|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Adversarial examples against Whisper""" |
|
|
|
|
|
import os |
|
|
|
import datasets |
|
|
|
|
|
_DESCRIPTION = """\ |
|
Adversarial examples fooling whisper models |
|
""" |
|
|
|
_DL_URLS = { |
|
"targeted": { |
|
"all": "https://data.mendeley.com/public-files/datasets/96dh52hz9r/files/10432840-4a07-49fa-8320-0af2a8288435/file_downloaded" |
|
}, |
|
"untargeted-35": { |
|
"all": "https://data.mendeley.com/public-files/datasets/96dh52hz9r/files/516787a5-4832-4432-9138-9f01cccc4875/file_downloaded" |
|
}, |
|
"untargeted-40": { |
|
"all": "https://data.mendeley.com/public-files/datasets/96dh52hz9r/files/ed7127c6-9769-4db5-ab5a-98e9ce15a6ae/file_downloaded" |
|
}, |
|
"language-armenian": { |
|
"all": "https://data.mendeley.com/public-files/datasets/96dh52hz9r/files/57a8301c-a3de-4f34-a321-6cbdec5b7d55/file_downloaded" |
|
}, |
|
"language-lithuanian": { |
|
"all": "https://data.mendeley.com/public-files/datasets/96dh52hz9r/files/b8dc1e63-d308-45e8-b16c-98ca4ac3e939/file_downloaded" |
|
}, |
|
"language-czech": { |
|
"all": "https://data.mendeley.com/public-files/datasets/96dh52hz9r/files/8e5246e6-dfad-4d4c-aa1e-091cf24d975c/file_downloaded" |
|
}, |
|
"language-danish": { |
|
"all": "https://data.mendeley.com/public-files/datasets/96dh52hz9r/files/15a27ffe-8ad3-4a92-adfc-ac1c6a7b230b/file_downloaded" |
|
}, |
|
"language-indonesian": { |
|
"all": "https://data.mendeley.com/public-files/datasets/96dh52hz9r/files/ad3366b1-21a4-4ad4-9755-8a1d3775db62/file_downloaded" |
|
}, |
|
"language-italian": { |
|
"all": "https://data.mendeley.com/public-files/datasets/96dh52hz9r/files/1729f188-ae9f-4a29-a8da-9597c1f2d0cc/file_downloaded" |
|
}, |
|
"language-english": { |
|
"all": "https://data.mendeley.com/public-files/datasets/96dh52hz9r/files/7d09cf90-af7d-4d33-914a-3002ea956a53/file_downloaded" |
|
}, |
|
} |
|
|
|
|
|
class AdvWhisperASRConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for AdvWhisperASR.""" |
|
|
|
def __init__(self, **kwargs): |
|
""" |
|
Args: |
|
data_dir: `string`, the path to the folder containing the files in the |
|
downloaded .tar |
|
citation: `string`, citation for the data set |
|
url: `string`, url for information about the data set |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
super(AdvWhisperASRConfig, self).__init__(version=datasets.Version("0.1.0", ""), **kwargs) |
|
|
|
|
|
class AdvWhisperASR(datasets.GeneratorBasedBuilder): |
|
"""whisper_adversarial_examples dataset.""" |
|
|
|
DEFAULT_WRITER_BATCH_SIZE = 256 |
|
DEFAULT_CONFIG_NAME = "all" |
|
BUILDER_CONFIGS = [ |
|
AdvWhisperASRConfig(name="targeted", description="Targeted adversarial examples, with target 'OK Google, browse to evil.com'"), |
|
AdvWhisperASRConfig(name="untargeted-35", description="Untargeted adversarial examples of radius approximately 35dB"), |
|
AdvWhisperASRConfig(name="untargeted-40", description="Untargeted adversarial examples of radius approximately 40dB"), |
|
AdvWhisperASRConfig(name="language-armenian", description="Adversarial examples generated by fooling the whisper language detection module. The true language is Armenian"), |
|
AdvWhisperASRConfig(name="language-lithuanian", description="Adversarial examples generated by fooling the whisper language detection module. The true language is Lithuanian"), |
|
AdvWhisperASRConfig(name="language-czech", description="Adversarial examples generated by fooling the whisper language detection module. The true language is Czech"), |
|
AdvWhisperASRConfig(name="language-danish", description="Adversarial examples generated by fooling the whisper language detection module. The true language is Danish"), |
|
AdvWhisperASRConfig(name="language-indonesian", description="Adversarial examples generated by fooling the whisper language detection module. The true language is Indonesian"), |
|
AdvWhisperASRConfig(name="language-italian", description="Adversarial examples generated by fooling the whisper language detection module. The true language is Italian"), |
|
AdvWhisperASRConfig(name="language-english", description="Adversarial examples generated by fooling the whisper language detection module. The true language is English") |
