Upload folder using huggingface_hub
Browse files
processed_code/preprocess_ctrate_train.py
ADDED
@@ -0,0 +1,148 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import nibabel as nib
|
3 |
+
import pandas as pd
|
4 |
+
import numpy as np
|
5 |
+
import torch
|
6 |
+
import monai
|
7 |
+
import torch.nn.functional as F
|
8 |
+
from multiprocessing import Pool
|
9 |
+
from tqdm import tqdm
|
10 |
+
|
11 |
+
def read_nii_files(directory):
|
12 |
+
"""
|
13 |
+
Retrieve paths of all NIfTI files in the given directory.
|
14 |
+
|
15 |
+
Args:
|
16 |
+
directory (str): Path to the directory containing NIfTI files.
|
17 |
+
|
18 |
+
Returns:
|
19 |
+
list: List of paths to NIfTI files.
|
20 |
+
"""
|
21 |
+
nii_files = []
|
22 |
+
for root, dirs, files in os.walk(directory):
|
23 |
+
for file in files:
|
24 |
+
if file.endswith('1.nii.gz'):
|
25 |
+
# /mnt/petrelfs/share_data/zhangxiaoman/DATA/CT-RATE/dataset/train_preprocessed
|
26 |
+
# preprocessed_file = file.replace('/mnt/petrelfs/share_data/zhangxiaoman/DATA/CT-RATE/dataset/train','/mnt/petrelfs/share_data/zhangxiaoman/DATA/CT-RATE/dataset/train_preprocessed')
|
27 |
+
nii_files.append(os.path.join(root, file))
|
28 |
+
return nii_files
|
29 |
+
|
30 |
+
def read_nii_data(file_path):
|
31 |
+
"""
|
32 |
+
Read NIfTI file data.
|
33 |
+
|
34 |
+
Args:
|
35 |
+
file_path (str): Path to the NIfTI file.
|
36 |
+
|
37 |
+
Returns:
|
38 |
+
np.ndarray: NIfTI file data.
|
39 |
+
"""
|
40 |
+
try:
|
41 |
+
nii_img = nib.load(file_path)
|
42 |
+
nii_data = nii_img.get_fdata()
|
43 |
+
return nii_data
|
44 |
+
except Exception as e:
|
45 |
+
print(f"Error reading file {file_path}: {e}")
|
46 |
+
return None
|
47 |
+
|
48 |
+
def resize_array(array, current_spacing, target_spacing):
|
49 |
+
"""
|
50 |
+
Resize the array to match the target spacing.
|
51 |
+
|
52 |
+
Args:
|
53 |
+
array (torch.Tensor): Input array to be resized.
|
54 |
+
current_spacing (tuple): Current voxel spacing (z_spacing, xy_spacing, xy_spacing).
|
55 |
+
target_spacing (tuple): Target voxel spacing (target_z_spacing, target_x_spacing, target_y_spacing).
|
56 |
+
|
57 |
+
Returns:
|
58 |
+
np.ndarray: Resized array.
|
59 |
+
"""
|
60 |
+
# Calculate new dimensions
|
61 |
+
original_shape = array.shape[2:]
|
62 |
+
scaling_factors = [
|
63 |
+
current_spacing[i] / target_spacing[i] for i in range(len(original_shape))
|
64 |
+
]
|
65 |
+
new_shape = [
|
66 |
+
int(original_shape[i] * scaling_factors[i]) for i in range(len(original_shape))
|
67 |
+
]
|
68 |
+
# Resize the array
|
69 |
+
resized_array = F.interpolate(array, size=new_shape, mode='trilinear', align_corners=False).cpu().numpy()
|
70 |
+
return resized_array
|
71 |
+
|
72 |
+
def process_file(file_path):
|
73 |
+
"""
|
74 |
+
Process a single NIfTI file.
|
75 |
+
|
76 |
+
Args:
|
77 |
+
file_path (str): Path to the NIfTI file.
