id
stringlengths
14
15
text
stringlengths
22
2.51k
source
stringlengths
61
160
04b3a182bd3a-2
Attributes embeddings Access the query embedding object if available. async aadd_documents(documents: List[Document], **kwargs: Any) → List[str]¶ Run more documents through the embeddings and add to the vectorstore. Parameters (List[Document] (documents) – Documents to add to the vectorstore. Returns List of IDs of the added texts. Return type List[str] async aadd_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, **kwargs: Any) → List[str]¶ Run more texts through the embeddings and add to the vectorstore. add_documents(documents: List[Document], **kwargs: Any) → List[str]¶ Run more documents through the embeddings and add to the vectorstore. Parameters (List[Document] (documents) – Documents to add to the vectorstore. Returns List of IDs of the added texts. Return type List[str] add_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, **kwargs: Any) → List[str][source]¶ Upload texts with metadata (properties) to Weaviate. async classmethod afrom_documents(documents: List[Document], embedding: Embeddings, **kwargs: Any) → VST¶ Return VectorStore initialized from documents and embeddings. async classmethod afrom_texts(texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, **kwargs: Any) → VST¶ Return VectorStore initialized from texts and embeddings. async amax_marginal_relevance_search(query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[Document]¶ Return docs selected using the maximal marginal relevance.
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.weaviate.Weaviate.html
04b3a182bd3a-3
Return docs selected using the maximal marginal relevance. async amax_marginal_relevance_search_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[Document]¶ Return docs selected using the maximal marginal relevance. as_retriever(**kwargs: Any) → VectorStoreRetriever¶ async asearch(query: str, search_type: str, **kwargs: Any) → List[Document]¶ Return docs most similar to query using specified search type. async asimilarity_search(query: str, k: int = 4, **kwargs: Any) → List[Document]¶ Return docs most similar to query. async asimilarity_search_by_vector(embedding: List[float], k: int = 4, **kwargs: Any) → List[Document]¶ Return docs most similar to embedding vector. async asimilarity_search_with_relevance_scores(query: str, k: int = 4, **kwargs: Any) → List[Tuple[Document, float]]¶ Return docs most similar to query. delete(ids: Optional[List[str]] = None, **kwargs: Any) → None[source]¶ Delete by vector IDs. Parameters ids – List of ids to delete. classmethod from_documents(documents: List[Document], embedding: Embeddings, **kwargs: Any) → VST¶ Return VectorStore initialized from documents and embeddings. classmethod from_texts(texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, **kwargs: Any) → Weaviate[source]¶ Construct Weaviate wrapper from raw documents. This is a user-friendly interface that: Embeds documents. Creates a new index for the embeddings in the Weaviate instance.
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.weaviate.Weaviate.html
04b3a182bd3a-4
Embeds documents. Creates a new index for the embeddings in the Weaviate instance. Adds the documents to the newly created Weaviate index. This is intended to be a quick way to get started. Example from langchain.vectorstores.weaviate import Weaviate from langchain.embeddings import OpenAIEmbeddings embeddings = OpenAIEmbeddings() weaviate = Weaviate.from_texts( texts, embeddings, weaviate_url="http://localhost:8080" ) max_marginal_relevance_search(query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[Document][source]¶ Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Parameters query – Text to look up documents similar to. k – Number of Documents to return. Defaults to 4. fetch_k – Number of Documents to fetch to pass to MMR algorithm. lambda_mult – Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5. Returns List of Documents selected by maximal marginal relevance. max_marginal_relevance_search_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[Document][source]¶ Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Parameters embedding – Embedding to look up documents similar to.
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.weaviate.Weaviate.html
04b3a182bd3a-5
among selected documents. Parameters embedding – Embedding to look up documents similar to. k – Number of Documents to return. Defaults to 4. fetch_k – Number of Documents to fetch to pass to MMR algorithm. lambda_mult – Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5. Returns List of Documents selected by maximal marginal relevance. search(query: str, search_type: str, **kwargs: Any) → List[Document]¶ Return docs most similar to query using specified search type. similarity_search(query: str, k: int = 4, **kwargs: Any) → List[Document][source]¶ Return docs most similar to query. Parameters query – Text to look up documents similar to. k – Number of Documents to return. Defaults to 4. Returns List of Documents most similar to the query. similarity_search_by_text(query: str, k: int = 4, **kwargs: Any) → List[Document][source]¶ Return docs most similar to query. Parameters query – Text to look up documents similar to. k – Number of Documents to return. Defaults to 4. Returns List of Documents most similar to the query. similarity_search_by_vector(embedding: List[float], k: int = 4, **kwargs: Any) → List[Document][source]¶ Look up similar documents by embedding vector in Weaviate. similarity_search_with_relevance_scores(query: str, k: int = 4, **kwargs: Any) → List[Tuple[Document, float]]¶ Return docs and relevance scores in the range [0, 1]. 0 is dissimilar, 1 is most similar. Parameters
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.weaviate.Weaviate.html
04b3a182bd3a-6
0 is dissimilar, 1 is most similar. Parameters query – input text k – Number of Documents to return. Defaults to 4. **kwargs – kwargs to be passed to similarity search. Should include: score_threshold: Optional, a floating point value between 0 to 1 to filter the resulting set of retrieved docs Returns List of Tuples of (doc, similarity_score) similarity_search_with_score(query: str, k: int = 4, **kwargs: Any) → List[Tuple[Document, float]][source]¶ Return list of documents most similar to the query text and cosine distance in float for each. Lower score represents more similarity. property embeddings: Optional[langchain.embeddings.base.Embeddings]¶ Access the query embedding object if available. Examples using Weaviate¶ Weaviate Weaviate self-querying
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.weaviate.Weaviate.html
e88e586909ac-0
langchain.vectorstores.annoy.dependable_annoy_import¶ langchain.vectorstores.annoy.dependable_annoy_import() → Any[source]¶ Import annoy if available, otherwise raise error.
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.annoy.dependable_annoy_import.html
386eb7278027-0
langchain.vectorstores.clickhouse.ClickhouseSettings¶ class langchain.vectorstores.clickhouse.ClickhouseSettings(_env_file: Optional[Union[str, PathLike, List[Union[str, PathLike]], Tuple[Union[str, PathLike], ...]]] = '<object object>', _env_file_encoding: Optional[str] = None, _env_nested_delimiter: Optional[str] = None, _secrets_dir: Optional[Union[str, PathLike]] = None, *, host: str = 'localhost', port: int = 8123, username: Optional[str] = None, password: Optional[str] = None, index_type: str = 'annoy', index_param: Optional[Union[List, Dict]] = ["'L2Distance'", 100], index_query_params: Dict[str, str] = {}, column_map: Dict[str, str] = {'document': 'document', 'embedding': 'embedding', 'id': 'id', 'metadata': 'metadata', 'uuid': 'uuid'}, database: str = 'default', table: str = 'langchain', metric: str = 'angular')[source]¶ Bases: BaseSettings ClickHouse Client Configuration Attribute: clickhouse_host (str)An URL to connect to MyScale backend.Defaults to ‘localhost’. clickhouse_port (int) : URL port to connect with HTTP. Defaults to 8443. username (str) : Username to login. Defaults to None. password (str) : Password to login. Defaults to None. index_type (str): index type string. index_param (list): index build parameter. index_query_params(dict): index query parameters. database (str) : Database name to find the table. Defaults to ‘default’. table (str) : Table name to operate on. Defaults to ‘vector_table’.
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.clickhouse.ClickhouseSettings.html
386eb7278027-1
table (str) : Table name to operate on. Defaults to ‘vector_table’. metric (str)Metric to compute distance,supported are (‘angular’, ‘euclidean’, ‘manhattan’, ‘hamming’, ‘dot’). Defaults to ‘angular’. https://github.com/spotify/annoy/blob/main/src/annoymodule.cc#L149-L169 column_map (Dict)Column type map to project column name onto langchainsemantics. Must have keys: text, id, vector, must be same size to number of columns. For example: .. code-block:: python {‘id’: ‘text_id’, ‘uuid’: ‘global_unique_id’ ‘embedding’: ‘text_embedding’, ‘document’: ‘text_plain’, ‘metadata’: ‘metadata_dictionary_in_json’, } Defaults to identity map. Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param column_map: Dict[str, str] = {'document': 'document', 'embedding': 'embedding', 'id': 'id', 'metadata': 'metadata', 'uuid': 'uuid'}¶ param database: str = 'default'¶ param host: str = 'localhost'¶ param index_param: Optional[Union[List, Dict]] = ["'L2Distance'", 100]¶ param index_query_params: Dict[str, str] = {}¶ param index_type: str = 'annoy'¶ param metric: str = 'angular'¶ param password: Optional[str] = None¶ param port: int = 8123¶ param table: str = 'langchain'¶ param username: Optional[str] = None¶ model Config[source]¶ Bases: object env_file = '.env'¶
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.clickhouse.ClickhouseSettings.html
386eb7278027-2
model Config[source]¶ Bases: object env_file = '.env'¶ env_file_encoding = 'utf-8'¶ env_prefix = 'clickhouse_'¶ Examples using ClickhouseSettings¶ ClickHouse Vector Search
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.clickhouse.ClickhouseSettings.html
6989d950ec19-0
langchain.vectorstores.qdrant.sync_call_fallback¶ langchain.vectorstores.qdrant.sync_call_fallback(method: Callable) → Callable[source]¶ Decorator to call the synchronous method of the class if the async method is not implemented. This decorator might be only used for the methods that are defined as async in the class.
