ryanramos commited on
Commit
7962619
1 Parent(s): af1f3e9

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +114 -1
README.md CHANGED
@@ -27,4 +27,117 @@ dataset_info:
27
  ---
28
  # Dataset Card for "smallnorb"
29
 
30
- [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27
  ---
28
  # Dataset Card for "smallnorb"
29
 
30
+ ## Table of Contents
31
+ - [Table of Contents](#table-of-contents)
32
+ - [Dataset Description](#dataset-description)
33
+ - [Dataset Summary](#dataset-summary)
34
+ - [Dataset Structure](#dataset-structure)
35
+ - [Data Instances](#data-instances)
36
+ - [Data Fields](#data-fields)
37
+ - [Data Splits](#data-splits)
38
+ - [Additional Information](#additional-information)
39
+ - [Dataset Curators](#dataset-curators)
40
+ - [Licensing Information](#licensing-information)
41
+ - [Citation Information](#citation-information)
42
+ - [Contributions](#contributions)
43
+
44
+ ## Dataset Description
45
+
46
+ **NOTE:** This dataset is an unofficial port of small NORB based on a [repo from Andrea Palazzi](https://github.com/ndrplz/small_norb) using this [script](https://colab.research.google.com/drive/1Tx20uP1PrnyarsNCWf1dN9EQyr38BDIE?usp=sharing). For complete and accurate information, we highly recommend visiting the dataset's original homepage.
47
+
48
+ - **Homepage:** https://cs.nyu.edu/~ylclab/data/norb-v1.0-small/
49
+ - **Paper:** https://ieeexplore.ieee.org/document/1315150
50
+
51
+ ### Dataset Summary
52
+
53
+ From the dataset's [homepage](https://cs.nyu.edu/~ylclab/data/norb-v1.0-small/):
54
+
55
+ > This database is intended for experiments in 3D object reocgnition from shape. It contains images of 50 toys belonging to 5 generic categories: four-legged animals, human figures, airplanes, trucks, and cars. The objects were imaged by two cameras under 6 lighting conditions, 9 elevations (30 to 70 degrees every 5 degrees), and 18 azimuths (0 to 340 every 20 degrees).
56
+ >
57
+ > The training set is composed of 5 instances of each category (instances 4, 6, 7, 8 and 9), and the test set of the remaining 5 instances (instances 0, 1, 2, 3, and 5).
58
+
59
+ ## Dataset Structure
60
+
61
+ ### Data Instances
62
+
63
+ An example of an instance in this dataset:
64
+
65
+ ```
66
+ {
67
+ 'image_lt': <PIL.PngImagePlugin.PngImageFile image mode=L size=96x96 at 0x...>,
68
+ 'image_rt': <PIL.PngImagePlugin.PngImageFile image mode=L size=96x96 at 0x...>,
69
+ 'category': 0,
70
+ 'instance': 8,
71
+ 'elevation': 6,
72
+ 'azimuth': 4,
73
+ 'lighting': 4
74
+ }
75
+ ```
76
+
77
+ ### Data Fields
78
+
79
+ Explanation of this dataset's fields:
80
+
81
+ - `image_lt`: a PIL image of an object from the dataset taken with one of two cameras
82
+ - `image_rt`: a PIL image of an object from the dataset taken with one of two cameras
83
+ - `category`: the category of the object shown in the images
84
+ - `instance`: the instance of the category of the object shown in the images
85
+ - `elevation`: the label of the elevation of the cameras used in capturing a picture of the object
86
+ - `azimuth`: the label of the azimuth of the cameras used in capturing a picture of the object
87
+ - `lighting`: the label of the lighting condition used in capturing a picture of the object
88
+
89
+ For more information on what these categories and labels pertain to, please see [Dataset Summary](#dataset-summary) or the [repo](https://github.com/ndrplz/small_norb) used in processing the dataset.
90
+
91
+ ### Data Splits
92
+
93
+ Information on this dataset's splits:
94
+
95
+ | | train | test |
96
+ |------|------:|------:|
97
+ | size | 24300 | 24300 |
98
+
99
+ ## Additional Information
100
+
101
+ ### Dataset Curators
102
+
103
+ Credits from the dataset's [homepage](https://cs.nyu.edu/~ylclab/data/norb-v1.0-small/):
104
+
105
+ > [Fu Jie Huang](http://www.cs.nyu.edu/jhuangfu/), [Yann LeCun](http://yann.lecun.com/)
106
+ >
107
+ > Courant Institute, New York University
108
+ >
109
+ > October, 2005
110
+
111
+ ### Licensing Information
112
+
113
+ From the dataset's [homepage](https://cs.nyu.edu/~ylclab/data/norb-v1.0-small/):
114
+
115
+ > This database is provided for research purposes. It cannot be sold. Publications that include results obtained with this database should reference the following paper:
116
+ >
117
+ > Y. LeCun, F.J. Huang, L. Bottou, Learning Methods for Generic Object Recognition with Invariance to Pose and Lighting. IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR) 2004
118
+
119
+ ### Citation Information
120
+
121
+ From the dataset's [homepage](https://cs.nyu.edu/~ylclab/data/norb-v1.0-small/):
122
+
123
+ > Publications that include results obtained with this database should reference the following paper:
124
+ >
125
+ > Y. LeCun, F.J. Huang, L. Bottou, Learning Methods for Generic Object Recognition with Invariance to Pose and Lighting. IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR) 2004
126
+
127
+ ```
128
+ @inproceedings{lecun2004learning,
129
+ title={Learning methods for generic object recognition with invariance to pose and lighting},
130
+ author={LeCun, Yann and Huang, Fu Jie and Bottou, Leon},
131
+ booktitle={Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004.},
132
+ volume={2},
133
+ pages={II--104},
134
+ year={2004},
135
+ organization={IEEE}
136
+ }
137
+ ```
138
+
139
+ DOI: [10.1109/CVPR.2004.1315150](https://doi.org/10.1109/CVPR.2004.1315150)
140
+
141
+ ### Contributions
142
+
143
+ Code to process small NORB adapted from [Andrea Palazzi's repo](https://github.com/ndrplz/small_norb) with this [script](https://colab.research.google.com/drive/1Tx20uP1PrnyarsNCWf1dN9EQyr38BDIE?usp=sharing).