|
|
|
|
|
import argparse |
|
import json |
|
import os |
|
import datetime |
|
import pickle |
|
import random |
|
import torch |
|
import torch.backends.cudnn as cudnn |
|
import torch.distributed as dist |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
import torch.optim as optim |
|
from bisect import bisect |
|
from math import fabs |
|
from torch.optim import lr_scheduler |
|
from torch.utils.data import DataLoader |
|
from tqdm import tqdm |
|
from transformers import LxmertTokenizer |
|
from dist_train import get_world_size, get_rank, get_local_rank, barrier, reduce_sum |
|
|
|
import numpy as np |
|
from transformers.tokenization_utils_base import ENCODE_KWARGS_DOCSTRING |
|
from config4LXMT5_DDP import args |
|
|
|
from dataset4LXMT5 import KgDataset,my_collate,my_val_collate |
|
from dataset_val4LXMT5 import KgDatasetVal |
|
|
|
if args.visualBERT: |
|
from model_ViB2T5 import T5tokenizer, ViBT52T5, LXMtokenizer |
|
else: |
|
from model_LXM2T5 import T5tokenizer, LXMT52T5, LXMtokenizer |
|
|
|
from transformers import get_linear_schedule_with_warmup |
|
from transformers import LxmertConfig, LxmertTokenizer, LxmertModel,BertTokenizer |
|
|
|
dist.init_process_group(backend='nccl',timeout=datetime.timedelta(seconds=5400)) |
|
torch.cuda.set_device(args.local_rank) |
|
|
|
|
|
|
|
LR = args.learning_rate |
|
LR_LXM = args.learning_rate_LXM |
|
|
|
|
|
torch.multiprocessing.set_sharing_strategy('file_system') |
|
|
|
torch.cuda.set_device(get_local_rank()) |
|
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") |
|
|
|
def reduce_tensor(tensor: torch.Tensor): |
|
rt = tensor.clone().float() |
|
dist.all_reduce(rt,op=dist.ReduceOp.SUM) |
|
rt /= dist.get_world_size() |
|
return rt |
|
|
|
def set_seed(rank): |
|
random.seed(args.seed+rank) |
|
np.random.seed(args.seed+rank) |
|
torch.manual_seed(args.seed+rank) |
|
torch.cuda.manual_seed(args.seed+rank) |
|
torch.cuda.manual_seed_all(args.seed+rank) |
|
torch.backends.cudnn.deterministic = True |
|
|
|
set_seed(get_rank()) |
|
|
|
|
|
|
|
|
|
|
|
def cal_acc_multi(ground_truth, preds, return_id = False): |
|
all_num = len(ground_truth) |
|
acc_num = 0 |
|
ids = [] |
|
temp = [] |
|
for i, answer_id in enumerate(ground_truth): |
|
pred = preds[i] |
|
|
|
cnt = 0 |
|
for aid in answer_id: |
|
if pred == aid: |
|
cnt += 1 |
|
if cnt ==1: |
|
acc_num += 1/3 |
|
elif cnt == 2: |
|
acc_num += 2/3 |
|
elif cnt > 2: |
|
acc_num += 1 |
|
if return_id: |
|
return acc_num / all_num, ids |
|
else: |
|
return acc_num, all_num |
|
|
|
def cal_acc(ground_truth, preds, return_id = False): |
|
all_num = len(ground_truth) |
|
acc_num = 0 |
|
ids = [] |
|
temp = [] |
|
for i, answer_id in enumerate(ground_truth): |
|
pred = preds[i] |
|
|
|
cnt = 0 |
|
for aid in answer_id: |
|
if pred == aid: |
|
acc_num += 1 |
|
if return_id: |
|
return acc_num / all_num, ids |
|
else: |
|
return acc_num, all_num |
|
|
|
|
|
def train(): |
|
