Fenogenova, Alena and Emelyanov, Anton and Shevelev, Denis and Artemova,\n Ekaterina and Malykh, Valentin and Mikhailov, Vladislav and Tikhonova, Maria and Chertok, Andrey and\n Evlampiev, Andrey},\n journal={arXiv preprint arXiv:2010.15925},\n year={2020}\n }\n", "homepage": "https://russiansuperglue.com/tasks/task_info/TERRa", "license": "", "features": {"premise": {"dtype": "string", "id": null, "_type": "Value"}, "hypothesis": {"dtype": "string", "id": null, "_type": "Value"}, "idx": {"dtype": "int32", "id": null, "_type": "Value"}, "label": {"num_classes": 2, "names": ["entailment", "not_entailment"], "names_file": null, "id": null, "_type": "ClassLabel"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "russian_super_glue", "config_name": "terra", "version": {"version_str": "0.0.1", "description": null, "major": 0, "minor": 0, "patch": 1}, "splits": {"train": {"name": "train", "num_bytes": 1409243, "num_examples": 2616, "dataset_name": "russian_super_glue"}, "validation": {"name": "validation", "num_bytes": 161485, "num_examples": 307, "dataset_name": "russian_super_glue"}, "test": {"name": "test", "num_bytes": 1713499, "num_examples": 3198, "dataset_name": "russian_super_glue"}}, "download_checksums": {"https://russiansuperglue.com/tasks/download/TERRa": {"num_bytes": 907346, "checksum": "fc7320210b5b6f7087615f13558868de55f46d5e0e365d9d82968c66e6e0dba7"}}, "download_size": 907346, "post_processing_size": null, "dataset_size": 3284227, "size_in_bytes": 4191573}, "russe": {"description": "Recent advances in the field of universal language models and transformers require the development of a methodology for\ntheir broad diagnostics and testing for general intellectual skills - detection of natural language inference,\ncommonsense reasoning, ability to perform simple logical operations regardless of text subject or lexicon. For the first\ntime, a benchmark of nine tasks, collected and organized analogically to the SuperGLUE methodology, was developed from\nscratch for the Russian language. We provide baselines, human level evaluation, an open-source framework for evaluating\nmodels and an overall leaderboard of transformer models for the Russian language.\nWiC: The Word-in-Context Dataset A reliable benchmark for the evaluation of context-sensitive word embeddings.\nDepending on its context, an ambiguous word can refer to multiple, potentially unrelated, meanings. Mainstream static\nword embeddings, such as Word2vec and GloVe, are unable to reflect this dynamic semantic nature. Contextualised word\nembeddings are an attempt at addressing this limitation by computing dynamic representations for words which can adapt\nbased on context.\nRussian SuperGLUE task borrows original data from the Russe project, Word Sense Induction and Disambiguation\nshared task (2018)\n", "citation": "@inproceedings{RUSSE2018,\n author = {Panchenko, Alexander and Lopukhina, Anastasia and Ustalov, Dmitry and Lopukhin, Konstantin and Arefyev,\n Nikolay and Leontyev, Alexey and Loukachevitch, Natalia},\n title = {{RUSSE'2018: A Shared Task on Word Sense Induction for the Russian Language}},\n booktitle = {Computational Linguistics and Intellectual Technologies:\n Papers from the Annual International Conference ``Dialogue''},\n year = {2018},\n pages = {547--564},\n url = {http://www.dialog-21.ru/media/4539/panchenkoaplusetal.pdf},\n address = {Moscow, Russia},\n publisher = {RSUH},\n issn = {2221-7932},\n language = {english},\n}\n\n@article{shavrina2020russiansuperglue,\n title={RussianSuperGLUE: A Russian Language Understanding Evaluation Benchmark},\n author={Shavrina, Tatiana and Fenogenova, Alena and Emelyanov, Anton and Shevelev, Denis and Artemova,\n Ekaterina and Malykh, Valentin and Mikhailov, Vladislav and Tikhonova, Maria and Chertok, Andrey and\n Evlampiev, Andrey},\n journal={arXiv preprint arXiv:2010.15925},\n year={2020}\n }\n", "homepage": "https://russiansuperglue.com/tasks/task_info/RUSSE", "license": "", "features": {"word": {"dtype": "string", "id": null, "_type": "Value"}, "sentence1": {"dtype": "string", "id": null, "_type": "Value"}, "sentence2": {"dtype": "string", "id": null, "_type": "Value"}, "start1": {"dtype": "int32", "id": null, "_type": "Value"}, "start2": {"dtype": "int32", "id": null, "_type": "Value"}, "end1": {"dtype": "int32", "id": null, "_type": "Value"}, "end2": {"dtype": "int32", "id": null, "_type": "Value"}, "gold_sense1": {"dtype": "int32", "id": null, "_type": "Value"}, "gold_sense2": {"dtype": "int32", "id": null, "_type": "Value"}, "idx": {"dtype": "int32", "id": null, "_type": "Value"}, "label": {"num_classes": 