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.qdrant.sync_call_fallback.html
10afd3fc7e1a-0
langchain.vectorstores.sklearn.JsonSerializer¶ class langchain.vectorstores.sklearn.JsonSerializer(persist_path: str)[source]¶ Bases: BaseSerializer Serializes data in json using the json package from python standard library. Methods __init__(persist_path) extension() The file extension suggested by this serializer (without dot). load() Loads the data from the persist_path save(data) Saves the data to the persist_path classmethod extension() → str[source]¶ The file extension suggested by this serializer (without dot). load() → Any[source]¶ Loads the data from the persist_path save(data: Any) → None[source]¶ Saves the data to the persist_path
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.sklearn.JsonSerializer.html
b6abe8ae25a8-0
langchain.vectorstores.sklearn.BsonSerializer¶ class langchain.vectorstores.sklearn.BsonSerializer(persist_path: str)[source]¶ Bases: BaseSerializer Serializes data in binary json using the bson python package. Methods __init__(persist_path) extension() The file extension suggested by this serializer (without dot). load() Loads the data from the persist_path save(data) Saves the data to the persist_path classmethod extension() → str[source]¶ The file extension suggested by this serializer (without dot). load() → Any[source]¶ Loads the data from the persist_path save(data: Any) → None[source]¶ Saves the data to the persist_path
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.sklearn.BsonSerializer.html
f49e0198e43b-0
langchain.vectorstores.matching_engine.MatchingEngine¶ class langchain.vectorstores.matching_engine.MatchingEngine(project_id: str, index: MatchingEngineIndex, endpoint: MatchingEngineIndexEndpoint, embedding: Embeddings, gcs_client: storage.Client, gcs_bucket_name: str, credentials: Optional[Credentials] = None)[source]¶ Bases: VectorStore Vertex Matching Engine implementation of the vector store. While the embeddings are stored in the Matching Engine, the embedded documents will be stored in GCS. An existing Index and corresponding Endpoint are preconditions for using this module. See usage in docs/modules/indexes/vectorstores/examples/matchingengine.ipynb Note that this implementation is mostly meant for reading if you are planning to do a real time implementation. While reading is a real time operation, updating the index takes close to one hour. Vertex Matching Engine implementation of the vector store. While the embeddings are stored in the Matching Engine, the embedded documents will be stored in GCS. An existing Index and corresponding Endpoint are preconditions for using this module. See usage in docs/modules/indexes/vectorstores/examples/matchingengine.ipynb. Note that this implementation is mostly meant for reading if you are planning to do a real time implementation. While reading is a real time operation, updating the index takes close to one hour. project_id¶ The GCS project id. index¶ The created index class. See ~:func:MatchingEngine.from_components. endpoint¶ The created endpoint class. See ~:func:MatchingEngine.from_components. embedding¶ A Embeddings that will be used for embedding the text sent. If none is sent, then the multilingual Tensorflow Universal Sentence Encoder will be used. gcs_client¶ The GCS client. gcs_bucket_name¶
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.matching_engine.MatchingEngine.html
f49e0198e43b-1
gcs_client¶ The GCS client. gcs_bucket_name¶ The GCS bucket name. credentials¶ Created GCP credentials. Type Optional Methods __init__(project_id, index, endpoint, ...[, ...]) Vertex Matching Engine implementation of the vector store. aadd_documents(documents, **kwargs) Run more documents through the embeddings and add to the vectorstore. aadd_texts(texts[, metadatas]) Run more texts through the embeddings and add to the vectorstore. add_documents(documents, **kwargs) Run more documents through the embeddings and add to the vectorstore. add_texts(texts[, metadatas]) Run more texts through the embeddings and add to the vectorstore. afrom_documents(documents, embedding, **kwargs) Return VectorStore initialized from documents and embeddings. afrom_texts(texts, embedding[, metadatas]) Return VectorStore initialized from texts and embeddings. amax_marginal_relevance_search(query[, k, ...]) Return docs selected using the maximal marginal relevance. amax_marginal_relevance_search_by_vector(...) Return docs selected using the maximal marginal relevance. as_retriever(**kwargs) asearch(query, search_type, **kwargs) Return docs most similar to query using specified search type. asimilarity_search(query[, k]) Return docs most similar to query. asimilarity_search_by_vector(embedding[, k]) Return docs most similar to embedding vector. asimilarity_search_with_relevance_scores(query) Return docs most similar to query. delete([ids]) Delete by vector ID or other criteria. from_components(project_id, region, ...[, ...]) Takes the object creation out of the constructor.
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.matching_engine.MatchingEngine.html
f49e0198e43b-2
Takes the object creation out of the constructor. from_documents(documents, embedding, **kwargs) Return VectorStore initialized from documents and embeddings. from_texts(texts, embedding[, metadatas]) Use from components instead. max_marginal_relevance_search(query[, k, ...]) Return docs selected using the maximal marginal relevance. max_marginal_relevance_search_by_vector(...) Return docs selected using the maximal marginal relevance. search(query, search_type, **kwargs) Return docs most similar to query using specified search type. similarity_search(query[, k]) Return docs most similar to query. similarity_search_by_vector(embedding[, k]) Return docs most similar to embedding vector. similarity_search_with_relevance_scores(query) Return docs and relevance scores in the range [0, 1]. similarity_search_with_score(*args, **kwargs) Run similarity search with distance. Attributes embeddings Access the query embedding object if available. async aadd_documents(documents: List[Document], **kwargs: Any) → List[str]¶ Run more documents through the embeddings and add to the vectorstore. Parameters (List[Document] (documents) – Documents to add to the vectorstore. Returns List of IDs of the added texts. Return type List[str] async aadd_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, **kwargs: Any) → List[str]¶ Run more texts through the embeddings and add to the vectorstore. add_documents(documents: List[Document], **kwargs: Any) → List[str]¶ Run more documents through the embeddings and add to the vectorstore. Parameters (List[Document] (documents) – Documents to add to the vectorstore. Returns
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.matching_engine.MatchingEngine.html
f49e0198e43b-3
(List[Document] (documents) – Documents to add to the vectorstore. Returns List of IDs of the added texts. Return type List[str] add_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, **kwargs: Any) → List[str][source]¶ Run more texts through the embeddings and add to the vectorstore. Parameters texts – Iterable of strings to add to the vectorstore. metadatas – Optional list of metadatas associated with the texts. kwargs – vectorstore specific parameters. Returns List of ids from adding the texts into the vectorstore. async classmethod afrom_documents(documents: List[Document], embedding: Embeddings, **kwargs: Any) → VST¶ Return VectorStore initialized from documents and embeddings. async classmethod afrom_texts(texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, **kwargs: Any) → VST¶ Return VectorStore initialized from texts and embeddings. async amax_marginal_relevance_search(query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[Document]¶ Return docs selected using the maximal marginal relevance. async amax_marginal_relevance_search_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[Document]¶ Return docs selected using the maximal marginal relevance. as_retriever(**kwargs: Any) → VectorStoreRetriever¶ async asearch(query: str, search_type: str, **kwargs: Any) → List[Document]¶ Return docs most similar to query using specified search type.
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.matching_engine.MatchingEngine.html
f49e0198e43b-4
Return docs most similar to query using specified search type. async asimilarity_search(query: str, k: int = 4, **kwargs: Any) → List[Document]¶ Return docs most similar to query. async asimilarity_search_by_vector(embedding: List[float], k: int = 4, **kwargs: Any) → List[Document]¶ Return docs most similar to embedding vector. async asimilarity_search_with_relevance_scores(query: str, k: int = 4, **kwargs: Any) → List[Tuple[Document, float]]¶ Return docs most similar to query. delete(ids: Optional[List[str]] = None, **kwargs: Any) → Optional[bool]¶ Delete by vector ID or other criteria. Parameters ids – List of ids to delete. **kwargs – Other keyword arguments that subclasses might use. Returns True if deletion is successful, False otherwise, None if not implemented. Return type Optional[bool] classmethod from_components(project_id: str, region: str, gcs_bucket_name: str, index_id: str, endpoint_id: str, credentials_path: Optional[str] = None, embedding: Optional[Embeddings] = None) → MatchingEngine[source]¶ Takes the object creation out of the constructor. Parameters project_id – The GCP project id. region – The default location making the API calls. It must have regional. (the same location as the GCS bucket and must be) – gcs_bucket_name – The location where the vectors will be stored in created. (order for the index to be) – index_id – The id of the created index. endpoint_id – The id of the created endpoint. credentials_path – (Optional) The path of the Google credentials on system. (the local file) –
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.matching_engine.MatchingEngine.html
f49e0198e43b-5
system. (the local file) – embedding – The Embeddings that will be used for texts. (embedding the) – Returns A configured MatchingEngine with the texts added to the index. classmethod from_documents(documents: List[Document], embedding: Embeddings, **kwargs: Any) → VST¶ Return VectorStore initialized from documents and embeddings. classmethod from_texts(texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, **kwargs: Any) → MatchingEngine[source]¶ Use from components instead. max_marginal_relevance_search(query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[Document]¶ Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Parameters query – Text to look up documents similar to. k – Number of Documents to return. Defaults to 4. fetch_k – Number of Documents to fetch to pass to MMR algorithm. lambda_mult – Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5. Returns List of Documents selected by maximal marginal relevance. max_marginal_relevance_search_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[Document]¶ Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Parameters embedding – Embedding to look up documents similar to.
