ROSCOSMOS commited on
Commit
dc6db53
·
verified ·
1 Parent(s): d1828af

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +115 -130
README.md CHANGED
@@ -1,130 +1,115 @@
1
- ---
2
- license: mit
3
- pretty_name: "Plants"
4
- tags: ["image", "computer-vision", "cars", "classic-cars", "high-resolution", "europe", "us"]
5
- task_categories: ["image-classification"]
6
- language: ["en"]
7
- configs:
8
- - config_name: default
9
- data_files: "train/**/*.arrow"
10
- features:
11
- - name: image
12
- dtype: image
13
- - name: unique_id
14
- dtype: string
15
- - name: width
16
- dtype: int32
17
- - name: height
18
- dtype: int32
19
- - name: image_mode_on_disk
20
- dtype: string
21
- - name: original_file_format
22
- dtype: string
23
- - config_name: preview
24
- data_files: "preview/**/*.arrow"
25
- features:
26
- - name: image
27
- dtype: image
28
- - name: unique_id
29
- dtype: string
30
- - name: width
31
- dtype: int32
32
- - name: height
33
- dtype: int32
34
- - name: original_file_format
35
- dtype: string
36
- - name: image_mode_on_disk
37
- dtype: string
38
- ---
39
-
40
- # Plants
41
-
42
- High resolution image subset from the Aesthetic-Train-V2 dataset, contains a broad mix of plants and leaf types with a small distribution of flowers/fruits.
43
-
44
- ## Dataset Details
45
-
46
- * **Curator:** Roscosmos
47
- * **Version:** 1.0.0
48
- * **Total Images:** 986
49
- * **Average Image Size (on disk):** ~4.93 MB compressed
50
- * **Primary Content:** plants / leaves
51
- * **Standardization:** All images are standardized to RGB mode and saved at 95% quality for consistency.
52
-
53
- ## Dataset Creation & Provenance
54
-
55
- ### 1. Original Master Dataset
56
- This dataset is a subset derived from:
57
- **`zhang0jhon/Aesthetic-Train-V2`**
58
- * **Link:** https://huggingface.co/datasets/zhang0jhon/Aesthetic-Train-V2
59
- * **Providence:** Large-scale, high-resolution image dataset, refer to its original dataset card for full details.
60
- * **Original License:** MIT
61
-
62
- ### 2. Iterative Curation Methodology
63
-
64
- CLIP retrieval / manual curation.
65
-
66
- ## Dataset Structure & Content
67
-
68
- This dataset offers the following configurations/subsets:
69
- * **Default (Full `train` data) configuration:** Contains the full, high-resolution image data and associated metadata. This is the recommended configuration for model training and full data analysis. The default split for this configuration is `train`.
70
- Each example (row) in the dataset contains the following fields:
71
-
72
- * `image`: The actual image data. In the default (full) configuration, this is full-resolution. In the preview configuration, this is a viewer-compatible version.
73
- * `unique_id`: A unique identifier assigned to each image.
74
- * `width`: The width of the image in pixels (from the full-resolution image).
75
- * `height`: The height of the image in pixels (from the full-resolution image).
76
-
77
- ## Usage
78
-
79
- To download and load this dataset from the Hugging Face Hub:
80
-
81
- ```python
82
-
83
- from datasets import load_dataset, Dataset, DatasetDict
84
-
85
- # Login using e.g. `huggingface-cli login` to access this dataset
86
-
87
- # To load the full, high-resolution dataset (recommended for training):
88
- # This will load the 'default' configuration's 'train' split.
89
- ds_main = load_dataset("ROSCOSMOS/Plants", "default")
90
-
91
- print("Main Dataset (default config) loaded successfully!")
92
- print(ds_main)
93
- print(f"Type of loaded object: {type(ds_main)}")
94
-
95
- if isinstance(ds_main, Dataset):
96
- print(f"Number of samples: {len(ds_main)}")
97
- print(f"Features: {ds_main.features}")
98
- elif isinstance(ds_main, DatasetDict):
99
- print(f"Available splits: {list(ds_main.keys())}")
100
- for split_name, dataset_obj in ds_main.items():
101
- print(f" Split '{split_name}': {len(dataset_obj)} samples")
102
- print(f" Features of '{split_name}': {dataset_obj.features}")
103
-
104
-
105
- ```
106
-
107
- ## Citation
108
-
109
- ```bibtex
110
- @inproceedings{zhang2025diffusion4k,
111
- title={Diffusion-4K: Ultra-High-Resolution Image Synthesis with Latent Diffusion Models},
112
- author={Zhang, Jinjin and Huang, Qiuyu and Liu, Junjie and Guo, Xiefan and Huang, Di},
113
- year={2025},
114
- booktitle={IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
115
- }
116
- @misc{zhang2025ultrahighresolutionimagesynthesis,
117
- title={Ultra-High-Resolution Image Synthesis: Data, Method and Evaluation},
118
- author={Zhang, Jinjin and Huang, Qiuyu and Liu, Junjie and Guo, Xiefan and Huang, Di},
119
- year={2025},
120
- note={arXiv:2506.01331},
121
- }
122
- ```
123
-
124
- ## Disclaimer and Bias Considerations
125
-
126
- Please consider any inherent biases from the original dataset and those potentially introduced by the automated filtering (e.g., CLIP's biases) and manual curation process.