|
78 |
+
|
79 |
+
Returns:
|
80 |
+
None
|
81 |
+
"""
|
82 |
+
monai_loader = monai.transforms.Compose(
|
83 |
+
[
|
84 |
+
monai.transforms.LoadImaged(keys=['image']),
|
85 |
+
monai.transforms.AddChanneld(keys=['image']),
|
86 |
+
monai.transforms.Orientationd(axcodes="LPS", keys=['image']), # zyx
|
87 |
+
# monai.transforms.Spacingd(keys=["image"], pixdim=(1, 1, 3), mode=("bilinear")),
|
88 |
+
monai.transforms.CropForegroundd(keys=["image"], source_key="image"),
|
89 |
+
monai.transforms.ToTensord(keys=["image"]),
|
90 |
+
]
|
91 |
+
)
|
92 |
+
|
93 |
+
dictionary = monai_loader({'image':file_path})
|
94 |
+
img_data = dictionary['image']
|
95 |
+
|
96 |
+
file_name = os.path.basename(file_path)
|
97 |
+
row = df[df['VolumeName'] == file_name]
|
98 |
+
slope = float(row["RescaleSlope"].iloc[0])
|
99 |
+
intercept = float(row["RescaleIntercept"].iloc[0])
|
100 |
+
xy_spacing = float(row["XYSpacing"].iloc[0][1:][:-2].split(",")[0])
|
101 |
+
z_spacing = float(row["ZSpacing"].iloc[0])
|
102 |
+
|
103 |
+
# Define the target spacing values for SAT segmentation
|
104 |
+
target_x_spacing = 1.0
|
105 |
+
target_y_spacing = 1.0
|
106 |
+
target_z_spacing = 3.0
|
107 |
+
|
108 |
+
current = (z_spacing, xy_spacing, xy_spacing)
|
109 |
+
target = (target_z_spacing, target_x_spacing, target_y_spacing)
|
110 |
+
img_data = slope * img_data + intercept
|
111 |
+
|
112 |
+
img_data = img_data[0].numpy()
|
113 |
+
img_data = img_data.transpose(2, 0, 1)
|
114 |
+
tensor = torch.tensor(img_data)
|
115 |
+
tensor = tensor.unsqueeze(0).unsqueeze(0)
|
116 |
+
|
117 |
+
resized_array = resize_array(tensor, current, target)
|
118 |
+
resized_array = resized_array[0][0]
|
119 |
+
resized_array = resized_array.transpose(1,2,0)
|
120 |
+
# print('resized:',resized_array.shape)
|
121 |
+
# resized: (231, 387, 387)
|
122 |
+
|
123 |
+
save_folder = "../upload_data/train_preprocessed/" #save folder for preprocessed
|
124 |
+
folder_path_new = os.path.join(save_folder, "train_" + file_name.split("_")[1], "train_" + file_name.split("_")[1] + file_name.split("_")[2]) #folder name for train or validation
|
125 |
+
os.makedirs(folder_path_new, exist_ok=True)
|
126 |
+
save_path = os.path.join(folder_path_new, file_name)
|
127 |
+
# np.savez(save_path, resized_array)
|
128 |
+
# Create an identity matrix
|
129 |
+
|
130 |
+
image_nifti = nib.Nifti1Image(resized_array,affine = np.eye(4))
|
131 |
+
nib.save(image_nifti, save_path)
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
|
136 |
+
# Example usage:
|
137 |
+
if __name__ == "__main__":
|
138 |
+
split_to_preprocess = '../src_data/train' #select the validation or test split
|
139 |
+
nii_files = read_nii_files(split_to_preprocess)
|
140 |
+
print(len(nii_files))
|
141 |
+
|
142 |
+
df = pd.read_csv("../src_data/metadata/train_metadata.csv") #select the metadata
|
143 |
+
|
144 |
+
num_workers = 18 # Number of worker processes
|
145 |
+
|
146 |
+
# # # Process files using multiprocessing with tqdm progress bar
|
147 |
+
with Pool(num_workers) as pool:
|
148 |
+
list(tqdm(pool.imap(process_file, nii_files), total=len(nii_files)))
|
processed_code/preprocess_ctrate_valid.py
ADDED
@@ -0,0 +1,145 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import nibabel as nib
|
3 |
+
import pandas as pd
|
4 |
+
import numpy as np
|
5 |
+
import torch
|
6 |
+
import monai
|
7 |
+
import torch.nn.functional as F
|
8 |
+
from multiprocessing import Pool
|
9 |
+
from tqdm import tqdm
|
10 |
+
|
11 |
+
def read_nii_files(directory):
|
12 |
+
"""
|
13 |
+
Retrieve paths of all NIfTI files in the given directory.