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.matching_engine.MatchingEngine.html
f49e0198e43b-6
among selected documents. Parameters embedding – Embedding to look up documents similar to. k – Number of Documents to return. Defaults to 4. fetch_k – Number of Documents to fetch to pass to MMR algorithm. lambda_mult – Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5. Returns List of Documents selected by maximal marginal relevance. search(query: str, search_type: str, **kwargs: Any) → List[Document]¶ Return docs most similar to query using specified search type. similarity_search(query: str, k: int = 4, **kwargs: Any) → List[Document][source]¶ Return docs most similar to query. Parameters query – The string that will be used to search for similar documents. k – The amount of neighbors that will be retrieved. Returns A list of k matching documents. similarity_search_by_vector(embedding: List[float], k: int = 4, **kwargs: Any) → List[Document]¶ Return docs most similar to embedding vector. Parameters embedding – Embedding to look up documents similar to. k – Number of Documents to return. Defaults to 4. Returns List of Documents most similar to the query vector. similarity_search_with_relevance_scores(query: str, k: int = 4, **kwargs: Any) → List[Tuple[Document, float]]¶ Return docs and relevance scores in the range [0, 1]. 0 is dissimilar, 1 is most similar. Parameters query – input text k – Number of Documents to return. Defaults to 4. **kwargs – kwargs to be passed to similarity search. Should include:
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.matching_engine.MatchingEngine.html
f49e0198e43b-7
**kwargs – kwargs to be passed to similarity search. Should include: score_threshold: Optional, a floating point value between 0 to 1 to filter the resulting set of retrieved docs Returns List of Tuples of (doc, similarity_score) similarity_search_with_score(*args: Any, **kwargs: Any) → List[Tuple[Document, float]]¶ Run similarity search with distance. property embeddings: langchain.embeddings.base.Embeddings¶ Access the query embedding object if available. Examples using MatchingEngine¶ MatchingEngine
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.matching_engine.MatchingEngine.html
d19e598ac249-0
langchain.vectorstores.docarray.hnsw.DocArrayHnswSearch¶ class langchain.vectorstores.docarray.hnsw.DocArrayHnswSearch(doc_index: BaseDocIndex, embedding: Embeddings)[source]¶ Bases: DocArrayIndex Wrapper around HnswLib storage. To use it, you should have the docarray package with version >=0.32.0 installed. You can install it with pip install “langchain[docarray]”. Initialize a vector store from DocArray’s DocIndex. Methods __init__(doc_index, embedding) Initialize a vector store from DocArray's DocIndex. aadd_documents(documents, **kwargs) Run more documents through the embeddings and add to the vectorstore. aadd_texts(texts[, metadatas]) Run more texts through the embeddings and add to the vectorstore. add_documents(documents, **kwargs) Run more documents through the embeddings and add to the vectorstore. add_texts(texts[, metadatas]) Run more texts through the embeddings and add to the vectorstore. afrom_documents(documents, embedding, **kwargs) Return VectorStore initialized from documents and embeddings. afrom_texts(texts, embedding[, metadatas]) Return VectorStore initialized from texts and embeddings. amax_marginal_relevance_search(query[, k, ...]) Return docs selected using the maximal marginal relevance. amax_marginal_relevance_search_by_vector(...) Return docs selected using the maximal marginal relevance. as_retriever(**kwargs) asearch(query, search_type, **kwargs) Return docs most similar to query using specified search type. asimilarity_search(query[, k]) Return docs most similar to query. asimilarity_search_by_vector(embedding[, k])
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.docarray.hnsw.DocArrayHnswSearch.html
d19e598ac249-1
asimilarity_search_by_vector(embedding[, k]) Return docs most similar to embedding vector. asimilarity_search_with_relevance_scores(query) Return docs most similar to query. delete([ids]) Delete by vector ID or other criteria. from_documents(documents, embedding, **kwargs) Return VectorStore initialized from documents and embeddings. from_params(embedding, work_dir, n_dim[, ...]) Initialize DocArrayHnswSearch store. from_texts(texts, embedding[, metadatas, ...]) Create an DocArrayHnswSearch store and insert data. max_marginal_relevance_search(query[, k, ...]) Return docs selected using the maximal marginal relevance. max_marginal_relevance_search_by_vector(...) Return docs selected using the maximal marginal relevance. search(query, search_type, **kwargs) Return docs most similar to query using specified search type. similarity_search(query[, k]) Return docs most similar to query. similarity_search_by_vector(embedding[, k]) Return docs most similar to embedding vector. similarity_search_with_relevance_scores(query) Return docs and relevance scores in the range [0, 1]. similarity_search_with_score(query[, k]) Return docs most similar to query. Attributes doc_cls embeddings Access the query embedding object if available. async aadd_documents(documents: List[Document], **kwargs: Any) → List[str]¶ Run more documents through the embeddings and add to the vectorstore. Parameters (List[Document] (documents) – Documents to add to the vectorstore. Returns List of IDs of the added texts. Return type List[str]
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.docarray.hnsw.DocArrayHnswSearch.html
d19e598ac249-2
Returns List of IDs of the added texts. Return type List[str] async aadd_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, **kwargs: Any) → List[str]¶ Run more texts through the embeddings and add to the vectorstore. add_documents(documents: List[Document], **kwargs: Any) → List[str]¶ Run more documents through the embeddings and add to the vectorstore. Parameters (List[Document] (documents) – Documents to add to the vectorstore. Returns List of IDs of the added texts. Return type List[str] add_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, **kwargs: Any) → List[str]¶ Run more texts through the embeddings and add to the vectorstore. Parameters texts – Iterable of strings to add to the vectorstore. metadatas – Optional list of metadatas associated with the texts. Returns List of ids from adding the texts into the vectorstore. async classmethod afrom_documents(documents: List[Document], embedding: Embeddings, **kwargs: Any) → VST¶ Return VectorStore initialized from documents and embeddings. async classmethod afrom_texts(texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, **kwargs: Any) → VST¶ Return VectorStore initialized from texts and embeddings. async amax_marginal_relevance_search(query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[Document]¶ Return docs selected using the maximal marginal relevance.
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.docarray.hnsw.DocArrayHnswSearch.html
d19e598ac249-3
Return docs selected using the maximal marginal relevance. async amax_marginal_relevance_search_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[Document]¶ Return docs selected using the maximal marginal relevance. as_retriever(**kwargs: Any) → VectorStoreRetriever¶ async asearch(query: str, search_type: str, **kwargs: Any) → List[Document]¶ Return docs most similar to query using specified search type. async asimilarity_search(query: str, k: int = 4, **kwargs: Any) → List[Document]¶ Return docs most similar to query. async asimilarity_search_by_vector(embedding: List[float], k: int = 4, **kwargs: Any) → List[Document]¶ Return docs most similar to embedding vector. async asimilarity_search_with_relevance_scores(query: str, k: int = 4, **kwargs: Any) → List[Tuple[Document, float]]¶ Return docs most similar to query. delete(ids: Optional[List[str]] = None, **kwargs: Any) → Optional[bool]¶ Delete by vector ID or other criteria. Parameters ids – List of ids to delete. **kwargs – Other keyword arguments that subclasses might use. Returns True if deletion is successful, False otherwise, None if not implemented. Return type Optional[bool] classmethod from_documents(documents: List[Document], embedding: Embeddings, **kwargs: Any) → VST¶ Return VectorStore initialized from documents and embeddings.
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.docarray.hnsw.DocArrayHnswSearch.html
d19e598ac249-4
Return VectorStore initialized from documents and embeddings. classmethod from_params(embedding: Embeddings, work_dir: str, n_dim: int, dist_metric: Literal['cosine', 'ip', 'l2'] = 'cosine', max_elements: int = 1024, index: bool = True, ef_construction: int = 200, ef: int = 10, M: int = 16, allow_replace_deleted: bool = True, num_threads: int = 1, **kwargs: Any) → DocArrayHnswSearch[source]¶ Initialize DocArrayHnswSearch store. Parameters embedding (Embeddings) – Embedding function. work_dir (str) – path to the location where all the data will be stored. n_dim (int) – dimension of an embedding. dist_metric (str) – Distance metric for DocArrayHnswSearch can be one of: “cosine”, “ip”, and “l2”. Defaults to “cosine”. max_elements (int) – Maximum number of vectors that can be stored. Defaults to 1024. index (bool) – Whether an index should be built for this field. Defaults to True. ef_construction (int) – defines a construction time/accuracy trade-off. Defaults to 200. ef (int) – parameter controlling query time/accuracy trade-off. Defaults to 10. M (int) – parameter that defines the maximum number of outgoing connections in the graph. Defaults to 16. allow_replace_deleted (bool) – Enables replacing of deleted elements with new added ones. Defaults to True. num_threads (int) – Sets the number of cpu threads to use. Defaults to 1. **kwargs – Other keyword arguments to be passed to the get_doc_cls method.
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.docarray.hnsw.DocArrayHnswSearch.html
d19e598ac249-5
**kwargs – Other keyword arguments to be passed to the get_doc_cls method. classmethod from_texts(texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, work_dir: Optional[str] = None, n_dim: Optional[int] = None, **kwargs: Any) → DocArrayHnswSearch[source]¶ Create an DocArrayHnswSearch store and insert data. Parameters texts (List[str]) – Text data. embedding (Embeddings) – Embedding function. metadatas (Optional[List[dict]]) – Metadata for each text if it exists. Defaults to None. work_dir (str) – path to the location where all the data will be stored. n_dim (int) – dimension of an embedding. **kwargs – Other keyword arguments to be passed to the __init__ method. Returns DocArrayHnswSearch Vector Store max_marginal_relevance_search(query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[Document]¶ Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Parameters query – Text to look up documents similar to. k – Number of Documents to return. Defaults to 4. fetch_k – Number of Documents to fetch to pass to MMR algorithm. lambda_mult – Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5. Returns List of Documents selected by maximal marginal relevance.
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.docarray.hnsw.DocArrayHnswSearch.html
d19e598ac249-6
Defaults to 0.5. Returns List of Documents selected by maximal marginal relevance. max_marginal_relevance_search_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[Document]¶ Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Parameters embedding – Embedding to look up documents similar to. k – Number of Documents to return. Defaults to 4. fetch_k – Number of Documents to fetch to pass to MMR algorithm. lambda_mult – Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5. Returns List of Documents selected by maximal marginal relevance. search(query: str, search_type: str, **kwargs: Any) → List[Document]¶ Return docs most similar to query using specified search type. similarity_search(query: str, k: int = 4, **kwargs: Any) → List[Document]¶ Return docs most similar to query. Parameters query – Text to look up documents similar to. k – Number of Documents to return. Defaults to 4. Returns List of Documents most similar to the query. similarity_search_by_vector(embedding: List[float], k: int = 4, **kwargs: Any) → List[Document]¶ Return docs most similar to embedding vector. Parameters embedding – Embedding to look up documents similar to. k – Number of Documents to return. Defaults to 4. Returns List of Documents most similar to the query vector.