if not args.describe: |
|
print('please set the description for the saved-model name! use --describe !') |
|
assert 1==0 |
|
else: |
|
model_name=args.describe |
|
if not args.pretrain: |
|
train_dataset = KgDataset(val=False) |
|
train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset) |
|
train_dataloader = DataLoader(dataset=train_dataset, batch_size=args.batch_size, sampler=train_sampler, |
|
num_workers=0, collate_fn=my_collate) |
|
|
|
if args.validate: |
|
test_dataset = KgDatasetVal(val=False) |
|
test_dataloader = DataLoader(dataset=test_dataset, batch_size=args.batch_size, shuffle=False, |
|
num_workers=0, collate_fn=my_val_collate) |
|
else: |
|
train_dataset = KgDataset(val=False) |
|
|
|
train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset) |
|
train_dataloader = DataLoader(dataset=train_dataset, batch_size=args.batch_size, |
|
num_workers=0, collate_fn=my_collate, sampler=train_sampler) |
|
|
|
if args.validate: |
|
test_dataset = KgDatasetVal(val=False) |
|
test_dataloader = DataLoader(dataset=test_dataset, batch_size=args.batch_size, |
|
num_workers=0, collate_fn=my_val_collate, shuffle=False) |
|
if args.pretrain: |
|
if get_rank() == 0: |
|
print('pre-training!') |
|
if args.visualBERT: |
|
model= ViBT52T5() |
|
else: |
|
model = LXMT52T5() |
|
else: |
|
if get_rank() == 0: |
|
print('fine-tuning!') |
|
if args.visualBERT: |
|
model= ViBT52T5() |
|
else: |
|
model = LXMT52T5() |
|
|
|
model = nn.SyncBatchNorm.convert_sync_batchnorm(model) |
|
model = model.to(device) |
|
|
|
if get_world_size() > 1: |
|
if get_rank() == 0: |
|
|
|
print("Let's use", get_world_size(), "GPUs!") |
|
|
|
model = nn.parallel.DistributedDataParallel(model, device_ids=[get_local_rank()], output_device=get_local_rank(),find_unused_parameters=True) |
|
|
|
print(model.named_modules) |
|
if get_world_size() > 1: |
|
if args.visualBERT: |
|
optimizer = optim.AdamW([ |
|
{'params': model.module.T5model.parameters(), 'lr': LR}, |
|
{'params': model.module.ViBmodel.parameters(), 'lr': LR_LXM}, |
|
{'params': model.module.mapping.parameters(), 'lr': LR_LXM}, |
|
]) |
|
else: |
|
optimizer = optim.AdamW([ |
|
{'params': model.module.T5model.parameters(), 'lr': LR}, |
|
{'params': model.module.LXMmodel.parameters(), 'lr': LR_LXM}, |
|
{'params': model.module.mapping.parameters(), 'lr': LR_LXM}, |
|
|
|
]) |
|
else: |
|
if args.visualBERT: |
|
optimizer = optim.AdamW([ |
|
{'params': model.T5model.parameters(), 'lr': LR}, |
|
{'params': model.ViBmodel.parameters(), 'lr': LR_LXM}, |
|
{'params': model.mapping.parameters(), 'lr': LR_LXM}, |
|
]) |
|
else: |
|
optimizer = optim.AdamW([ |
|
{'params': model.T5model.parameters(), 'lr': LR}, |
|
{'params': model.LXMmodel.parameters(), 'lr': LR_LXM}, |
|
{'params': model.mapping.parameters(), 'lr': LR_LXM}, |
|
]) |
|
|
|
|
|
|
|
if args.pretrain: |
|
steps_num = 100000 |
|
else: |
|
steps_num = 20000 |
|
|
|
|
|
|
|
|
|
