Update curation pipeline
Browse files
.gitignore
CHANGED
@@ -1 +1,3 @@
|
|
1 |
-
*~
|
|
|
|
|
|
1 |
+
*~
|
2 |
+
data
|
3 |
+
intermediate
|
src/00_setup_curation.sh
CHANGED
@@ -4,14 +4,11 @@
|
|
4 |
|
5 |
# from a base directory
|
6 |
|
7 |
-
|
8 |
-
mkdir data
|
9 |
-
mkdir intermediate
|
10 |
-
|
11 |
git clone https://<user_name>:<security_token>huggingface.co/RosettaCommons/MegaScale
|
12 |
|
|
|
13 |
# needed to get splits
|
14 |
-
git clone https://github.com/Kuhlman-Lab/ThermoMPNN.git
|
15 |
|
16 |
|
17 |
|
|
|
4 |
|
5 |
# from a base directory
|
6 |
|
|
|
|
|
|
|
|
|
7 |
git clone https://<user_name>:<security_token>huggingface.co/RosettaCommons/MegaScale
|
8 |
|
9 |
+
|
10 |
# needed to get splits
|
11 |
+
cd data && git clone https://github.com/Kuhlman-Lab/ThermoMPNN.git
|
12 |
|
13 |
|
14 |
|
src/02.1_gather_ThermoMPNN_splits.py
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
|
3 |
+
import pandas
|
4 |
+
import pyarrow.parquet
|
5 |
+
import pickle
|
6 |
+
|
7 |
+
|
8 |
+
|
9 |
+
|
10 |
+
|
11 |
+
# Gabe requested that the splits defined in ThermoMPNN of the MegaScale dataset be the default splits
|
12 |
+
|
13 |
+
# ThermoMPNN/datsets.py
|
14 |
+
# class MegaScaleDataset
|
15 |
+
# def __init__(csg, split):
|
16 |
+
# fname = self.cfg.data_loc.megascale_csv
|
17 |
+
# df = pd.read_csv(fname, usecols=["ddG_ML", "mut_type", "WT_name", "aa_seq", "dG_ML"])
|
18 |
+
#
|
19 |
+
# # remove unreliable data and more complicated mutations
|
20 |
+
# df = df.loc[df.ddG_ML != '-', :].reset_index(drop=True)
|
21 |
+
# df = df.loc[
|
22 |
+
# ~df.mut_type.str.contains("ins") &
|
23 |
+
# ~df.mut_type.str.contains("del") &
|
24 |
+
# ~df.mut_type.str.contains(":"), :].reset_index(drop=True)
|
25 |
+
#
|
26 |
+
# splits = <load from self.cfg.data_loc.megascale_splits>
|
27 |
+
#
|
28 |
+
# if self.split != 'all' and (cfg.reduce != 'prot' or self.split != 'train'):
|
29 |
+
# self.wt_names = splits[split]
|
30 |
+
#
|
31 |
+
#
|
32 |
+
#
|
33 |
+
|
34 |
+
# local.yaml
|
35 |
+
# data_loc:
|
36 |
+
# megascale_csv: "<truncated>/Processed_K50_dG_datasets/Tsuboyama2023_Dataset2_Dataset3_20230416.csv"
|
37 |
+
|
38 |
+
|
39 |
+
|
40 |
+
|
41 |
+
|
42 |
+
|
43 |
+
|
44 |
+
|
45 |
+
with open("data/ThermoMPNN/dataset_splits/mega_splits.pkl", "rb") as f:
|
46 |
+
mega_splits = pickle.load(f)
|
47 |
+
|
48 |
+
splits = []
|
49 |
+
for split_name, split_ids in mega_splits.items():
|
50 |
+
splits.append(
|
51 |
+
pandas.DataFrame({
|
52 |
+
'split_name': split_name,
|
53 |
+
'id': split_ids}))
|
54 |
+
|
55 |
+
splits = pandas.concat(splits)
|
56 |
+
splits.reset_index(drop=True, inplace=True)
|
57 |
+
|
58 |
+
pyarrow.parquet.write_table(
|
59 |
+
pyarrow.Table.from_pandas(splits),
|
60 |
+
where = "intermediate/ThermoMPNN_splits.parquet")
|
61 |
+
|
62 |
+
|
63 |
+
parquet_file = pyarrow.parquet.ParquetFile('intermediate/ThermoMPNN_splits.parquet')
|
64 |
+
parquet_file.metadata
|
65 |
+
# <pyarrow._parquet.FileMetaData object at 0x149f5d2667a0>
|
66 |
+
# created_by: parquet-cpp-arrow version 17.0.0
|
67 |
+
# num_columns: 2
|
68 |
+
# num_rows: 2020
|
69 |
+
# num_row_groups: 1
|
70 |
+
# format_version: 2.6
|
71 |
+
# serialized_size: 1881
|
src/{02.1_assemble_K50_dG_dataset.R → 02.2_assemble_K50_dG_dataset.R}
RENAMED
@@ -1,7 +1,14 @@
|
|
|
|
|
|
1 |
system("cd data; unzip Processed_K50_dG_datasets.zip")
|
2 |
|
3 |
|
|
|
|
|
|
|
4 |