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.docarray.hnsw.DocArrayHnswSearch.html
d19e598ac249-7
Returns List of Documents most similar to the query vector. similarity_search_with_relevance_scores(query: str, k: int = 4, **kwargs: Any) → List[Tuple[Document, float]]¶ Return docs and relevance scores in the range [0, 1]. 0 is dissimilar, 1 is most similar. Parameters query – input text k – Number of Documents to return. Defaults to 4. **kwargs – kwargs to be passed to similarity search. Should include: score_threshold: Optional, a floating point value between 0 to 1 to filter the resulting set of retrieved docs Returns List of Tuples of (doc, similarity_score) similarity_search_with_score(query: str, k: int = 4, **kwargs: Any) → List[Tuple[Document, float]]¶ Return docs most similar to query. Parameters query – Text to look up documents similar to. k – Number of Documents to return. Defaults to 4. Returns List of documents most similar to the query text and cosine distance in float for each. Lower score represents more similarity. property doc_cls: Type[BaseDoc]¶ property embeddings: Optional[langchain.embeddings.base.Embeddings]¶ Access the query embedding object if available. Examples using DocArrayHnswSearch¶ DocArrayHnswSearch
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.docarray.hnsw.DocArrayHnswSearch.html
dd55ada78486-0
langchain.vectorstores.awadb.AwaDB¶ class langchain.vectorstores.awadb.AwaDB(table_name: str = 'langchain_awadb', embedding: Optional[Embeddings] = None, log_and_data_dir: Optional[str] = None, client: Optional[awadb.Client] = None, **kwargs: Any)[source]¶ Bases: VectorStore Interface implemented by AwaDB vector stores. Initialize with AwaDB client.If table_name is not specified, a random table name of _DEFAULT_TABLE_NAME + last segment of uuid would be created automatically. Parameters table_name – Name of the table created, default _DEFAULT_TABLE_NAME. embedding – Optional Embeddings initially set. log_and_data_dir – Optional the root directory of log and data. client – Optional AwaDB client. kwargs – Any possible extend parameters in the future. Returns None. Methods __init__([table_name, embedding, ...]) Initialize with AwaDB client. aadd_documents(documents, **kwargs) Run more documents through the embeddings and add to the vectorstore. aadd_texts(texts[, metadatas]) Run more texts through the embeddings and add to the vectorstore. add_documents(documents, **kwargs) Run more documents through the embeddings and add to the vectorstore. add_texts(texts[, metadatas, is_duplicate_texts]) Run more texts through the embeddings and add to the vectorstore. afrom_documents(documents, embedding, **kwargs) Return VectorStore initialized from documents and embeddings. afrom_texts(texts, embedding[, metadatas]) Return VectorStore initialized from texts and embeddings. amax_marginal_relevance_search(query[, k, ...]) Return docs selected using the maximal marginal relevance.
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.awadb.AwaDB.html
dd55ada78486-1
Return docs selected using the maximal marginal relevance. amax_marginal_relevance_search_by_vector(...) Return docs selected using the maximal marginal relevance. as_retriever(**kwargs) asearch(query, search_type, **kwargs) Return docs most similar to query using specified search type. asimilarity_search(query[, k]) Return docs most similar to query. asimilarity_search_by_vector(embedding[, k]) Return docs most similar to embedding vector. asimilarity_search_with_relevance_scores(query) Return docs most similar to query. create_table(table_name, **kwargs) Create a new table. delete([ids]) Delete the documents which have the specified ids. from_documents(documents[, embedding, ...]) Create an AwaDB vectorstore from a list of documents. from_texts(texts[, embedding, metadatas, ...]) Create an AwaDB vectorstore from a raw documents. get([ids, text_in_page_content, ...]) Return docs according ids. get_current_table(**kwargs) Get the current table. list_tables(**kwargs) List all the tables created by the client. load_local(table_name, **kwargs) Load the local specified table. max_marginal_relevance_search(query[, k, ...]) Return docs selected using the maximal marginal relevance. max_marginal_relevance_search_by_vector(...) Return docs selected using the maximal marginal relevance. search(query, search_type, **kwargs) Return docs most similar to query using specified search type. similarity_search(query[, k, ...]) Return docs most similar to query. similarity_search_by_vector([embedding, k, ...]) Return docs most similar to embedding vector.
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.awadb.AwaDB.html
dd55ada78486-2
Return docs most similar to embedding vector. similarity_search_with_relevance_scores(query) Return docs and relevance scores in the range [0, 1]. similarity_search_with_score(query[, k, ...]) The most k similar documents and scores of the specified query. update(ids, texts[, metadatas]) Update the documents which have the specified ids. use(table_name, **kwargs) Use the specified table. Attributes embeddings Access the query embedding object if available. async aadd_documents(documents: List[Document], **kwargs: Any) → List[str]¶ Run more documents through the embeddings and add to the vectorstore. Parameters (List[Document] (documents) – Documents to add to the vectorstore. Returns List of IDs of the added texts. Return type List[str] async aadd_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, **kwargs: Any) → List[str]¶ Run more texts through the embeddings and add to the vectorstore. add_documents(documents: List[Document], **kwargs: Any) → List[str]¶ Run more documents through the embeddings and add to the vectorstore. Parameters (List[Document] (documents) – Documents to add to the vectorstore. Returns List of IDs of the added texts. Return type List[str] add_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, is_duplicate_texts: Optional[bool] = None, **kwargs: Any) → List[str][source]¶ Run more texts through the embeddings and add to the vectorstore. :param texts: Iterable of strings to add to the vectorstore. :param metadatas: Optional list of metadatas associated with the texts.
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.awadb.AwaDB.html
dd55ada78486-3
:param metadatas: Optional list of metadatas associated with the texts. :param is_duplicate_texts: Optional whether to duplicate texts. Defaults to True. :param kwargs: any possible extend parameters in the future. Returns List of ids from adding the texts into the vectorstore. async classmethod afrom_documents(documents: List[Document], embedding: Embeddings, **kwargs: Any) → VST¶ Return VectorStore initialized from documents and embeddings. async classmethod afrom_texts(texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, **kwargs: Any) → VST¶ Return VectorStore initialized from texts and embeddings. async amax_marginal_relevance_search(query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[Document]¶ Return docs selected using the maximal marginal relevance. async amax_marginal_relevance_search_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[Document]¶ Return docs selected using the maximal marginal relevance. as_retriever(**kwargs: Any) → VectorStoreRetriever¶ async asearch(query: str, search_type: str, **kwargs: Any) → List[Document]¶ Return docs most similar to query using specified search type. async asimilarity_search(query: str, k: int = 4, **kwargs: Any) → List[Document]¶ Return docs most similar to query. async asimilarity_search_by_vector(embedding: List[float], k: int = 4, **kwargs: Any) → List[Document]¶
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.awadb.AwaDB.html
dd55ada78486-4
Return docs most similar to embedding vector. async asimilarity_search_with_relevance_scores(query: str, k: int = 4, **kwargs: Any) → List[Tuple[Document, float]]¶ Return docs most similar to query. create_table(table_name: str, **kwargs: Any) → bool[source]¶ Create a new table. delete(ids: Optional[List[str]] = None, **kwargs: Any) → Optional[bool][source]¶ Delete the documents which have the specified ids. Parameters ids – The ids of the embedding vectors. **kwargs – Other keyword arguments that subclasses might use. Returns True if deletion is successful. False otherwise, None if not implemented. Return type Optional[bool] classmethod from_documents(documents: List[Document], embedding: Optional[Embeddings] = None, table_name: str = 'langchain_awadb', log_and_data_dir: Optional[str] = None, client: Optional[awadb.Client] = None, **kwargs: Any) → AwaDB[source]¶ Create an AwaDB vectorstore from a list of documents. If a log_and_data_dir specified, the table will be persisted there. Parameters documents (List[Document]) – List of documents to add to the vectorstore. embedding (Optional[Embeddings]) – Embedding function. Defaults to None. table_name (str) – Name of the table to create. log_and_data_dir (Optional[str]) – Directory to persist the table. client (Optional[awadb.Client]) – AwaDB client. Any – Any possible parameters in the future Returns AwaDB vectorstore. Return type AwaDB
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.awadb.AwaDB.html
dd55ada78486-5
Returns AwaDB vectorstore. Return type AwaDB classmethod from_texts(texts: List[str], embedding: Optional[Embeddings] = None, metadatas: Optional[List[dict]] = None, table_name: str = 'langchain_awadb', log_and_data_dir: Optional[str] = None, client: Optional[awadb.Client] = None, **kwargs: Any) → AwaDB[source]¶ Create an AwaDB vectorstore from a raw documents. Parameters texts (List[str]) – List of texts to add to the table. embedding (Optional[Embeddings]) – Embedding function. Defaults to None. metadatas (Optional[List[dict]]) – List of metadatas. Defaults to None. table_name (str) – Name of the table to create. log_and_data_dir (Optional[str]) – Directory of logging and persistence. client (Optional[awadb.Client]) – AwaDB client Returns AwaDB vectorstore. Return type AwaDB get(ids: Optional[List[str]] = None, text_in_page_content: Optional[str] = None, meta_filter: Optional[dict] = None, not_include_fields: Optional[Set[str]] = None, limit: Optional[int] = None, **kwargs: Any) → Dict[str, Document][source]¶ Return docs according ids. Parameters ids – The ids of the embedding vectors. text_in_page_content – Filter by the text in page_content of Document. meta_filter – Filter by any metadata of the document. not_include_fields – Not pack the specified fields of each document. limit – The number of documents to return. Defaults to 5. Optional. Returns Documents which satisfy the input conditions. get_current_table(**kwargs: Any) → str[source]¶ Get the current table.