args.num_epochs = steps_num // (len(train_dataset) / (args.batch_size * get_world_size())) \ |
|
if len(train_dataset) % args.batch_size == 0 \ |
|
else (steps_num // (len(train_dataset) / (args.batch_size * get_world_size())) )+1 |
|
|
|
args.num_epochs = int(args.num_epochs) |
|
|
|
if get_rank() == 0: |
|
print('total_epoch', args.num_epochs) |
|
print('total_steps', "we set steps=",steps_num) |
|
print('warmup_steps', int(steps_num/10)) |
|
scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=int(steps_num/10), |
|
num_training_steps=steps_num) |
|
|
|
|
|
if args.load_pthpath == "": |
|
start_epoch = 0 |
|
else: |
|
if get_rank() == 0: |
|
print('load model') |
|
start_epoch = 0 |
|
|
|
|
|
if get_world_size() > 1: |
|
model.module.load_state_dict(torch.load(args.load_pthpath)) |
|
else: |
|
model.load_state_dict(torch.load(args.load_pthpath)) |
|
|
|
|
|
|
|
best_acc = 0 |
|
best_epoch = 0 |
|
best_acc_t = 0 |
|
best_epoch_t = 0 |
|
best_acc_t3 = 0 |
|
step_ind = 0 |
|
|
|
for epoch in range(start_epoch, args.num_epochs): |
|
train_preds_trip = [] |
|
train_sampler.set_epoch(epoch) |
|
train_answers_trip = [] |
|
s=0 |
|
for batch_data in tqdm(train_dataloader): |
|
step_ind+=1 |
|
if get_rank()==0: |
|
print("step_ind",step_ind) |
|
s=s+1 |
|
|
|
visual_faetures = torch.from_numpy(np.array(batch_data['img'], dtype=float)).float().to(device) |
|
spatial_features = torch.tensor(np.array(batch_data['spatial'])).float().to(device) |
|
|
|
if 1: |
|
|
|
T5_input_id = torch.stack(batch_data['T5_input_ids']).to(device) |
|
T5_input_mask = torch.stack(batch_data['T5_input_masks']).to(device) |
|
|
|
|
|
LXM_input_id = torch.stack(batch_data['LXM_input_ids']).to(device) |
|
LXM_input_mask = torch.stack(batch_data['LXM_input_masks']).to(device) |
|
LXM_token_type_ids = torch.stack(batch_data['LXM_token_type_ids']).to(device) |
|
|
|
|
|
T5_target_id = torch.stack(batch_data['T5_target_ids']).to(device) |
|
|
|
neg100 = torch.ones_like(T5_target_id)*(-100) |
|
T5_target_id = torch.where(T5_target_id==T5tokenizer.pad_token_id,neg100, T5_target_id) |
|
|
|
|
|
|
|
|
|
model.zero_grad() |
|
|
|
|
|
optimizer.zero_grad() |
|
if args.pretrain: |
|
outputs = model(train=True, LXM_source_ids=LXM_input_id, LXM_source_masks=LXM_input_mask,T5_source_ids=T5_input_id, T5_source_masks=T5_input_mask,token_type_ids=LXM_token_type_ids, visual_features=visual_faetures, spatial_features=spatial_features,T5_target_ids=T5_target_id) |
|
|
|
|
|
else: |
|
outputs = model(train=True, LXM_source_ids=LXM_input_id, LXM_source_masks=LXM_input_mask,T5_source_ids=T5_input_id, T5_source_masks=T5_input_mask,token_type_ids=LXM_token_type_ids, visual_features=visual_faetures, spatial_features=spatial_features,T5_target_ids=T5_target_id) |
|
loss = outputs.loss |
|
|
|
loss_stat = torch.mean(loss.detach()).item() |
|
|
|
if get_rank() == 0: |
|
print("loss on GPU0", loss_stat) |
|
|
|
loss.sum().backward() |
|
optimizer.step() |
