Update README.md
Browse filesadd usage details
README.md
CHANGED
@@ -251,6 +251,86 @@ dataset_info:
|
|
251 |
representative genomes across the microbial tree of life and annotate
|
252 |
them functionally on a per-residue basis.
|
253 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
254 |
## Dataset Details
|
255 |
|
256 |
### Dataset Description
|
@@ -363,6 +443,10 @@ genome database across the microbial tree of life:
|
|
363 |
|
364 |
### Recommendations
|
365 |
|
|
|
|
|
|
|
|
|
366 |
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
367 |
|
368 |
{{ bias_recommendations | default("Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.", true)}}
|
|
|
251 |
representative genomes across the microbial tree of life and annotate
|
252 |
them functionally on a per-residue basis.
|
253 |
|
254 |
+
|
255 |
+
## Quickstart Usage
|
256 |
+
|
257 |
+
Each subset can be loaded into python using the Huggingface [datasets](https://huggingface.co/docs/datasets/index) library.
|
258 |
+
First, from the command line install the `datasets` library
|
259 |
+
|
260 |
+
$ pip install datasets
|
261 |
+
|
262 |
+
Optionally set the cache directory, e.g.
|
263 |
+
|
264 |
+
$ HF_HOME=${HOME}/.cache/huggingface/
|
265 |
+
$ export HF_HOME
|
266 |
+
|
267 |
+
then, from within python load the datasets library
|
268 |
+
|
269 |
+
>>> import datasets
|
270 |
+
|
271 |
+
and load one of the `MPI` model, e.g.,
|
272 |
+
|
273 |
+
>>> dataset_tag = "rosetta_high_quality"
|
274 |
+
>>> dataset_models = datasets.load_dataset(
|
275 |
+
path = "RosettaCommons/MIP",
|
276 |
+
name = f"{dataset_tag}_models",
|
277 |
+
data_dir = f"{dataset_tag}_models")
|
278 |
+
|
279 |
+
and inspecting the loaded dataset
|
280 |
+
|
281 |
+
>>> dataset_models
|
282 |
+
DatasetDict({
|
283 |
+
train: Dataset({
|
284 |
+
features: ['id', 'pdb', 'Filter_Stage2_aBefore', 'Filter_Stage2_bQuarter', 'Filter_Stage2_cHalf', 'Filter_Stage2_dEnd', 'clashes_bb', 'clashes_total', 'score', 'silent_score', 'time'],
|
285 |
+
num_rows: 211069
|
286 |
+
})
|
287 |
+
})
|
288 |
+
|
289 |
+
many structure-based pipelines expect a `.pdb` file as input. For example, `frame2seq` takes in a structure
|
290 |
+
and generates a sequence for the backbone. The `frame2seq` can be installed using `pip` from the command line:
|
291 |
+
|
292 |
+
$ pip install frame2seq
|
293 |
+
|
294 |
+
Then used from within python:
|
295 |
+
|
296 |
+
>>> from frame2seq import Frame2seqRunner
|
297 |
+
>>> runner = Frame2seqRunner()
|
298 |
+
>>> runner.design(
|
299 |
+
pdb_file = "target.pdb",
|
300 |
+
chain_id = "A",
|
301 |
+
temperature = 1,
|
302 |
+
num_samples = 5000)
|
303 |
+
|
304 |
+
To run `frame2seq` on each MIP target,
|
305 |
+
|
306 |
+
>>> for row in dataset_models:
|
307 |
+
print(f"Predicting sequences for id = {row$id}")
|
308 |
+
pdb = row$pdb
|
309 |
+
|
310 |
+
|
311 |
+
>>> dataset_function_prediction = datasets.load_dataset(
|
312 |
+
path = "RosettaCommons/MIP",
|
313 |
+
name = f"{dataset_tag}_function_predictions",
|
314 |
+
data_dir = f"{dataset_tag}_function_predictions")
|
315 |
+
Downloading readme: 100%|ββββββββββββββββββββββββββββββββββββββββ| 15.4k/15.4k [00:00<00:00, 264kB/s]
|
316 |
+
Resolving data files: 100%|ββββββββββββββββββββββββββββββββββββββ| 219/219 [00:00<00:00, 1375.51it/s]
|
317 |
+
Downloading data: 100%|βββββββββββββββββββββββββββββββββββββββββ| 219/219 [13:04<00:00, 3.58s/files]
|
318 |
+
Generating train split: 100%|ββββββββββββ| 1332900735/1332900735 [13:11<00:00, 1684288.89 examples/s]
|
319 |
+
Loading dataset shards: 100%|ββββββββββββββββββββββββββββββββββββββ| 219/219 [01:22<00:00, 2.66it/s]
|
320 |
+
|
321 |
+
this loads the `>1.3B` function predictions (xxx targets x yyyy terms from the GO and EC ontologies).
|
322 |
+
The predictions are stored in long format, but can be easily converted to a wide format using pandas:
|
323 |
+
|
324 |
+
>>> dataset_function_prediction
|
325 |
+
|
326 |
+
>>> import pandas
|
327 |
+
>>> dataset_function_prediction_wide = pandas.pivot(
|
328 |
+
dataset_function_prediction.data['train'].select(['id', 'term_id', 'Y_hat']).to_pandas()
|
329 |
+
columns = "term_id",
|
330 |
+
index = "id",
|
331 |
+
values = "Y_hat")
|
332 |
+
>>> dataset_function_prediction_wide[1:3, 1:3]
|
333 |
+
|
334 |
## Dataset Details
|
335 |
|
336 |
### Dataset Description
|
|
|
443 |
|
444 |
### Recommendations
|
445 |
|
446 |
+
|
447 |
+
|
448 |
+
|
449 |
+
|
450 |
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
451 |
|
452 |
{{ bias_recommendations | default("Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.", true)}}
|