127
-
128
- ## Contact
129
-
130
- N/A
 
1
+ ---
2
+ license: mit
3
+ pretty_name: "Plants"
4
+ tags: ["image", "computer-vision", "high-resolution", "nature", "botanical", "plants"]
5
+ task_categories: ["image-classification"]
6
+ language: ["en"]
7
+ configs:
8
+ - config_name: default
9
+ data_files: "train/**/*.arrow"
10
+ features:
11
+ - name: image
12
+ dtype: image
13
+ - name: unique_id
14
+ dtype: string
15
+ - name: width
16
+ dtype: int32
17
+ - name: height
18
+ dtype: int32
19
+ - name: image_mode_on_disk
20
+ dtype: string
21
+ - name: original_file_format
22
+ dtype: string
23
+ ---
24
+
25
+ # Plants
26
+
27
+ High resolution image subset from the Aesthetic-Train-V2 dataset, contains a broad mix of plants and leaf types with a small distribution of flowers/fruits.
28
+
29
+ ## Dataset Details
30
+
31
+ * **Curator:** Roscosmos
32
+ * **Version:** 1.0.0
33
+ * **Total Images:** 948
34
+ * **Average Image Size (on disk):** ~4.93 MB compressed
35
+ * **Primary Content:** plants / leaves
36
+ * **Standardization:** All images are standardized to RGB mode and saved at 95% quality for consistency.
37
+
38
+ ## Dataset Creation & Provenance
39
+
40
+ ### 1. Original Master Dataset
41
+ This dataset is a subset derived from:
42
+ **`zhang0jhon/Aesthetic-Train-V2`**
43
+ * **Link:** https://huggingface.co/datasets/zhang0jhon/Aesthetic-Train-V2
44
+ * **Providence:** Large-scale, high-resolution image dataset, refer to its original dataset card for full details.
45
+ * **Original License:** MIT
46
+
47
+ ### 2. Iterative Curation Methodology
48
+
49
+ CLIP retrieval / manual curation.
50
+
51
+ ## Dataset Structure & Content
52
+
53
+ This dataset offers the following configurations/subsets:
54
+ * **Default (Full `train` data) configuration:** Contains the full, high-resolution image data and associated metadata. This is the recommended configuration for model training and full data analysis. The default split for this configuration is `train`.
55
+ Each example (row) in the dataset contains the following fields:
56
+
57
+ * `image`: The actual image data. In the default (full) configuration, this is full-resolution. In the preview configuration, this is a viewer-compatible version.
58
+ * `unique_id`: A unique identifier assigned to each image.
59
+ * `width`: The width of the image in pixels (from the full-resolution image).
60
+ * `height`: The height of the image in pixels (from the full-resolution image).
61
+
62
+ ## Usage
63
+
64
+ To download and load this dataset from the Hugging Face Hub:
65
+
66
+ ```python
67
+
68
+ from datasets import load_dataset, Dataset, DatasetDict
69
+
70
+ # Login using e.g. `huggingface-cli login` to access this dataset
71
+
72
+ # To load the full, high-resolution dataset (recommended for training):
73
+ # This will load the 'default' configuration's 'train' split.
74
+ ds_main = load_dataset("ROSCOSMOS/Plants", "default")
75
+
76
+ print("Main Dataset (default config) loaded successfully!")
77
+ print(ds_main)
78
+ print(f"Type of loaded object: {type(ds_main)}")
79
+
80
+ if isinstance(ds_main, Dataset):
81
+ print(f"Number of samples: {len(ds_main)}")
82
+ print(f"Features: {ds_main.features}")
83
+ elif isinstance(ds_main, DatasetDict):
84
+ print(f"Available splits: {list(ds_main.keys())}")
85
+ for split_name, dataset_obj in ds_main.items():
86
+ print(f" Split '{split_name}': {len(dataset_obj)} samples")
87
+ print(f" Features of '{split_name}': {dataset_obj.features}")
88
+
89
+
90
+ ```
91
+
92
+ ## Citation
93
+
94
+ ```bibtex
95
+ @inproceedings{zhang2025diffusion4k,
96
+ title={Diffusion-4K: Ultra-High-Resolution Image Synthesis with Latent Diffusion Models},
97
+ author={Zhang, Jinjin and Huang, Qiuyu and Liu, Junjie and Guo, Xiefan and Huang, Di},
98
+ year={2025},
99
+ booktitle={IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
100
+ }
101
+ @misc{zhang2025ultrahighresolutionimagesynthesis,
102
+ title={Ultra-High-Resolution Image Synthesis: Data, Method and Evaluation},
103
+ author={Zhang, Jinjin and Huang, Qiuyu and Liu, Junjie and Guo, Xiefan and Huang, Di},
104
+ year={2025},
105
+ note={arXiv:2506.01331},
106
+ }
107
+ ```
108
+
109
+ ## Disclaimer and Bias Considerations
110
+
111
+ Please consider any inherent biases from the original dataset and those potentially introduced by the automated filtering (e.g., CLIP's biases) and manual curation process.
112
+
113
+ ## Contact
114
+
115
+ N/A