|
14 |
+
|
15 |
+
Args:
|
16 |
+
directory (str): Path to the directory containing NIfTI files.
|
17 |
+
|
18 |
+
Returns:
|
19 |
+
list: List of paths to NIfTI files.
|
20 |
+
"""
|
21 |
+
nii_files = []
|
22 |
+
for root, dirs, files in os.walk(directory):
|
23 |
+
for file in files:
|
24 |
+
if file.endswith('1.nii.gz'):
|
25 |
+
nii_files.append(os.path.join(root, file))
|
26 |
+
return nii_files
|
27 |
+
|
28 |
+
def read_nii_data(file_path):
|
29 |
+
"""
|
30 |
+
Read NIfTI file data.
|
31 |
+
|
32 |
+
Args:
|
33 |
+
file_path (str): Path to the NIfTI file.
|
34 |
+
|
35 |
+
Returns:
|
36 |
+
np.ndarray: NIfTI file data.
|
37 |
+
"""
|
38 |
+
try:
|
39 |
+
nii_img = nib.load(file_path)
|
40 |
+
nii_data = nii_img.get_fdata()
|
41 |
+
return nii_data
|
42 |
+
except Exception as e:
|
43 |
+
print(f"Error reading file {file_path}: {e}")
|
44 |
+
return None
|
45 |
+
|
46 |
+
def resize_array(array, current_spacing, target_spacing):
|
47 |
+
"""
|
48 |
+
Resize the array to match the target spacing.
|
49 |
+
|
50 |
+
Args:
|
51 |
+
array (torch.Tensor): Input array to be resized.
|
52 |
+
current_spacing (tuple): Current voxel spacing (z_spacing, xy_spacing, xy_spacing).
|
53 |
+
target_spacing (tuple): Target voxel spacing (target_z_spacing, target_x_spacing, target_y_spacing).
|
54 |
+
|
55 |
+
Returns:
|
56 |
+
np.ndarray: Resized array.
|
57 |
+
"""
|
58 |
+
# Calculate new dimensions
|
59 |
+
original_shape = array.shape[2:]
|
60 |
+
scaling_factors = [
|
61 |
+
current_spacing[i] / target_spacing[i] for i in range(len(original_shape))
|
62 |
+
]
|
63 |
+
new_shape = [
|
64 |
+
int(original_shape[i] * scaling_factors[i]) for i in range(len(original_shape))
|
65 |
+
]
|
66 |
+
# Resize the array
|
67 |
+
resized_array = F.interpolate(array, size=new_shape, mode='trilinear', align_corners=False).cpu().numpy()
|
68 |
+
return resized_array
|
69 |
+
|
70 |
+
def process_file(file_path):
|
71 |
+
"""
|
72 |
+
Process a single NIfTI file.
|
73 |
+
|
74 |
+
Args:
|
75 |
+
file_path (str): Path to the NIfTI file.