### Dataset1 ###
|
|
|
|
|
5 |
dataset1 <- readr::read_csv(
|
6 |
file = "data/Processed_K50_dG_datasets/Tsuboyama2023_Dataset1_20230416.csv",
|
7 |
col_types = readr::cols(
|
@@ -43,8 +50,65 @@ dataset1 |>
|
|
43 |
|
44 |
|
45 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
dataset23 <- readr::read_csv(
|
47 |
-
file = "data/Processed_K50_dG_datasets/Tsuboyama2023_Dataset2_Dataset3_20230416.csv"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
|
49 |
|
50 |
####
|
|
|
1 |
+
|
2 |
+
|
3 |
system("cd data; unzip Processed_K50_dG_datasets.zip")
|
4 |
|
5 |
|
6 |
+
ThermoMPNN_splits <- arrow::read_parquet("intermediate/ThermoMPNN_splits.parquet")
|
7 |
+
|
8 |
+
|
9 |
### Dataset1 ###
|
10 |
+
|
11 |
+
# Dataset1 consists of all cDNA proteolysis measurements of stability
|
12 |
dataset1 <- readr::read_csv(
|
13 |
file = "data/Processed_K50_dG_datasets/Tsuboyama2023_Dataset1_20230416.csv",
|
14 |
col_types = readr::cols(
|
|
|
50 |
|
51 |
|
52 |
|
53 |
+
### Dataset2 and Dataset3 ###
|
54 |
+
|
55 |
+
# Dataset2 (for dG ML) consists of cDNA proteolysis measurements of stability that are of class G0 + G1
|
56 |
+
# Datase3 (for ddG ML) consists of cDNA proteolysis measurements of stability that are of class G0
|
57 |
+
# G0: Good (wild-type ΔG values below 4.75 kcal mol^−1), 325,132 ΔG measurements at 17,093 sites in 365 domains
|
58 |
+
# G1: Good but WT outside dynamic range
|
59 |
+
|
60 |
dataset23 <- readr::read_csv(
|
61 |
+
file = "data/Processed_K50_dG_datasets/Tsuboyama2023_Dataset2_Dataset3_20230416.csv",
|
62 |
+
show_col_types = FALSE)
|
63 |
+
# 776,298 rows
|
64 |
+
|
65 |
+
dataset23 |>
|
66 |
+
arrow::write_parquet(
|
67 |
+
"intermediate/dataset23.parquet")
|
68 |
+
|
69 |
+
dataset3 <- dataset23 |>
|
70 |
+
dplyr::filter(ddG_ML != "-")
|
71 |
+
|
72 |
+
dataset3_single_mutant <- dataset3 |>
|
73 |
+
dplyr::filter(!(mut_type |> stringr::str_detect("(ins|del|[:])")))
|
74 |
+
|
75 |
+
|
76 |
+
ThermoMPNN_splits |> dplyr::group_by(split_name) |>
|
77 |
+
dplyr::do({
|
78 |
+
split <- .
|
79 |
+
split_name <- split$split_name[1]
|
80 |
+
mutant_set <- dataset3_single_mutant |>
|
81 |
+
dplyr::filter(mut_type != "wt") |>
|
82 |
+
dplyr::semi_join(split, by = c("WT_name" = "id"))
|
83 |
+
cat("Writing out split ", split_name, ", nrow: ", nrow(mutant_set), "\n", sep = "")
|
84 |
+
|
85 |
+
arrow::write_parquet(
|
86 |
+
x = mutant_set,
|
87 |
+
sink = paste0("intermediate/dataset3_ThermoMPNN_", split_name, ".parquet"))
|
88 |
+
data.frame()
|
89 |
+
})
|
90 |
+
|
91 |
+
|
92 |
+
dataset3_single_mutant_train <- dataset3_single_mutant |>
|
93 |
+
dplyr::filter(mut_type != "wt") |>
|
94 |
+
dplyr::semi_join(
|
95 |
+
ThermoMPNN_splits |>
|
96 |
+
dplyr::filter(split_name == "train"),
|
97 |
+
by = c("WT_name" = "id"))
|
98 |
+
|
99 |
+
dataset3_single_mutant_val <- dataset3_single_mutant |>
|
100 |
+
dplyr::filter(mut_type != "wt") |>
|
101 |
+
dplyr::semi_join(
|
102 |
+
ThermoMPNN_splits |>
|
103 |
+
dplyr::filter(split_name == "val"),
|
104 |
+
by = c("WT_name" = "id"))
|
105 |
+
|
106 |
+
dataset3_single_mutant_test <- dataset3_single_mutant |>
|
107 |
+
dplyr::filter(mut_type != "wt") |>
|
108 |
+
dplyr::semi_join(
|
109 |
+
ThermoMPNN_splits |>
|
110 |
+
dplyr::filter(split_name == "test"),
|
111 |
+
by = c("WT_name" = "id"))
|
112 |
|
113 |
|
114 |
####
|
src/02.8_gather_ThermoMPNN_splits.py
DELETED