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.awadb.AwaDB.html
dd55ada78486-6
get_current_table(**kwargs: Any) → str[source]¶ Get the current table. list_tables(**kwargs: Any) → List[str][source]¶ List all the tables created by the client. load_local(table_name: str, **kwargs: Any) → bool[source]¶ Load the local specified table. Parameters table_name – Table name kwargs – Any possible extend parameters in the future. Returns Success or failure of loading the local specified table max_marginal_relevance_search(query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, text_in_page_content: Optional[str] = None, meta_filter: Optional[dict] = None, **kwargs: Any) → List[Document][source]¶ Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Parameters query – Text to look up documents similar to. k – Number of Documents to return. Defaults to 4. fetch_k – Number of Documents to fetch to pass to MMR algorithm. lambda_mult – Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5. text_in_page_content – Filter by the text in page_content of Document. meta_filter (Optional[dict]) – Filter by metadata. Defaults to None. Returns List of Documents selected by maximal marginal relevance.
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.awadb.AwaDB.html
dd55ada78486-7
Returns List of Documents selected by maximal marginal relevance. max_marginal_relevance_search_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, text_in_page_content: Optional[str] = None, meta_filter: Optional[dict] = None, **kwargs: Any) → List[Document][source]¶ Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Parameters embedding – Embedding to look up documents similar to. k – Number of Documents to return. Defaults to 4. fetch_k – Number of Documents to fetch to pass to MMR algorithm. lambda_mult – Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5. text_in_page_content – Filter by the text in page_content of Document. meta_filter (Optional[dict]) – Filter by metadata. Defaults to None. Returns List of Documents selected by maximal marginal relevance. search(query: str, search_type: str, **kwargs: Any) → List[Document]¶ Return docs most similar to query using specified search type. similarity_search(query: str, k: int = 4, text_in_page_content: Optional[str] = None, meta_filter: Optional[dict] = None, **kwargs: Any) → List[Document][source]¶ Return docs most similar to query. Parameters query – Text query. k – The maximum number of documents to return. text_in_page_content – Filter by the text in page_content of Document. meta_filter (Optional[dict]) – Filter by metadata. Defaults to None.
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.awadb.AwaDB.html
dd55ada78486-8
meta_filter (Optional[dict]) – Filter by metadata. Defaults to None. `{"color" (E.g.) – ”red”, “price”: 4.20}`. Optional. `{"max_price" (E.g.) – 15.66, “min_price”: 4.20}` field (price is the metadata) – filter (means range) – `{"maxe_price" (E.g.) – 15.66, “mine_price”: 4.20}` field – filter – kwargs – Any possible extend parameters in the future. Returns Returns the k most similar documents to the specified text query. similarity_search_by_vector(embedding: Optional[List[float]] = None, k: int = 4, text_in_page_content: Optional[str] = None, meta_filter: Optional[dict] = None, not_include_fields_in_metadata: Optional[Set[str]] = None, **kwargs: Any) → List[Document][source]¶ Return docs most similar to embedding vector. Parameters embedding – Embedding to look up documents similar to. k – Number of Documents to return. Defaults to 4. text_in_page_content – Filter by the text in page_content of Document. meta_filter – Filter by metadata. Defaults to None. not_incude_fields_in_metadata – Not include meta fields of each document. Returns List of Documents which are the most similar to the query vector. similarity_search_with_relevance_scores(query: str, k: int = 4, **kwargs: Any) → List[Tuple[Document, float]]¶ Return docs and relevance scores in the range [0, 1]. 0 is dissimilar, 1 is most similar. Parameters query – input text k – Number of Documents to return. Defaults to 4.
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.awadb.AwaDB.html
dd55ada78486-9
query – input text k – Number of Documents to return. Defaults to 4. **kwargs – kwargs to be passed to similarity search. Should include: score_threshold: Optional, a floating point value between 0 to 1 to filter the resulting set of retrieved docs Returns List of Tuples of (doc, similarity_score) similarity_search_with_score(query: str, k: int = 4, text_in_page_content: Optional[str] = None, meta_filter: Optional[dict] = None, **kwargs: Any) → List[Tuple[Document, float]][source]¶ The most k similar documents and scores of the specified query. Parameters query – Text query. k – The k most similar documents to the text query. text_in_page_content – Filter by the text in page_content of Document. meta_filter – Filter by metadata. Defaults to None. kwargs – Any possible extend parameters in the future. Returns The k most similar documents to the specified text query. 0 is dissimilar, 1 is the most similar. update(ids: List[str], texts: Iterable[str], metadatas: Optional[List[dict]] = None, **kwargs: Any) → List[str][source]¶ Update the documents which have the specified ids. Parameters ids – The id list of the updating embedding vector. texts – The texts of the updating documents. metadatas – The metadatas of the updating documents. Returns the ids of the updated documents. use(table_name: str, **kwargs: Any) → bool[source]¶ Use the specified table. Don’t know the tables, please invoke list_tables. property embeddings: Optional[langchain.embeddings.base.Embeddings]¶ Access the query embedding object if available. Examples using AwaDB¶ AwaDB
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.awadb.AwaDB.html
c98837c4e978-0
langchain.vectorstores.rocksetdb.Rockset¶ class langchain.vectorstores.rocksetdb.Rockset(client: Any, embeddings: Embeddings, collection_name: str, text_key: str, embedding_key: str, workspace: str = 'commons')[source]¶ Bases: VectorStore Wrapper arpund Rockset vector database. To use, you should have the rockset python package installed. Note that to use this, the collection being used must already exist in your Rockset instance. You must also ensure you use a Rockset ingest transformation to apply VECTOR_ENFORCE on the column being used to store embedding_key in the collection. See: https://rockset.com/blog/introducing-vector-search-on-rockset/ for more details Everything below assumes commons Rockset workspace. Example from langchain.vectorstores import Rockset from langchain.embeddings.openai import OpenAIEmbeddings import rockset # Make sure you use the right host (region) for your Rockset instance # and APIKEY has both read-write access to your collection. rs = rockset.RocksetClient(host=rockset.Regions.use1a1, api_key="***") collection_name = "langchain_demo" embeddings = OpenAIEmbeddings() vectorstore = Rockset(rs, collection_name, embeddings, "description", "description_embedding") Initialize with Rockset client. :param client: Rockset client object :param collection: Rockset collection to insert docs / query :param embeddings: Langchain Embeddings object to use to generate embedding for given text. Parameters text_key – column in Rockset collection to use to store the text embedding_key – column in Rockset collection to use to store the embedding. Note: We must apply VECTOR_ENFORCE() on this column via Rockset ingest transformation. Methods
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.rocksetdb.Rockset.html
c98837c4e978-1
Rockset ingest transformation. Methods __init__(client, embeddings, ...[, workspace]) Initialize with Rockset client. :param client: Rockset client object :param collection: Rockset collection to insert docs / query :param embeddings: Langchain Embeddings object to use to generate embedding for given text. :param text_key: column in Rockset collection to use to store the text :param embedding_key: column in Rockset collection to use to store the embedding. Note: We must apply VECTOR_ENFORCE() on this column via Rockset ingest transformation. aadd_documents(documents, **kwargs) Run more documents through the embeddings and add to the vectorstore. aadd_texts(texts[, metadatas]) Run more texts through the embeddings and add to the vectorstore. add_documents(documents, **kwargs) Run more documents through the embeddings and add to the vectorstore. add_texts(texts[, metadatas, ids, batch_size]) Run more texts through the embeddings and add to the vectorstore afrom_documents(documents, embedding, **kwargs) Return VectorStore initialized from documents and embeddings. afrom_texts(texts, embedding[, metadatas]) Return VectorStore initialized from texts and embeddings. amax_marginal_relevance_search(query[, k, ...]) Return docs selected using the maximal marginal relevance. amax_marginal_relevance_search_by_vector(...) Return docs selected using the maximal marginal relevance. as_retriever(**kwargs) asearch(query, search_type, **kwargs) Return docs most similar to query using specified search type. asimilarity_search(query[, k]) Return docs most similar to query. asimilarity_search_by_vector(embedding[, k]) Return docs most similar to embedding vector.
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.rocksetdb.Rockset.html
c98837c4e978-2
Return docs most similar to embedding vector. asimilarity_search_with_relevance_scores(query) Return docs most similar to query. delete([ids]) Delete by vector ID or other criteria. delete_texts(ids) Delete a list of docs from the Rockset collection from_documents(documents, embedding, **kwargs) Return VectorStore initialized from documents and embeddings. from_texts(texts, embedding[, metadatas, ...]) Create Rockset wrapper with existing texts. max_marginal_relevance_search(query[, k, ...]) Return docs selected using the maximal marginal relevance. max_marginal_relevance_search_by_vector(...) Return docs selected using the maximal marginal relevance. search(query, search_type, **kwargs) Return docs most similar to query using specified search type. similarity_search(query[, k, distance_func, ...]) Same as similarity_search_with_relevance_scores but doesn't return the scores. similarity_search_by_vector(embedding[, k, ...]) Accepts a query_embedding (vector), and returns documents with similar embeddings. similarity_search_by_vector_with_relevance_scores(...) Accepts a query_embedding (vector), and returns documents with similar embeddings along with their relevance scores. similarity_search_with_relevance_scores(query) Perform a similarity search with Rockset similarity_search_with_score(*args, **kwargs) Run similarity search with distance. Attributes embeddings Access the query embedding object if available. class DistanceFunction(value, names=None, *, module=None, qualname=None, type=None, start=1, boundary=None)[source]¶ Bases: Enum order_by() → str[source]¶ COSINE_SIM = 'COSINE_SIM'¶ DOT_PRODUCT = 'DOT_PRODUCT'¶
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.rocksetdb.Rockset.html
c98837c4e978-3
DOT_PRODUCT = 'DOT_PRODUCT'¶ EUCLIDEAN_DIST = 'EUCLIDEAN_DIST'¶ async aadd_documents(documents: List[Document], **kwargs: Any) → List[str]¶ Run more documents through the embeddings and add to the vectorstore. Parameters (List[Document] (documents) – Documents to add to the vectorstore. Returns List of IDs of the added texts. Return type List[str] async aadd_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, **kwargs: Any) → List[str]¶ Run more texts through the embeddings and add to the vectorstore. add_documents(documents: List[Document], **kwargs: Any) → List[str]¶ Run more documents through the embeddings and add to the vectorstore. Parameters (List[Document] (documents) – Documents to add to the vectorstore. Returns List of IDs of the added texts. Return type List[str] add_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, batch_size: int = 32, **kwargs: Any) → List[str][source]¶ Run more texts through the embeddings and add to the vectorstore Args: texts: Iterable of strings to add to the vectorstore. metadatas: Optional list of metadatas associated with the texts. ids: Optional list of ids to associate with the texts. batch_size: Send documents in batches to rockset. Returns List of ids from adding the texts into the vectorstore. async classmethod afrom_documents(documents: List[Document], embedding: Embeddings, **kwargs: Any) → VST¶ Return VectorStore initialized from documents and embeddings.