|
scheduler.step() |
|
|
|
with torch.no_grad(): |
|
|
|
if args.pretrain: |
|
eval_outputs = model(train=False, LXM_source_ids=LXM_input_id, LXM_source_masks=LXM_input_mask,T5_source_ids=T5_input_id, T5_source_masks=T5_input_mask,token_type_ids=LXM_token_type_ids, visual_features=visual_faetures, spatial_features=spatial_features,T5_target_ids=T5_target_id) |
|
|
|
else: |
|
eval_outputs = model(train=False, LXM_source_ids=LXM_input_id, LXM_source_masks=LXM_input_mask,T5_source_ids=T5_input_id, T5_source_masks=T5_input_mask,token_type_ids=LXM_token_type_ids, visual_features=visual_faetures, spatial_features=spatial_features,T5_target_ids=T5_target_id) |
|
|
|
trip_predict = T5tokenizer.batch_decode(eval_outputs, skip_special_tokens=True) |
|
if get_rank() == 0: |
|
print('epoch', epoch, 'step', s, '>>>', '\tans:', batch_data['ans'][0], 'pred:', trip_predict[0]) |
|
|
|
for i, pre in enumerate(batch_data['ans']): |
|
train_answers_trip.append(batch_data['ans'][i]) |
|
train_preds_trip.append(trip_predict[i]) |
|
|
|
barrier() |
|
barrier() |
|
|
|
|
|
if args.dataset == 'krvqa': |
|
train_acc_1_num, train_total_1_num = cal_acc(train_answers_trip, train_preds_trip) |
|
|
|
train_reduce_acc_num=reduce_tensor(torch.tensor(train_acc_1_num).cuda(args.local_rank)).item() |
|
train_reduce_total_num=reduce_tensor(torch.tensor(train_total_1_num).cuda(args.local_rank)).item() |
|
train_acc_1_trip = train_reduce_acc_num/train_reduce_total_num |
|
|
|
if get_rank() == 0: |
|
|
|
print('epoch %d train_loss = %.1f, acc_trip = %.4f' % (epoch, loss_stat,train_acc_1_trip)) |
|
else: |
|
|
|
train_acc_1_num, train_total_1_num = cal_acc_multi(train_answers_trip, train_preds_trip) |
|
|
|
train_reduce_acc_num=reduce_tensor(torch.tensor(train_acc_1_num).cuda(args.local_rank)).item() |
|
train_reduce_total_num=reduce_tensor(torch.tensor(train_total_1_num).cuda(args.local_rank)).item() |
|
train_acc_1_trip = train_reduce_acc_num/train_reduce_total_num |
|
if get_rank() == 0: |
|
|
|
print('epoch %d train_loss of GPU0= %.1f, acc_trip on all GPUs= %.4f' % (epoch, loss_stat, |
|
train_acc_1_trip)) |
|
|
|
barrier() |
|
if args.validate: |
|
model.eval() |
|
answers = [] |
|
preds = [] |
|
preds_trip = [] |
|
preds_trip_3 = [] |
|
answers_trip = [] |
|
id2pred_trip = {} |
|
print(f"\nValidation after epoch {epoch}:") |
|
for i, batch_data in enumerate(tqdm(test_dataloader)): |
|
with torch.no_grad(): |
|
val_T5_input_id = torch.stack(batch_data['T5_input_ids']).to(device) |
|
val_T5_input_mask = torch.stack(batch_data['T5_input_masks']).to(device) |
|
|
|
|
|
val_visual_faetures = torch.tensor(np.array(batch_data['img'])).float().to(device) |
|
|
|
val_spatial_features = torch.tensor(np.array(batch_data['spatial'])).float().to(device) |
|
|
|
|
|
|
|
val_LXM_input_id = torch.stack(batch_data['LXM_input_ids']).to(device) |
|
val_LXM_input_mask = torch.stack(batch_data['LXM_input_masks']).to(device) |
|