@@ -1,20 +0,0 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
import pandas
|
4 |
-
import pyarrow.parquet
|
5 |
-
import pickle
|
6 |
-
|
7 |
-
with open("ThermoMPNN/dataset_splits/mega_splits.pkl", "rb") as f:
|
8 |
-
mega_splits = pickle.load(f)
|
9 |
-
|
10 |
-
splits = []
|
11 |
-
for split_name, split_ids in mega_splits.items():
|
12 |
-
splits.append(
|
13 |
-
pandas.DataFrame({
|
14 |
-
'split_name': split_name,
|
15 |
-
'id': split_ids}))
|
16 |
-
|
17 |
-
splits = pandas.concat(splits)
|
18 |
-
pyarrow.parquet.write_table(
|
19 |
-
pyarrow.Table.from_pandas(splits),
|
20 |
-
where = "intermediate/ThermoMPNN_splits.parquet")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/03.1_upload_data.py
ADDED
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
|
3 |
+
|
4 |
+
# install huggingface_hub from the command line:
|
5 |
+
#
|
6 |
+
# pip install huggingface_hub
|
7 |
+
# pip install datasets
|
8 |
+
#
|
9 |
+
# Log into huggingface hub (this only needs to be done once per project, and then it is cached)
|
10 |
+
#
|
11 |
+
# huggingface-cli login
|
12 |
+
#
|
13 |
+
# This will ask you for an access token
|
14 |
+
|
15 |
+
|
16 |
+
import datasets
|
17 |
+
|
18 |
+
|
19 |
+
# Dataset1
|
20 |
+
# Dataset2
|
21 |
+
# Dataset3
|
22 |
+
# Single Mutants
|
23 |
+
#
|
24 |
+
|
25 |
+
# dataset1
|
26 |
+
# dataset2
|
27 |
+
# dataset3
|
28 |
+
# dataset3_single
|
29 |
+
# dataset3_single_CV
|
30 |
+
|
31 |
+
|
32 |
+
|
33 |
+
|
34 |
+
##### dataset3_single #######
|
35 |
+
dataset = datasets.load_dataset(
|
36 |
+
"parquet",
|
37 |
+
name = "dataset3_single",
|
38 |
+
data_dir = "./intermediate",
|
39 |
+
data_files = {
|
40 |
+
"train" : "dataset3_ThermoMPNN_train.parquet",
|
41 |
+
"val" : "dataset3_ThermoMPNN_val.parquet",
|
42 |
+
"test" : "dataset3_ThermoMPNN_test.parquet"},
|
43 |
+
cache_dir = "/scratch/maom_root/maom0/maom",
|
44 |
+
keep_in_memory = True)
|
45 |
+
|
46 |
+
dataset.push_to_hub(
|
47 |
+
repo_id = "maom/MegaScale",
|
48 |
+
config_name = "dataset3_single",
|
49 |
+
data_dir = "dataset3_single/data")
|
50 |
+
|
51 |
+
|
52 |
+
##### dataset3_single #######
|
53 |
+
dataset = datasets.load_dataset(
|
54 |
+
"parquet",
|
55 |
+
name = "dataset3_single_CV",
|
56 |
+
data_dir = "./intermediate",
|
57 |
+
data_files = {
|
58 |
+
"train_0" : "dataset3_ThermoMPNN_train_0.parquet",
|
59 |
+
"train_1" : "dataset3_ThermoMPNN_train_1.parquet",
|
60 |
+
"train_2" : "dataset3_ThermoMPNN_train_2.parquet",
|
61 |
+
"train_3" : "dataset3_ThermoMPNN_train_3.parquet",
|
62 |
+
"train_4" : "dataset3_ThermoMPNN_train_4.parquet",
|
63 |
+
"val_0" : "dataset3_ThermoMPNN_val_0.parquet",
|
64 |
+
"val_1" : "dataset3_ThermoMPNN_val_1.parquet",
|
65 |
+
"val_2" : "dataset3_ThermoMPNN_val_2.parquet",
|
66 |
+
"val_3" : "dataset3_ThermoMPNN_val_3.parquet",
|
67 |
+
"val_4" : "dataset3_ThermoMPNN_val_4.parquet",
|
68 |
+
"test_0" : "dataset3_ThermoMPNN_test_0.parquet",
|
69 |
+
"test_1" : "dataset3_ThermoMPNN_test_1.parquet",
|
70 |
+
"test_2" : "dataset3_ThermoMPNN_test_2.parquet",
|
71 |
+
"test_3" : "dataset3_ThermoMPNN_test_3.parquet",
|
72 |
+
"test_4" : "dataset3_ThermoMPNN_test_4.parquet"},
|
73 |
+
cache_dir = "/scratch/maom_root/maom0/maom",
|
74 |
+
keep_in_memory = True)
|
75 |
+
|
76 |
+
dataset.push_to_hub(
|
77 |
+
repo_id = "MaomLab/MegaScale",
|
78 |
+
config_name = "dataset3_single_CV",
|
79 |
+
data_dir = "datase3_single/data")
|