2, "names": ["False", "True"], "names_file": null, "id": null, "_type": "ClassLabel"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "russian_super_glue", "config_name": "russe", "version": {"version_str": "0.0.1", "description": null, "major": 0, "minor": 0, "patch": 1}, "splits": {"train": {"name": "train", "num_bytes": 6913280, "num_examples": 19845, "dataset_name": "russian_super_glue"}, "validation": {"name": "validation", "num_bytes": 2957491, "num_examples": 8505, "dataset_name": "russian_super_glue"}, "test": {"name": "test", "num_bytes": 10046000, "num_examples": 18892, "dataset_name": "russian_super_glue"}}, "download_checksums": {"https://russiansuperglue.com/tasks/download/RUSSE": {"num_bytes": 3806009, "checksum": "60ecf42ea0f3893e857e0a9522ab92a2ae2ec713d1ab361f2f6f594d0f5324a5"}}, "download_size": 3806009, "post_processing_size": null, "dataset_size": 19916771, "size_in_bytes": 23722780}, "rwsd": {"description": "Recent advances in the field of universal language models and transformers require the development of a methodology for\ntheir broad diagnostics and testing for general intellectual skills - detection of natural language inference,\ncommonsense reasoning, ability to perform simple logical operations regardless of text subject or lexicon. For the first\ntime, a benchmark of nine tasks, collected and organized analogically to the SuperGLUE methodology, was developed from\nscratch for the Russian language. We provide baselines, human level evaluation, an open-source framework for evaluating\nmodels and an overall leaderboard of transformer models for the Russian language.\nA Winograd schema is a pair of sentences that differ in only one or two words and that contain an ambiguity that is\nresolved in opposite ways in the two sentences and requires the use of world knowledge and reasoning for its resolution.\nThe schema takes its name from a well-known example by Terry Winograd.\nThe set would then be presented as a challenge for AI programs, along the lines of the Turing test. The strengths of\nthe challenge are that it is clear-cut, in that the answer to each schema is a binary choice; vivid, in that it is\nobvious to non-experts that a program that fails to get the right answers clearly has serious gaps in its understanding;\nand difficult, in that it is far beyond the current state of the art.\n", "citation": "\n@article{shavrina2020russiansuperglue,\n title={RussianSuperGLUE: A Russian Language Understanding Evaluation Benchmark},\n author={Shavrina, Tatiana and Fenogenova, Alena and Emelyanov, Anton and Shevelev, Denis and Artemova,\n Ekaterina and Malykh, Valentin and Mikhailov, Vladislav and Tikhonova, Maria and Chertok, Andrey and\n Evlampiev, Andrey},\n journal={arXiv preprint arXiv:2010.15925},\n year={2020}\n }\n", "homepage": "https://russiansuperglue.com/tasks/task_info/RWSD", "license": "", "features": {"text": {"dtype": "string", "id": null, "_type": "Value"}, "span1_index": {"dtype": "int32", "id": null, "_type": "Value"}, "span2_index": {"dtype": "int32", "id": null, "_type": "Value"}, "span1_text": {"dtype": "string", "id": null, "_type": "Value"}, "span2_text": {"dtype": "string", "id": null, "_type": "Value"}, "idx": {"dtype": "int32", "id": null, "_type": "Value"}, "label": {"num_classes": 2, "names": ["False", "True"], "names_file": null, "id": null, "_type": "ClassLabel"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "russian_super_glue", "config_name": "rwsd", "version": {"version_str": "0.0.1", "description": null, "major": 0, "minor": 0, "patch": 1}, "splits": {"train": {"name": "train", "num_bytes": 132274, "num_examples": 606, "dataset_name": "russian_super_glue"}, "validation": {"name": "validation", "num_bytes": 87959, "num_examples": 204, "dataset_name": "russian_super_glue"}, "test": {"name": "test", "num_bytes": 59051, "num_examples": 154, "dataset_name": "russian_super_glue"}}, "download_checksums": {"https://russiansuperglue.com/tasks/download/RWSD": {"num_bytes": 40508, "checksum": "65894cf114f022a0469bbd535f045d50880e03aa822cd1f3693a54b3665fa962"}}, "download_size": 40508, "post_processing_size": null, "dataset_size": 279284, "size_in_bytes": 319792}, "danetqa": {"description": "Recent advances in the field of universal language models and transformers require the development of a methodology for\ntheir broad diagnostics and testing for general intellectual skills - detection of natural language inference,\ncommonsense reasoning, ability to perform simple logical operations regardless of text subject or lexicon. For the first\ntime, a benchmark of nine tasks, collected and organized analogically to the SuperGLUE methodology, was developed from\nscratch for the Russian language. We provide baselines, human level evaluation, an open-source framework for evaluating\nmodels and an overall leaderboard of transformer models for the Russian language.