val_LXM_token_type_ids = torch.stack(batch_data['LXM_token_type_ids']).to(device) |
|
|
|
|
|
|
|
if args.pretrain: |
|
val_outputs = model(train=False, LXM_source_ids=val_LXM_input_id, LXM_source_masks=val_LXM_input_mask,T5_source_ids=val_T5_input_id, T5_source_masks=val_T5_input_mask,token_type_ids=val_LXM_token_type_ids, visual_features=val_visual_faetures, spatial_features=val_spatial_features,T5_target_ids=None) |
|
|
|
else: |
|
val_outputs = model(train=False, LXM_source_ids=val_LXM_input_id, LXM_source_masks=val_LXM_input_mask,T5_source_ids=val_T5_input_id, T5_source_masks=val_T5_input_mask,token_type_ids=val_LXM_token_type_ids, visual_features=val_visual_faetures, spatial_features=val_spatial_features,T5_target_ids=None) |
|
|
|
|
|
|
|
val_trip_predict = T5tokenizer.batch_decode(val_outputs, skip_special_tokens=True) |
|
|
|
|
|
|
|
|
|
for i, pre in enumerate(batch_data['ans']): |
|
preds_trip.append(val_trip_predict[i]) |
|
answers_trip.append(batch_data['ans'][i]) |
|
|
|
id2pred_trip[str(batch_data['id'][i])]=val_trip_predict[i] |
|
|
|
|
|
if args.dataset == 'krvqa': |
|
acc_1_num, total_1_num = cal_acc(answers_trip, preds_trip) |
|
reduce_acc_num=reduce_tensor(torch.tensor(acc_1_num).cuda(args.local_rank)).item() |
|
reduce_total_num=reduce_tensor(torch.tensor(total_1_num).cuda(args.local_rank)).item() |
|
acc_1_trip = reduce_acc_num/reduce_total_num |
|
if get_rank() == 0: |
|
print('epoch %d , acc_trip on all GPUs= %.4f' % (epoch, acc_1_trip)) |
|
|
|
else: |
|
acc_1_num, total_1_num = cal_acc_multi(answers_trip, preds_trip) |
|
reduce_acc_num=reduce_tensor(torch.tensor(acc_1_num).cuda(args.local_rank)).item() |
|
reduce_total_num=reduce_tensor(torch.tensor(total_1_num).cuda(args.local_rank)).item() |
|
acc_1_trip = reduce_acc_num/reduce_total_num |
|
if get_rank() == 0: |
|
print('epoch %d , acc_trip on all GPUs= %.4f' % (epoch, acc_1_trip)) |
|
|
|
if acc_1_trip > best_acc_t: |
|
|
|
best_acc_t = acc_1_trip |
|
best_epoch_t = epoch |
|
if not args.pretrain: |
|
if get_rank() == 0: |
|
f=open(args.model_dir+"/predictions.json", 'w') |
|
json.dump(id2pred_trip, f) |
|
f.close() |
|
print('saving model at epoch', epoch, '!!') |
|
|
|
if get_world_size() > 1: |
|
torch.save(model.module.state_dict(), args.model_dir+'/best_finetuned_model_'+model_name+'.pth') |
|
else: |
|
torch.save(model.state_dict(), args.model_dir+'/best_finetuned_model_'+model_name+'.pth') |
|
|
|
|
|
|
|
if get_rank() == 0: |
|
print("best_acc@1t={:.2%}, epoch{}\n\n".format(best_acc_t, best_epoch_t)) |
|
model.train() |
|
if args.pretrain: |
|
|
|
if get_rank() == 0: |
|
if get_world_size() > 1: |
|
torch.save(model.module.state_dict(), args.model_dir+ '/model_for_epoch_%d.pth' % epoch) |
|
else: |
|
torch.save(model.state_dict(), args.model_dir+ '/model_for_epoch_%d.pth' % epoch) |
|
|
|
|
|
barrier() |
|
|
|
|
|
dist.destroy_process_group() |
|
if __name__ == "__main__": |
|
train() |
|
|