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.rocksetdb.Rockset.html
c98837c4e978-4
Return VectorStore initialized from documents and embeddings. async classmethod afrom_texts(texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, **kwargs: Any) → VST¶ Return VectorStore initialized from texts and embeddings. async amax_marginal_relevance_search(query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[Document]¶ Return docs selected using the maximal marginal relevance. async amax_marginal_relevance_search_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[Document]¶ Return docs selected using the maximal marginal relevance. as_retriever(**kwargs: Any) → VectorStoreRetriever¶ async asearch(query: str, search_type: str, **kwargs: Any) → List[Document]¶ Return docs most similar to query using specified search type. async asimilarity_search(query: str, k: int = 4, **kwargs: Any) → List[Document]¶ Return docs most similar to query. async asimilarity_search_by_vector(embedding: List[float], k: int = 4, **kwargs: Any) → List[Document]¶ Return docs most similar to embedding vector. async asimilarity_search_with_relevance_scores(query: str, k: int = 4, **kwargs: Any) → List[Tuple[Document, float]]¶ Return docs most similar to query. delete(ids: Optional[List[str]] = None, **kwargs: Any) → Optional[bool]¶ Delete by vector ID or other criteria. Parameters ids – List of ids to delete.
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.rocksetdb.Rockset.html
c98837c4e978-5
Delete by vector ID or other criteria. Parameters ids – List of ids to delete. **kwargs – Other keyword arguments that subclasses might use. Returns True if deletion is successful, False otherwise, None if not implemented. Return type Optional[bool] delete_texts(ids: List[str]) → None[source]¶ Delete a list of docs from the Rockset collection classmethod from_documents(documents: List[Document], embedding: Embeddings, **kwargs: Any) → VST¶ Return VectorStore initialized from documents and embeddings. classmethod from_texts(texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, client: Any = None, collection_name: str = '', text_key: str = '', embedding_key: str = '', ids: Optional[List[str]] = None, batch_size: int = 32, **kwargs: Any) → Rockset[source]¶ Create Rockset wrapper with existing texts. This is intended as a quicker way to get started. max_marginal_relevance_search(query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[Document]¶ Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Parameters query – Text to look up documents similar to. k – Number of Documents to return. Defaults to 4. fetch_k – Number of Documents to fetch to pass to MMR algorithm. lambda_mult – Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5. Returns List of Documents selected by maximal marginal relevance.
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.rocksetdb.Rockset.html
c98837c4e978-6
Defaults to 0.5. Returns List of Documents selected by maximal marginal relevance. max_marginal_relevance_search_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[Document]¶ Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Parameters embedding – Embedding to look up documents similar to. k – Number of Documents to return. Defaults to 4. fetch_k – Number of Documents to fetch to pass to MMR algorithm. lambda_mult – Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5. Returns List of Documents selected by maximal marginal relevance. search(query: str, search_type: str, **kwargs: Any) → List[Document]¶ Return docs most similar to query using specified search type. similarity_search(query: str, k: int = 4, distance_func: DistanceFunction = DistanceFunction.COSINE_SIM, where_str: Optional[str] = None, **kwargs: Any) → List[Document][source]¶ Same as similarity_search_with_relevance_scores but doesn’t return the scores. similarity_search_by_vector(embedding: List[float], k: int = 4, distance_func: DistanceFunction = DistanceFunction.COSINE_SIM, where_str: Optional[str] = None, **kwargs: Any) → List[Document][source]¶ Accepts a query_embedding (vector), and returns documents with similar embeddings.
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.rocksetdb.Rockset.html
c98837c4e978-7
Accepts a query_embedding (vector), and returns documents with similar embeddings. similarity_search_by_vector_with_relevance_scores(embedding: List[float], k: int = 4, distance_func: DistanceFunction = DistanceFunction.COSINE_SIM, where_str: Optional[str] = None, **kwargs: Any) → List[Tuple[Document, float]][source]¶ Accepts a query_embedding (vector), and returns documents with similar embeddings along with their relevance scores. similarity_search_with_relevance_scores(query: str, k: int = 4, distance_func: DistanceFunction = DistanceFunction.COSINE_SIM, where_str: Optional[str] = None, **kwargs: Any) → List[Tuple[Document, float]][source]¶ Perform a similarity search with Rockset Parameters query (str) – Text to look up documents similar to. distance_func (DistanceFunction) – how to compute distance between two vectors in Rockset. k (int, optional) – Top K neighbors to retrieve. Defaults to 4. where_str (Optional[str], optional) – Metadata filters supplied as a SQL where condition string. Defaults to None. eg. “price<=70.0 AND brand=’Nintendo’” NOTE – Please do not let end-user to fill this and always be aware of SQL injection. Returns List of documents with their relevance score Return type List[Tuple[Document, float]] similarity_search_with_score(*args: Any, **kwargs: Any) → List[Tuple[Document, float]]¶ Run similarity search with distance. property embeddings: langchain.embeddings.base.Embeddings¶ Access the query embedding object if available. Examples using Rockset¶ Rockset
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.rocksetdb.Rockset.html
c78a84f84dc9-0
langchain.vectorstores.clickhouse.has_mul_sub_str¶ langchain.vectorstores.clickhouse.has_mul_sub_str(s: str, *args: Any) → bool[source]¶ Check if a string contains multiple substrings. :param s: string to check. :param *args: substrings to check. Returns True if all substrings are in the string, False otherwise.
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.clickhouse.has_mul_sub_str.html
f53660246713-0
langchain.vectorstores.redis.RedisVectorStoreRetriever¶ class langchain.vectorstores.redis.RedisVectorStoreRetriever(*, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, vectorstore: Redis, search_type: str = 'similarity', search_kwargs: dict = None, k: int = 4, score_threshold: float = 0.4)[source]¶ Bases: VectorStoreRetriever Retriever for Redis VectorStore. Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param k: int = 4¶ Number of documents to return. param metadata: Optional[Dict[str, Any]] = None¶ Optional metadata associated with the retriever. Defaults to None This metadata will be associated with each call to this retriever, and passed as arguments to the handlers defined in callbacks. You can use these to eg identify a specific instance of a retriever with its use case. param score_threshold: float = 0.4¶ Score threshold for similarity_limit search. param search_kwargs: dict [Optional]¶ Keyword arguments to pass to the search function. param search_type: str = 'similarity'¶ Type of search to perform. Can be either ‘similarity’ or ‘similarity_limit’. param tags: Optional[List[str]] = None¶ Optional list of tags associated with the retriever. Defaults to None These tags will be associated with each call to this retriever, and passed as arguments to the handlers defined in callbacks. You can use these to eg identify a specific instance of a retriever with its use case. param vectorstore: Redis [Required]¶ Redis VectorStore.