\nDaNetQA is a question answering dataset for yes/no questions. These questions are naturally occurring -- they are\ngenerated in unprompted and unconstrained settings.\n\nEach example is a triplet of (question, passage, answer), with the title of the page as optional additional context.\nThe text-pair classification setup is similar to existing natural language inference tasks.\n\nBy sampling questions from a distribution of information-seeking queries (rather than prompting annotators for\ntext pairs), we observe significantly more challenging examples compared to existing NLI datasets.\n", "citation": "@InProceedings{10.1007/978-3-030-72610-2_4,\nauthor=\"Glushkova, Taisia\nand Machnev, Alexey\nand Fenogenova, Alena\nand Shavrina, Tatiana\nand Artemova, Ekaterina\nand Ignatov, Dmitry I.\",\neditor=\"van der Aalst, Wil M. P.\nand Batagelj, Vladimir\nand Ignatov, Dmitry I.\nand Khachay, Michael\nand Koltsova, Olessia\nand Kutuzov, Andrey\nand Kuznetsov, Sergei O.\nand Lomazova, Irina A.\nand Loukachevitch, Natalia\nand Napoli, Amedeo\nand Panchenko, Alexander\nand Pardalos, Panos M.\nand Pelillo, Marcello\nand Savchenko, Andrey V.\nand Tutubalina, Elena\",\ntitle=\"DaNetQA: A Yes/No Question Answering Dataset for the Russian Language\",\nbooktitle=\"Analysis of Images, Social Networks and Texts\",\nyear=\"2021\",\npublisher=\"Springer International Publishing\",\naddress=\"Cham\",\npages=\"57--68\",\nabstract=\"DaNetQA, a new question-answering corpus, follows BoolQ\u00a0[2] design: it comprises natural yes/no questions.\nEach question is paired with a paragraph from Wikipedia and an answer, derived from the paragraph. The task is to take\nboth the question and a paragraph as input and come up with a yes/no answer, i.e. to produce a binary output. In this\npaper, we present a reproducible approach to DaNetQA creation and investigate transfer learning methods for task and\nlanguage transferring. For task transferring we leverage three similar sentence modelling tasks: 1) a corpus of\nparaphrases, Paraphraser, 2) an NLI task, for which we use the Russian part of XNLI, 3) another question answering task,\nSberQUAD. For language transferring we use English to Russian translation together\nwith multilingual language fine-tuning.\",\nisbn=\"978-3-030-72610-2\"\n}\n\n@article{shavrina2020russiansuperglue,\n title={RussianSuperGLUE: A Russian Language Understanding Evaluation Benchmark},\n author={Shavrina, Tatiana and Fenogenova, Alena and Emelyanov, Anton and Shevelev, Denis and Artemova,\n Ekaterina and Malykh, Valentin and Mikhailov, Vladislav and Tikhonova, Maria and Chertok, Andrey and\n Evlampiev, Andrey},\n journal={arXiv preprint arXiv:2010.15925},\n year={2020}\n }\n", "homepage": "https://russiansuperglue.com/tasks/task_info/DaNetQA", "license": "", "features": {"question": {"dtype": "string", "id": null, "_type": "Value"}, "passage": {"dtype": "string", "id": null, "_type": "Value"}, "idx": {"dtype": "int32", "id": null, "_type": "Value"}, "label": {"num_classes": 2, "names": ["False", "True"], "names_file": null, "id": null, "_type": "ClassLabel"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "russian_super_glue", "config_name": "danetqa", "version": {"version_str": "0.0.1", "description": null, "major": 0, "minor": 0, "patch": 1}, "splits": {"train": {"name": "train", "num_bytes": 2474006, "num_examples": 1749, "dataset_name": "russian_super_glue"}, "validation": {"name": "validation", "num_bytes": 1076455, "num_examples": 821, "dataset_name": "russian_super_glue"}, "test": {"name": "test", "num_bytes": 1023062, "num_examples": 805, "dataset_name": "russian_super_glue"}}, "download_checksums": {"https://russiansuperglue.com/tasks/download/DaNetQA": {"num_bytes": 1293761, "checksum": "b5b4bcfe17e1eb16aa13a7aab4ca088871e27b0851468e9a07b9b528bb42fb96"}}, "download_size": 