| from vlmeval.smp import * | |
| from vlmeval.dataset import SUPPORTED_DATASETS | |
| def get_score(model, dataset): | |
| file_name = f'{model}/{model}_{dataset}' | |
| if listinstr([ | |
| 'CCBench', 'MMBench', 'SEEDBench_IMG', 'MMMU', 'ScienceQA', | |
| 'AI2D_TEST', 'MMStar', 'RealWorldQA', 'BLINK', 'VisOnlyQA-VLMEvalKit' | |
| ], dataset): | |
| file_name += '_acc.csv' | |
| elif listinstr(['MME', 'Hallusion', 'LLaVABench'], dataset): | |
| file_name += '_score.csv' | |
| elif listinstr(['MMVet', 'MathVista'], dataset): | |
| file_name += '_gpt-4-turbo_score.csv' | |
| elif listinstr(['COCO', 'OCRBench'], dataset): | |
| file_name += '_score.json' | |
| else: | |
| raise NotImplementedError | |
| if not osp.exists(file_name): | |
| return {} | |
| data = load(file_name) | |
| ret = {} | |
| if dataset == 'CCBench': | |
| ret[dataset] = data['Overall'][0] * 100 | |
| elif dataset == 'MMBench': | |
| for n, a in zip(data['split'], data['Overall']): | |
| if n == 'dev': | |
| ret['MMBench_DEV_EN'] = a * 100 | |
| elif n == 'test': | |
| ret['MMBench_TEST_EN'] = a * 100 | |
| elif dataset == 'MMBench_CN': | |
| for n, a in zip(data['split'], data['Overall']): | |
| if n == 'dev': | |
| ret['MMBench_DEV_CN'] = a * 100 | |
| elif n == 'test': | |
| ret['MMBench_TEST_CN'] = a * 100 | |
| elif listinstr(['SEEDBench', 'ScienceQA', 'MMBench', 'AI2D_TEST', 'MMStar', 'RealWorldQA', 'BLINK'], dataset): | |
| ret[dataset] = data['Overall'][0] * 100 | |
| elif 'MME' == dataset: | |
| ret[dataset] = data['perception'][0] + data['reasoning'][0] | |
| elif 'MMVet' == dataset: | |
| data = data[data['Category'] == 'Overall'] | |
| ret[dataset] = float(data.iloc[0]['acc']) | |
| elif 'HallusionBench' == dataset: | |
| data = data[data['split'] == 'Overall'] | |
| for met in ['aAcc', 'qAcc', 'fAcc']: | |
| ret[dataset + f' ({met})'] = float(data.iloc[0][met]) | |
| elif 'MMMU' in dataset: | |
| data = data[data['split'] == 'validation'] | |
| ret['MMMU (val)'] = float(data.iloc[0]['Overall']) * 100 | |
| elif 'MathVista' in dataset: | |
| data = data[data['Task&Skill'] == 'Overall'] | |
| ret[dataset] = float(data.iloc[0]['acc']) | |
| elif 'LLaVABench' in dataset: | |
| data = data[data['split'] == 'overall'].iloc[0] | |
| ret[dataset] = float(data['Relative Score (main)']) | |
| elif 'OCRBench' in dataset: | |
| ret[dataset] = data['Final Score'] | |
| elif dataset == 'VisOnlyQA-VLMEvalKit': | |
| for n, a in zip(data['split'], data['Overall']): | |
| ret[f'VisOnlyQA-VLMEvalKit_{n}'] = a * 100 | |
| return ret | |
| def parse_args(): | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument('--data', type=str, nargs='+', default=[]) | |
| parser.add_argument("--model", type=str, nargs='+', required=True) | |
| args = parser.parse_args() | |
| return args | |
| def gen_table(models, datasets): | |
| res = defaultdict(dict) | |
| for m in models: | |
| for d in datasets: | |
| try: | |
| res[m].update(get_score(m, d)) | |
| except Exception as e: | |
| logging.warning(f'{type(e)}: {e}') | |
| logging.warning(f'Missing Results for Model {m} x Dataset {d}') | |
| keys = [] | |
| for m in models: | |
| for d in res[m]: | |
| keys.append(d) | |
| keys = list(set(keys)) | |
| keys.sort() | |
| final = defaultdict(list) | |
| for m in models: | |
| final['Model'].append(m) | |
| for k in keys: | |
| if k in res[m]: | |
| final[k].append(res[m][k]) | |
| else: | |
| final[k].append(None) | |
| final = pd.DataFrame(final) | |
| dump(final, 'summ.csv') | |
| if len(final) >= len(final.iloc[0].keys()): | |
| print(tabulate(final)) | |
| else: | |
| print(tabulate(final.T)) | |
| if __name__ == '__main__': | |
| args = parse_args() | |
| if args.data == []: | |
| args.data = list(SUPPORTED_DATASETS) | |
| gen_table(args.model, args.data) |