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.redis.RedisVectorStoreRetriever.html
f53660246713-1
use case. param vectorstore: Redis [Required]¶ Redis VectorStore. async aadd_documents(documents: List[Document], **kwargs: Any) → List[str][source]¶ Add documents to vectorstore. add_documents(documents: List[Document], **kwargs: Any) → List[str][source]¶ Add documents to vectorstore. async aget_relevant_documents(query: str, *, callbacks: Callbacks = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → List[Document]¶ Asynchronously get documents relevant to a query. :param query: string to find relevant documents for :param callbacks: Callback manager or list of callbacks :param tags: Optional list of tags associated with the retriever. Defaults to None These tags will be associated with each call to this retriever, and passed as arguments to the handlers defined in callbacks. Parameters metadata – Optional metadata associated with the retriever. Defaults to None This metadata will be associated with each call to this retriever, and passed as arguments to the handlers defined in callbacks. Returns List of relevant documents async ainvoke(input: str, config: Optional[RunnableConfig] = None) → List[Document]¶ get_relevant_documents(query: str, *, callbacks: Callbacks = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → List[Document]¶ Retrieve documents relevant to a query. :param query: string to find relevant documents for :param callbacks: Callback manager or list of callbacks :param tags: Optional list of tags associated with the retriever. Defaults to None These tags will be associated with each call to this retriever, and passed as arguments to the handlers defined in callbacks. Parameters
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.redis.RedisVectorStoreRetriever.html
f53660246713-2
and passed as arguments to the handlers defined in callbacks. Parameters metadata – Optional metadata associated with the retriever. Defaults to None This metadata will be associated with each call to this retriever, and passed as arguments to the handlers defined in callbacks. Returns List of relevant documents invoke(input: str, config: Optional[RunnableConfig] = None) → List[Document]¶ to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶ to_json_not_implemented() → SerializedNotImplemented¶ validator validate_search_type  »  all fields[source]¶ Validate search type. allowed_search_types: ClassVar[Collection[str]] = ('similarity', 'similarity_score_threshold', 'mmr')¶ property lc_attributes: Dict¶ Return a list of attribute names that should be included in the serialized kwargs. These attributes must be accepted by the constructor. property lc_namespace: List[str]¶ Return the namespace of the langchain object. eg. [“langchain”, “llms”, “openai”] property lc_secrets: Dict[str, str]¶ Return a map of constructor argument names to secret ids. eg. {“openai_api_key”: “OPENAI_API_KEY”} property lc_serializable: bool¶ Return whether or not the class is serializable. model Config[source]¶ Bases: object Configuration for this pydantic object. arbitrary_types_allowed = True¶
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.redis.RedisVectorStoreRetriever.html
4b9c575b4f80-0
langchain.vectorstores.pgvector.PGVector¶ class langchain.vectorstores.pgvector.PGVector(connection_string: str, embedding_function: Embeddings, collection_name: str = 'langchain', collection_metadata: Optional[dict] = None, distance_strategy: DistanceStrategy = DistanceStrategy.COSINE, pre_delete_collection: bool = False, logger: Optional[Logger] = None, relevance_score_fn: Optional[Callable[[float], float]] = None)[source]¶ Bases: VectorStore VectorStore implementation using Postgres and pgvector. To use, you should have the pgvector python package installed. Parameters connection_string – Postgres connection string. embedding_function – Any embedding function implementing langchain.embeddings.base.Embeddings interface. collection_name – The name of the collection to use. (default: langchain) NOTE: This is not the name of the table, but the name of the collection. The tables will be created when initializing the store (if not exists) So, make sure the user has the right permissions to create tables. distance_strategy – The distance strategy to use. (default: COSINE) pre_delete_collection – If True, will delete the collection if it exists. (default: False). Useful for testing. Example from langchain.vectorstores import PGVector from langchain.embeddings.openai import OpenAIEmbeddings CONNECTION_STRING = "postgresql+psycopg2://hwc@localhost:5432/test3" COLLECTION_NAME = "state_of_the_union_test" embeddings = OpenAIEmbeddings() vectorestore = PGVector.from_documents( embedding=embeddings, documents=docs, collection_name=COLLECTION_NAME, connection_string=CONNECTION_STRING, ) Methods __init__(connection_string, embedding_function) aadd_documents(documents, **kwargs)
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.pgvector.PGVector.html
4b9c575b4f80-1
aadd_documents(documents, **kwargs) Run more documents through the embeddings and add to the vectorstore. aadd_texts(texts[, metadatas]) Run more texts through the embeddings and add to the vectorstore. add_documents(documents, **kwargs) Run more documents through the embeddings and add to the vectorstore. add_embeddings(texts, embeddings[, ...]) Add embeddings to the vectorstore. add_texts(texts[, metadatas, ids]) Run more texts through the embeddings and add to the vectorstore. afrom_documents(documents, embedding, **kwargs) Return VectorStore initialized from documents and embeddings. afrom_texts(texts, embedding[, metadatas]) Return VectorStore initialized from texts and embeddings. amax_marginal_relevance_search(query[, k, ...]) Return docs selected using the maximal marginal relevance. amax_marginal_relevance_search_by_vector(...) Return docs selected using the maximal marginal relevance. as_retriever(**kwargs) asearch(query, search_type, **kwargs) Return docs most similar to query using specified search type. asimilarity_search(query[, k]) Return docs most similar to query. asimilarity_search_by_vector(embedding[, k]) Return docs most similar to embedding vector. asimilarity_search_with_relevance_scores(query) Return docs most similar to query. connect() connection_string_from_db_params(driver, ...) Return connection string from database parameters. create_collection() create_tables_if_not_exists() create_vector_extension() delete([ids]) Delete by vector ID or other criteria. delete_collection() drop_tables() from_documents(documents, embedding[, ...]) Return VectorStore initialized from documents and embeddings.
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.pgvector.PGVector.html
4b9c575b4f80-2
Return VectorStore initialized from documents and embeddings. from_embeddings(text_embeddings, embedding) Construct PGVector wrapper from raw documents and pre- generated embeddings. from_existing_index(embedding[, ...]) Get intsance of an existing PGVector store.This method will return the instance of the store without inserting any new embeddings from_texts(texts, embedding[, metadatas, ...]) Return VectorStore initialized from texts and embeddings. get_collection(session) get_connection_string(kwargs) max_marginal_relevance_search(query[, k, ...]) Return docs selected using the maximal marginal relevance. max_marginal_relevance_search_by_vector(...) Return docs selected using the maximal marginal relevance. search(query, search_type, **kwargs) Return docs most similar to query using specified search type. similarity_search(query[, k, filter]) Run similarity search with PGVector with distance. similarity_search_by_vector(embedding[, k, ...]) Return docs most similar to embedding vector. similarity_search_with_relevance_scores(query) Return docs and relevance scores in the range [0, 1]. similarity_search_with_score(query[, k, filter]) Return docs most similar to query. similarity_search_with_score_by_vector(embedding) Attributes distance_strategy embeddings Access the query embedding object if available. async aadd_documents(documents: List[Document], **kwargs: Any) → List[str]¶ Run more documents through the embeddings and add to the vectorstore. Parameters (List[Document] (documents) – Documents to add to the vectorstore. Returns List of IDs of the added texts. Return type List[str]
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.pgvector.PGVector.html
4b9c575b4f80-3
Returns List of IDs of the added texts. Return type List[str] async aadd_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, **kwargs: Any) → List[str]¶ Run more texts through the embeddings and add to the vectorstore. add_documents(documents: List[Document], **kwargs: Any) → List[str]¶ Run more documents through the embeddings and add to the vectorstore. Parameters (List[Document] (documents) – Documents to add to the vectorstore. Returns List of IDs of the added texts. Return type List[str] add_embeddings(texts: Iterable[str], embeddings: List[List[float]], metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, **kwargs: Any) → List[str][source]¶ Add embeddings to the vectorstore. Parameters texts – Iterable of strings to add to the vectorstore. embeddings – List of list of embedding vectors. metadatas – List of metadatas associated with the texts. kwargs – vectorstore specific parameters add_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, **kwargs: Any) → List[str][source]¶ Run more texts through the embeddings and add to the vectorstore. Parameters texts – Iterable of strings to add to the vectorstore. metadatas – Optional list of metadatas associated with the texts. kwargs – vectorstore specific parameters Returns List of ids from adding the texts into the vectorstore. async classmethod afrom_documents(documents: List[Document], embedding: Embeddings, **kwargs: Any) → VST¶ Return VectorStore initialized from documents and embeddings.
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.pgvector.PGVector.html
4b9c575b4f80-4
Return VectorStore initialized from documents and embeddings. async classmethod afrom_texts(texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, **kwargs: Any) → VST¶ Return VectorStore initialized from texts and embeddings. async amax_marginal_relevance_search(query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[Document]¶ Return docs selected using the maximal marginal relevance. async amax_marginal_relevance_search_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[Document]¶ Return docs selected using the maximal marginal relevance. as_retriever(**kwargs: Any) → VectorStoreRetriever¶ async asearch(query: str, search_type: str, **kwargs: Any) → List[Document]¶ Return docs most similar to query using specified search type. async asimilarity_search(query: str, k: int = 4, **kwargs: Any) → List[Document]¶ Return docs most similar to query. async asimilarity_search_by_vector(embedding: List[float], k: int = 4, **kwargs: Any) → List[Document]¶ Return docs most similar to embedding vector. async asimilarity_search_with_relevance_scores(query: str, k: int = 4, **kwargs: Any) → List[Tuple[Document, float]]¶ Return docs most similar to query. connect() → Connection[source]¶
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.pgvector.PGVector.html
4b9c575b4f80-5
Return docs most similar to query. connect() → Connection[source]¶ classmethod connection_string_from_db_params(driver: str, host: str, port: int, database: str, user: str, password: str) → str[source]¶ Return connection string from database parameters. create_collection() → None[source]¶ create_tables_if_not_exists() → None[source]¶ create_vector_extension() → None[source]¶ delete(ids: Optional[List[str]] = None, **kwargs: Any) → Optional[bool]¶ Delete by vector ID or other criteria. Parameters ids – List of ids to delete. **kwargs – Other keyword arguments that subclasses might use. Returns True if deletion is successful, False otherwise, None if not implemented. Return type Optional[bool] delete_collection() → None[source]¶ drop_tables() → None[source]¶ classmethod from_documents(documents: List[Document], embedding: Embeddings, collection_name: str = 'langchain', distance_strategy: DistanceStrategy = DistanceStrategy.COSINE, ids: Optional[List[str]] = None, pre_delete_collection: bool = False, **kwargs: Any) → PGVector[source]¶ Return VectorStore initialized from documents and embeddings. Postgres connection string is required “Either pass it as a parameter or set the PGVECTOR_CONNECTION_STRING environment variable. classmethod from_embeddings(text_embeddings: List[Tuple[str, List[float]]], embedding: Embeddings, metadatas: Optional[List[dict]] = None, collection_name: str = 'langchain', distance_strategy: DistanceStrategy = DistanceStrategy.COSINE, ids: Optional[List[str]] = None, pre_delete_collection: bool = False, **kwargs: Any) → PGVector[source]¶ Construct PGVector wrapper from raw documents and pre- generated embeddings. Return VectorStore initialized from documents and embeddings.