1293761, "post_processing_size": null, "dataset_size": 4573523, "size_in_bytes": 5867284}, "rucos": {"description": "Recent advances in the field of universal language models and transformers require the development of a methodology for\ntheir broad diagnostics and testing for general intellectual skills - detection of natural language inference,\ncommonsense reasoning, ability to perform simple logical operations regardless of text subject or lexicon. For the first\ntime, a benchmark of nine tasks, collected and organized analogically to the SuperGLUE methodology, was developed from\nscratch for the Russian language. We provide baselines, human level evaluation, an open-source framework for evaluating\nmodels and an overall leaderboard of transformer models for the Russian language.\nRussian reading comprehension with Commonsense reasoning (RuCoS) is a large-scale reading comprehension dataset which\nrequires commonsense reasoning. RuCoS consists of queries automatically generated from CNN/Daily Mail news articles;\nthe answer to each query is a text span from a summarizing passage of the corresponding news. The goal of RuCoS is to\nevaluate a machine`s ability of commonsense reasoning in reading comprehension.\n", "citation": "@inproceedings{fenogenova-etal-2020-read,\n title = \"Read and Reason with {M}u{S}e{RC} and {R}u{C}o{S}: Datasets for Machine Reading Comprehension for {R}ussian\",\n author = \"Fenogenova, Alena and\n Mikhailov, Vladislav and\n Shevelev, Denis\",\n booktitle = \"Proceedings of the 28th International Conference on Computational Linguistics\",\n month = dec,\n year = \"2020\",\n address = \"Barcelona, Spain (Online)\",\n publisher = \"International Committee on Computational Linguistics\",\n url = \"https://aclanthology.org/2020.coling-main.570\",\n doi = \"10.18653/v1/2020.coling-main.570\",\n pages = \"6481--6497\",\n abstract = \"The paper introduces two Russian machine reading comprehension (MRC) datasets, called MuSeRC and RuCoS,\n which require reasoning over multiple sentences and commonsense knowledge to infer the answer. The former follows\n the design of MultiRC, while the latter is a counterpart of the ReCoRD dataset. The datasets are included\n in RussianSuperGLUE, the Russian general language understanding benchmark. We provide a comparative analysis\n and demonstrate that the proposed tasks are relatively more complex as compared to the original ones for English.\n Besides, performance results of human solvers and BERT-based models show that MuSeRC and RuCoS represent a challenge\n for recent advanced neural models. We thus hope to facilitate research in the field of MRC for Russian and prompt\n the study of multi-hop reasoning in a cross-lingual scenario.\",\n}\n\n@article{shavrina2020russiansuperglue,\n title={RussianSuperGLUE: A Russian Language Understanding Evaluation Benchmark},\n author={Shavrina, Tatiana and Fenogenova, Alena and Emelyanov, Anton and Shevelev, Denis and Artemova,\n Ekaterina and Malykh, Valentin and Mikhailov, Vladislav and Tikhonova, Maria and Chertok, Andrey and\n Evlampiev, Andrey},\n journal={arXiv preprint arXiv:2010.15925},\n year={2020}\n }\n", "homepage": "https://russiansuperglue.com/tasks/task_info/RuCoS", "license": "", "features": {"passage": {"dtype": "string", "id": null, "_type": "Value"}, "query": {"dtype": "string", "id": null, "_type": "Value"}, "entities": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "answers": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "idx": {"passage": {"dtype": "int32", "id": null, "_type": "Value"}, "query": {"dtype": "int32", "id": null, "_type": "Value"}}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "russian_super_glue", "config_name": "rucos", "version": {"version_str": "0.0.1", "description": null, "major": 0, "minor": 0, "patch": 1}, "splits": {"train": {"name": "train", "num_bytes": 160095378, "num_examples": 72193, "dataset_name": "russian_super_glue"}, "validation": {"name": "validation", "num_bytes": 16980563, "num_examples": 7577, "dataset_name": "russian_super_glue"}, "test": {"name": "test", "num_bytes": 15535209, "num_examples": 7257, "dataset_name": "russian_super_glue"}}, "download_checksums": {"https://russiansuperglue.com/tasks/download/RuCoS": {"num_bytes": 56208297, "checksum": "e2f42700122e79cfcce792b54df792630f033eb21e14863cede5852f3aa0d078"}}, "download_size": 56208297, "post_processing_size": null, "dataset_size": 192611150, "size_in_bytes": 248819447}}
 
