|
|
import argparse |
|
|
import json |
|
|
import os |
|
|
from datetime import datetime |
|
|
import subprocess |
|
|
|
|
|
|
|
|
full_datasets = { |
|
|
"MathVista_MINI": "train_prompt_sampling", |
|
|
"MathVision": "train_prompt_greedy", |
|
|
"MathVerse_MINI": "train_prompt_greedy", |
|
|
"MMMU_DEV_VAL": "origin_prompt_greedy", |
|
|
"MMStar": "train_prompt_greedy", |
|
|
"DynaMath": "train_prompt_greedy", |
|
|
"WeMath": "train_prompt_greedy", |
|
|
"TextVQA_VAL": "origin_prompt_greedy", |
|
|
"DocVQA_TEST": "origin_prompt_greedy", |
|
|
"MMVet": "origin_prompt_greedy", |
|
|
} |
|
|
|
|
|
settings = { |
|
|
"train_prompt_sampling": { |
|
|
"use_reasoning_prompt": 2, |
|
|
"do_sample": True, |
|
|
"top_p": 1, |
|
|
"top_k": -1, |
|
|
"temperature": 1, |
|
|
}, |
|
|
"train_prompt_greedy": { |
|
|
"use_reasoning_prompt": 2, |
|
|
"do_sample": True, |
|
|
"top_p": 0.001, |
|
|
"top_k": 1, |
|
|
"temperature": 0.01, |
|
|
}, |
|
|
"origin_prompt_greedy": { |
|
|
"use_reasoning_prompt": 0, |
|
|
"do_sample": True, |
|
|
"top_p": 0.001, |
|
|
"top_k": 1, |
|
|
"temperature": 0.01, |
|
|
}, |
|
|
} |
|
|
|
|
|
|
|
|
def main(): |
|
|
parser = argparse.ArgumentParser() |
|
|
|
|
|
parser.add_argument("--run_name", type=str, required=True, help="Name of the run") |
|
|
parser.add_argument("--gpus", type=int, default=8, help="Number of GPUs to use") |
|
|
parser.add_argument("--path", type=str, required=True, help="Path to the model") |
|
|
parser.add_argument( |
|
|
"--dataset", type=str, nargs="+", required=True, help="List of datasets to use" |
|
|
) |
|
|
|
|
|
parser.add_argument( |
|
|
"--min_pixels", type=int, default=3136, help="Minimum number of pixels" |
|
|
) |
|
|
parser.add_argument( |
|
|
"--max_pixels", type=int, default=12845056, help="Maximum number of pixels" |
|
|
) |
|
|
parser.add_argument( |
|
|
"--max_new_tokens", type=int, default=2048, help="Maximum number of new tokens" |
|
|
) |
|
|
|
|
|
args = parser.parse_args() |
|
|
assert len(args.dataset), "--dataset should be a list of datasets" |
|
|
|
|
|
datasets = args.dataset |
|
|
if len(args.dataset) == 1 and args.dataset[0] == "full": |
|
|
datasets = list(full_datasets.keys()) |
|
|
|
|
|
for dataset in datasets: |
|
|
assert ( |
|
|
dataset in full_datasets |
|
|
), f"Dataset {dataset} is not in the list of available datasets: {list(full_datasets.keys())}" |
|
|
|
|
|
print("Datasets to be used:", datasets) |
|
|
print("Run name:", args.run_name) |
|
|
print("Number of GPUs:", args.gpus) |
|
|
print("Model path:", args.path) |
|
|
|
|
|
for dataset in datasets: |
|
|
config = { |
|
|
"model": { |
|
|
args.run_name: { |
|
|
"class": "Qwen2VLChat", |
|
|
"model_path": args.path, |
|
|
"min_pixels": args.min_pixels, |
|
|
"max_pixels": args.max_pixels, |
|
|
"use_vllm": True, |
|
|
"max_new_tokens": args.max_new_tokens, |
|
|
**settings[full_datasets[dataset]], |
|
|
}, |
|
|
}, |
|
|
"datasets": datasets, |
|
|
} |
|
|
|
|
|
current_datetime = datetime.now().strftime("%Y%m%d") |
|
|
save_dir = f"public_eval/{args.run_name}/{dataset}/{current_datetime}" |
|
|
os.makedirs(save_dir, exist_ok=True) |
|
|
|
|
|
config_name = f"config.json" |
|
|
config_path = os.path.join(save_dir, config_name) |
|
|
with open(config_path, "w") as json_file: |
|
|
json.dump(config, json_file, indent=4) |
|
|
|
|
|
print(f"Start evaluating on {dataset}.") |
|
|
print(f"Eval config {full_datasets[dataset]}") |
|
|
|
|
|
env_vars = os.environ.copy() |
|
|
env_vars["VLLM_USE_V1"] = "0" |
|
|
|
|
|
command = [ |
|
|
"torchrun", |
|
|
f"--nproc_per_node={args.gpus}", |
|
|
"run_for_bash.py", |
|
|
"--config", |
|
|
f"{config_path}", |
|
|
"--data", |
|
|
f"{dataset}", |
|
|
"--verbose", |
|
|
"--work-dir", |
|
|
f"{save_dir}", |
|
|
] |
|
|
|
|
|
stdout_file = os.path.join(save_dir, f"{dataset}_stdout.log") |
|
|
stderr_file = os.path.join(save_dir, f"{dataset}_stderr.log") |
|
|
|
|
|
with open(stdout_file, "w") as stdout, open(stderr_file, "w") as stderr: |
|
|
try: |
|
|
print(f"Output redirected to {stdout_file}") |
|
|
print(f"Errors redirected to {stderr_file}") |
|
|
subprocess.run( |
|
|
command, env=env_vars, check=True, stdout=stdout, stderr=stderr |
|
|
) |
|
|
|
|
|
|
|
|
except subprocess.CalledProcessError as e: |
|
|
print(f"torchrun failed. Check {stderr_file} for error details.") |
|
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
|
main() |
|
|
|