|
76 |
+
|
77 |
+
Returns:
|
78 |
+
None
|
79 |
+
"""
|
80 |
+
monai_loader = monai.transforms.Compose(
|
81 |
+
[
|
82 |
+
monai.transforms.LoadImaged(keys=['image']),
|
83 |
+
monai.transforms.AddChanneld(keys=['image']),
|
84 |
+
monai.transforms.Orientationd(axcodes="LPS", keys=['image']), # zyx
|
85 |
+
# monai.transforms.Spacingd(keys=["image"], pixdim=(1, 1, 3), mode=("bilinear")),
|
86 |
+
monai.transforms.CropForegroundd(keys=["image"], source_key="image"),
|
87 |
+
monai.transforms.ToTensord(keys=["image"]),
|
88 |
+
]
|
89 |
+
)
|
90 |
+
|
91 |
+
dictionary = monai_loader({'image':file_path})
|
92 |
+
img_data = dictionary['image']
|
93 |
+
|
94 |
+
file_name = os.path.basename(file_path)
|
95 |
+
row = df[df['VolumeName'] == file_name]
|
96 |
+
slope = float(row["RescaleSlope"].iloc[0])
|
97 |
+
intercept = float(row["RescaleIntercept"].iloc[0])
|
98 |
+
xy_spacing = float(row["XYSpacing"].iloc[0][1:][:-2].split(",")[0])
|
99 |
+
z_spacing = float(row["ZSpacing"].iloc[0])
|
100 |
+
|
101 |
+
# Define the target spacing values for SAT segmentation
|
102 |
+
target_x_spacing = 1.0
|
103 |
+
target_y_spacing = 1.0
|
104 |
+
target_z_spacing = 3.0
|
105 |
+
|
106 |
+
current = (z_spacing, xy_spacing, xy_spacing)
|
107 |
+
target = (target_z_spacing, target_x_spacing, target_y_spacing)
|
108 |
+
img_data = slope * img_data + intercept
|
109 |
+
|
110 |
+
img_data = img_data[0].numpy()
|
111 |
+
img_data = img_data.transpose(2, 0, 1)
|
112 |
+
tensor = torch.tensor(img_data)
|
113 |
+
tensor = tensor.unsqueeze(0).unsqueeze(0)
|
114 |
+
|
115 |
+
resized_array = resize_array(tensor, current, target)
|
116 |
+
resized_array = resized_array[0][0]
|
117 |
+
resized_array = resized_array.transpose(1,2,0)
|
118 |
+
# print('resized:',resized_array.shape)
|
119 |
+
# resized: (231, 387, 387)
|
120 |
+
|
121 |
+
save_folder = "../upload_data/valid_preprocessed/" #save folder for preprocessed
|
122 |
+
folder_path_new = os.path.join(save_folder, "valid_" + file_name.split("_")[1], "valid_" + file_name.split("_")[1] + file_name.split("_")[2]) #folder name for train or validation
|
123 |
+
os.makedirs(folder_path_new, exist_ok=True)
|
124 |
+
save_path = os.path.join(folder_path_new, file_name)
|
125 |
+
# np.savez(save_path, resized_array)
|
126 |
+
# Create an identity matrix
|
127 |
+
|
128 |
+
image_nifti = nib.Nifti1Image(resized_array,affine = np.eye(4))
|
129 |
+
nib.save(image_nifti, save_path)
|
130 |
+
|
131 |
+
|
132 |
+
|
133 |
+
# Example usage:
|
134 |
+
if __name__ == "__main__":
|
135 |
+
split_to_preprocess = '../src_data/valid' #select the validation or test split
|
136 |
+
nii_files = read_nii_files(split_to_preprocess)
|
137 |
+
|
138 |
+
df = pd.read_csv("../src_data/metadata/validation_metadata.csv") #select the metadata
|
139 |
+
|
140 |
+
num_workers = 18 # Number of worker processes
|
141 |
+
|
142 |
+
# # Process files using multiprocessing with tqdm progress bar
|
143 |
+
with Pool(num_workers) as pool:
|
144 |
+
list(tqdm(pool.imap(process_file, nii_files), total=len(nii_files)))
|
145 |
+
|