 
russian_super_glue.py CHANGED
@@ -394,39 +394,41 @@ class RussianSuperGlue(datasets.GeneratorBasedBuilder):
394
  )
395
 
396
  def _split_generators(self, dl_manager: datasets.DownloadManager):
397
- dl_dir = dl_manager.download_and_extract(self.config.data_url) or ""
398
- task_name = _get_task_name_from_data_url(self.config.data_url)
399
- dl_dir = os.path.join(dl_dir, task_name)
400
  if self.config.name == "lidirus":
 
401
  return [
402
  datasets.SplitGenerator(
403
  name=datasets.Split.TEST,
404
  gen_kwargs={
405
- "data_file": os.path.join(dl_dir, f"{task_name}.jsonl"),
406
  "split": datasets.Split.TEST,
407
  },
408
  ),
409
  ]
410
  else:
 
 
 
 
411
  return [
412
  datasets.SplitGenerator(
413
  name=datasets.Split.TRAIN,
414
  gen_kwargs={
415
- "data_file": os.path.join(dl_dir, "train.jsonl"),
416
  "split": datasets.Split.TRAIN,
417
  },
418
  ),
419
  datasets.SplitGenerator(
420
  name=datasets.Split.VALIDATION,
421
  gen_kwargs={
422
- "data_file": os.path.join(dl_dir, "val.jsonl"),
423
  "split": datasets.Split.VALIDATION,
424
  },
425
  ),
426
  datasets.SplitGenerator(
427
  name=datasets.Split.TEST,
428
  gen_kwargs={
429
- "data_file": os.path.join(dl_dir, "test.jsonl"),
430
  "split": datasets.Split.TEST,
431
  },
432
  ),
 
394
  )
395
 
396
  def _split_generators(self, dl_manager: datasets.DownloadManager):
 
 
 
397
  if self.config.name == "lidirus":
398
+ dl = dl_manager.download_and_extract(self.config.data_url + "/LiDiRus.jsonl")
399
  return [
400
  datasets.SplitGenerator(
401
  name=datasets.Split.TEST,
402
  gen_kwargs={
403
+ "data_file": dl,
404
  "split": datasets.Split.TEST,
405
  },
406
  ),
407
  ]
408
  else:
409
+ train = dl_manager.download_and_extract(self.config.data_url + "/train.jsonl")
410
+ test = dl_manager.download_and_extract(self.config.data_url + "/test.jsonl")
411
+ val = dl_manager.download_and_extract(self.config.data_url + "/val.jsonl")
412
+
413
  return [
414
  datasets.SplitGenerator(
415
  name=datasets.Split.TRAIN,
416
  gen_kwargs={
417
+ "data_file": train,
418
  "split": datasets.Split.TRAIN,
419
  },
420
  ),
421
  datasets.SplitGenerator(
422
  name=datasets.Split.VALIDATION,
423
  gen_kwargs={
424
+ "data_file": val,
425
  "split": datasets.Split.VALIDATION,
426
  },
427
  ),
428
  datasets.SplitGenerator(
429
  name=datasets.Split.TEST,
430
  gen_kwargs={
431
+ "data_file": test,
432
  "split": datasets.Split.TEST,
433
  },
434
  ),