bbc_alltime / bbc_alltime.py
liyucheng's picture
Update bbc_alltime.py
77d852e
raw
history blame
4.14 kB
import datasets
import json
import os
import sys
dl = datasets.DownloadManager()
configs_file = dl.download('https://huggingface.co/datasets/RealTimeData/bbc_alltime/raw/main/configs.txt')
with open(configs_file, encoding="utf-8") as f:
_TIMES = f.read().splitlines()
_TIMES += ['all']
_CITATION = """\
@misc{li2023estimating,
title={Estimating Contamination via Perplexity: Quantifying Memorisation in Language Model Evaluation},
author={Yucheng Li},
year={2023},
eprint={2309.10677},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
"""
_DESCRIPTION = """\
This dataset contains BBC News articles from 2017 to 2022. The articles are arraged by month. Access the specific month by using the format "YYYY-MM" as config. Such as load_dataset("RealTimeData/bbc_alltime", "2021-1").
"""
_HOMEPAGE = "https://github.com/liyucheng09/Contamination_Detector"
class Bbc_alltimes(datasets.GeneratorBasedBuilder):
BUILDER_CONFIGS = [
datasets.BuilderConfig(
name=time, version=datasets.Version("1.0.0"), description=f"BBC News articles published in the priod of {time}"
)
for time in _TIMES
]
def _info(self):
features = datasets.Features(
{
"title": datasets.Value("string"),
"published_date": datasets.Value("string"),
"authors": datasets.Value("string"),
"description": datasets.Value("string"),
"section": datasets.Value("string"),
"content": datasets.Value("string"),
"link": datasets.Value("string"),
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
if self.config.name == "all":
times = _TIMES[:-1]
files = dl_manager.download([f"articles/{time}.json" for time in _TIMES ])
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={"files": files},
)
]
else:
time = self.config.name
_URL = f"articles/{time}.json"
file = dl_manager.download(_URL)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={"files": file},
)
]
def _generate_examples(self, files):
"""Yields examples."""
if self.config.name == "all":
assert isinstance(files, list)
for file in files:
time = file.strip('.json')
with open(file, encoding="utf-8") as f:
data = json.load(f)
length = len(data['title'])
for i in range(length):
yield f'{time}-{i}', {
"title": data['title'][i],
"published_date": data['published_date'][i],
"authors": data['authors'][i],
"description": data['description'][i],
"section": data['section'][i],
"content": data['content'][i],
"link": data['link'][i],
}
else:
assert isinstance(files, str)
time = self.config.name
with open(files, encoding="utf-8") as f:
data = json.load(f)
length = len(data['title'])
for i in range(length):
yield f'{time}-{i}', {
"title": data['title'][i],
"published_date": data['published_date'][i],
"authors": data['authors'][i],
"description": data['description'][i],
"section": data['section'][i],
"content": data['content'][i],
"link": data['link'][i],
}