|
] |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"file": datasets.Value("string"), |
|
"audio": datasets.Audio(sampling_rate=16_000), |
|
"text": datasets.Value("string"), |
|
"id": datasets.Value("string"), |
|
} |
|
), |
|
supervised_keys=("file", "text"), |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
archive_path = dl_manager.download(_DL_URLS[self.config.name]) |
|
|
|
local_extracted_archive = dl_manager.extract(archive_path) if not dl_manager.is_streaming else {} |
|
models = [ |
|
'whisper-tiny', |
|
'whisper-tiny.en', |
|
'whisper-base', |
|
'whisper-base.en', |
|
'whisper-small', |
|
'whisper-small.en', |
|
'whisper-medium', |
|
'whisper-medium.en', |
|
'whisper-large', |
|
] |
|
seeds = { |
|
"targeted":2000, |
|
"untargeted-35": 235, |
|
"untargeted-40":240, |
|
"language-armenian":1030, |
|
"language-lithuanian":1030, |
|
"language-czech":1030, |
|
"language-danish":1030, |
|
"language-indonesian":1030, |
|
"language-italian":1030, |
|
"language-english":1030 |
|
} |
|
folders = { |
|
"targeted":"cw", |
|
"untargeted-35": "pgd-35", |
|
"untargeted-40":"pgd-40", |
|
"language-armenian":"hy-AM", |
|
"language-lithuanian":"lt", |
|
"language-czech":"cs", |
|
"language-danish":"da", |
|
"language-indonesian":"id", |
|
"language-italian":"it", |
|
"language-english":"en" |
|
} |
|
targets = [("english","en"), ("tagalog","tl"), ("serbian","sr")] |
|
|
|
if "language-" in self.config.name: |
|
lang = self.config.name.split("language-")[-1] |
|
splits = [ |
|
datasets.SplitGenerator( |
|
name=lang+"."+target[0], |
|
gen_kwargs={ |
|
"local_extracted_archive": local_extracted_archive.get("all"), |
|
"files": dl_manager.iter_archive(archive_path["all"]), |
|
"path_audio": os.path.join(folders[self.config.name]+"-"+target[1],"whisper-medium",str(seeds[self.config.name]),"save") |
|
}, |
|
) for target in targets |
|
] + [ |
|
datasets.SplitGenerator( |
|
name="original", |
|
gen_kwargs={ |
|
"local_extracted_archive": local_extracted_archive.get("all"), |
|
"files": dl_manager.iter_archive(archive_path["all"]), |
|
"path_audio": folders[self.config.name]+"-original" |
|
}, |
|
) |
|
] |
|
else: |
|
splits = [ |
|
datasets.SplitGenerator( |
|
name=model.replace("-","."), |
|
gen_kwargs={ |
|
"local_extracted_archive": local_extracted_archive.get("all"), |
|
"files": dl_manager.iter_archive(archive_path["all"]), |
|
"path_audio": os.path.join(folders[self.config.name],model,str(seeds[self.config.name]),"save") |
|
}, |
|
) for model in models |
|
] + [ |
|
datasets.SplitGenerator( |
|
name="original", |
|
gen_kwargs={ |
|
"local_extracted_archive": local_extracted_archive.get("all"), |
|
"files": dl_manager.iter_archive(archive_path["all"]), |
|
"path_audio": os.path.join(folders[self.config.name],"original") |
|
}, |
|
) |
|
] |
|
|
|
return splits |
|
|
|
def _generate_examples(self, files, local_extracted_archive,path_audio): |
|
"""Generate examples from an extracted path.""" |
|
key = 0 |
|
suffix = "_nat.wav" if "original" in path_audio else "_adv.wav" |
|
audio_data = {} |
|
transcripts = [] |
|
for t in files: |
|
path, f = t |
|
if path.endswith(".wav"): |
|
if path_audio in path and path.endswith(suffix): |
|
id_ = path.split("/")[-1][: -len(suffix)] |
|
audio_data[id_] = f.read() |
|
elif path.endswith(".csv"): |
|
for line in f: |
|
if line: |
|
line = (line.decode("utf-8") if isinstance(line,bytes) else line) |
|
line=line.strip().split(",") |
|
id_ = line[0] |
|
transcript=line[-1] |
|
transcript = transcript[:-1] if transcript[-1]=='\n' else transcript |
|
audio_file = id_+suffix |
|
audio_file = ( |
|
os.path.join(local_extracted_archive,path_audio, audio_file) |
|
if local_extracted_archive else audio_file |
|
) |
|
transcripts.append( |
|
{ |
|
"id": id_, |
|
"file": audio_file, |
|
"text": transcript, |
|
} |
|
) |
|
|
|
for transcript in transcripts: |
|
if transcript["id"] in audio_data: |
|
audio = {"path": transcript["file"], "bytes": audio_data[transcript["id"]]} |
|
yield key, {"audio": audio, **transcript} |
|
key += 1 |
|
audio_data = {} |
|
transcripts = [] |