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.pgvector.PGVector.html
4b9c575b4f80-6
generated embeddings. Return VectorStore initialized from documents and embeddings. Postgres connection string is required “Either pass it as a parameter or set the PGVECTOR_CONNECTION_STRING environment variable. Example from langchain import PGVector from langchain.embeddings import OpenAIEmbeddings embeddings = OpenAIEmbeddings() text_embeddings = embeddings.embed_documents(texts) text_embedding_pairs = list(zip(texts, text_embeddings)) faiss = PGVector.from_embeddings(text_embedding_pairs, embeddings) classmethod from_existing_index(embedding: Embeddings, collection_name: str = 'langchain', distance_strategy: DistanceStrategy = DistanceStrategy.COSINE, pre_delete_collection: bool = False, **kwargs: Any) → PGVector[source]¶ Get intsance of an existing PGVector store.This method will return the instance of the store without inserting any new embeddings classmethod from_texts(texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, collection_name: str = 'langchain', distance_strategy: DistanceStrategy = DistanceStrategy.COSINE, ids: Optional[List[str]] = None, pre_delete_collection: bool = False, **kwargs: Any) → PGVector[source]¶ Return VectorStore initialized from texts and embeddings. Postgres connection string is required “Either pass it as a parameter or set the PGVECTOR_CONNECTION_STRING environment variable. get_collection(session: Session) → Optional['CollectionStore'][source]¶ classmethod get_connection_string(kwargs: Dict[str, Any]) → str[source]¶ max_marginal_relevance_search(query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[Document]¶ Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.pgvector.PGVector.html
4b9c575b4f80-7
Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Parameters query – Text to look up documents similar to. k – Number of Documents to return. Defaults to 4. fetch_k – Number of Documents to fetch to pass to MMR algorithm. lambda_mult – Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5. Returns List of Documents selected by maximal marginal relevance. max_marginal_relevance_search_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[Document]¶ Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Parameters embedding – Embedding to look up documents similar to. k – Number of Documents to return. Defaults to 4. fetch_k – Number of Documents to fetch to pass to MMR algorithm. lambda_mult – Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5. Returns List of Documents selected by maximal marginal relevance. search(query: str, search_type: str, **kwargs: Any) → List[Document]¶ Return docs most similar to query using specified search type. similarity_search(query: str, k: int = 4, filter: Optional[dict] = None, **kwargs: Any) → List[Document][source]¶ Run similarity search with PGVector with distance. Parameters query (str) – Query text to search for.
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.pgvector.PGVector.html
4b9c575b4f80-8
Parameters query (str) – Query text to search for. k (int) – Number of results to return. Defaults to 4. filter (Optional[Dict[str, str]]) – Filter by metadata. Defaults to None. Returns List of Documents most similar to the query. similarity_search_by_vector(embedding: List[float], k: int = 4, filter: Optional[dict] = None, **kwargs: Any) → List[Document][source]¶ Return docs most similar to embedding vector. Parameters embedding – Embedding to look up documents similar to. k – Number of Documents to return. Defaults to 4. filter (Optional[Dict[str, str]]) – Filter by metadata. Defaults to None. Returns List of Documents most similar to the query vector. similarity_search_with_relevance_scores(query: str, k: int = 4, **kwargs: Any) → List[Tuple[Document, float]]¶ Return docs and relevance scores in the range [0, 1]. 0 is dissimilar, 1 is most similar. Parameters query – input text k – Number of Documents to return. Defaults to 4. **kwargs – kwargs to be passed to similarity search. Should include: score_threshold: Optional, a floating point value between 0 to 1 to filter the resulting set of retrieved docs Returns List of Tuples of (doc, similarity_score) similarity_search_with_score(query: str, k: int = 4, filter: Optional[dict] = None) → List[Tuple[Document, float]][source]¶ Return docs most similar to query. Parameters query – Text to look up documents similar to. k – Number of Documents to return. Defaults to 4. filter (Optional[Dict[str, str]]) – Filter by metadata. Defaults to None.
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.pgvector.PGVector.html
4b9c575b4f80-9
filter (Optional[Dict[str, str]]) – Filter by metadata. Defaults to None. Returns List of Documents most similar to the query and score for each similarity_search_with_score_by_vector(embedding: List[float], k: int = 4, filter: Optional[dict] = None) → List[Tuple[Document, float]][source]¶ property distance_strategy: Any¶ property embeddings: langchain.embeddings.base.Embeddings¶ Access the query embedding object if available. Examples using PGVector¶ PGVector
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.pgvector.PGVector.html
8a4e1ae8dc3d-0
langchain.vectorstores.vectara.VectaraRetriever¶ class langchain.vectorstores.vectara.VectaraRetriever(*, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, vectorstore: Vectara, search_type: str = 'similarity', search_kwargs: dict = None)[source]¶ Bases: VectorStoreRetriever Retriever class for Vectara. Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param metadata: Optional[Dict[str, Any]] = None¶ Optional metadata associated with the retriever. Defaults to None This metadata will be associated with each call to this retriever, and passed as arguments to the handlers defined in callbacks. You can use these to eg identify a specific instance of a retriever with its use case. param search_kwargs: dict [Optional]¶ Search params. k: Number of Documents to return. Defaults to 5. lambda_val: lexical match parameter for hybrid search. filter: Dictionary of argument(s) to filter on metadata. For example a filter can be “doc.rating > 3.0 and part.lang = ‘deu’”} see https://docs.vectara.com/docs/search-apis/sql/filter-overview for more details. n_sentence_context: number of sentences before/after the matching segment to add param search_type: str = 'similarity'¶ Type of search to perform. Defaults to “similarity”. param tags: Optional[List[str]] = None¶ Optional list of tags associated with the retriever. Defaults to None These tags will be associated with each call to this retriever, and passed as arguments to the handlers defined in callbacks.
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.vectara.VectaraRetriever.html
8a4e1ae8dc3d-1
and passed as arguments to the handlers defined in callbacks. You can use these to eg identify a specific instance of a retriever with its use case. param vectorstore: Vectara [Required]¶ Vectara vectorstore. async aadd_documents(documents: List[Document], **kwargs: Any) → List[str]¶ Add documents to vectorstore. add_documents(documents: List[Document], **kwargs: Any) → List[str]¶ Add documents to vectorstore. add_texts(texts: List[str], metadatas: Optional[List[dict]] = None, doc_metadata: Optional[dict] = {}) → None[source]¶ Add text to the Vectara vectorstore. Parameters texts (List[str]) – The text metadatas (List[dict]) – Metadata dicts, must line up with existing store async aget_relevant_documents(query: str, *, callbacks: Callbacks = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → List[Document]¶ Asynchronously get documents relevant to a query. :param query: string to find relevant documents for :param callbacks: Callback manager or list of callbacks :param tags: Optional list of tags associated with the retriever. Defaults to None These tags will be associated with each call to this retriever, and passed as arguments to the handlers defined in callbacks. Parameters metadata – Optional metadata associated with the retriever. Defaults to None This metadata will be associated with each call to this retriever, and passed as arguments to the handlers defined in callbacks. Returns List of relevant documents async ainvoke(input: str, config: Optional[RunnableConfig] = None) → List[Document]¶
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.vectara.VectaraRetriever.html
8a4e1ae8dc3d-2
get_relevant_documents(query: str, *, callbacks: Callbacks = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → List[Document]¶ Retrieve documents relevant to a query. :param query: string to find relevant documents for :param callbacks: Callback manager or list of callbacks :param tags: Optional list of tags associated with the retriever. Defaults to None These tags will be associated with each call to this retriever, and passed as arguments to the handlers defined in callbacks. Parameters metadata – Optional metadata associated with the retriever. Defaults to None This metadata will be associated with each call to this retriever, and passed as arguments to the handlers defined in callbacks. Returns List of relevant documents invoke(input: str, config: Optional[RunnableConfig] = None) → List[Document]¶ to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶ to_json_not_implemented() → SerializedNotImplemented¶ validator validate_search_type  »  all fields¶ Validate search type. allowed_search_types: ClassVar[Collection[str]] = ('similarity', 'similarity_score_threshold', 'mmr')¶ property lc_attributes: Dict¶ Return a list of attribute names that should be included in the serialized kwargs. These attributes must be accepted by the constructor. property lc_namespace: List[str]¶ Return the namespace of the langchain object. eg. [“langchain”, “llms”, “openai”] property lc_secrets: Dict[str, str]¶ Return a map of constructor argument names to secret ids. eg. {“openai_api_key”: “OPENAI_API_KEY”} property lc_serializable: bool¶ Return whether or not the class is serializable. model Config¶ Bases: object
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.vectara.VectaraRetriever.html
8a4e1ae8dc3d-3
Return whether or not the class is serializable. model Config¶ Bases: object Configuration for this pydantic object. arbitrary_types_allowed = True¶ Examples using VectaraRetriever¶ Chat Over Documents with Vectara
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.vectara.VectaraRetriever.html
a3e4d4f461d9-0
langchain.vectorstores.lancedb.LanceDB¶ class langchain.vectorstores.lancedb.LanceDB(connection: Any, embedding: Embeddings, vector_key: Optional[str] = 'vector', id_key: Optional[str] = 'id', text_key: Optional[str] = 'text')[source]¶ Bases: VectorStore Wrapper around LanceDB vector database. To use, you should have lancedb python package installed. Example db = lancedb.connect('./lancedb') table = db.open_table('my_table') vectorstore = LanceDB(table, embedding_function) vectorstore.add_texts(['text1', 'text2']) result = vectorstore.similarity_search('text1') Initialize with Lance DB connection Methods __init__(connection, embedding[, ...]) Initialize with Lance DB connection aadd_documents(documents, **kwargs) Run more documents through the embeddings and add to the vectorstore. aadd_texts(texts[, metadatas]) Run more texts through the embeddings and add to the vectorstore. add_documents(documents, **kwargs) Run more documents through the embeddings and add to the vectorstore. add_texts(texts[, metadatas, ids]) Turn texts into embedding and add it to the database afrom_documents(documents, embedding, **kwargs) Return VectorStore initialized from documents and embeddings. afrom_texts(texts, embedding[, metadatas]) Return VectorStore initialized from texts and embeddings. amax_marginal_relevance_search(query[, k, ...]) Return docs selected using the maximal marginal relevance. amax_marginal_relevance_search_by_vector(...) Return docs selected using the maximal marginal relevance. as_retriever(**kwargs) asearch(query, search_type, **kwargs)
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.lancedb.LanceDB.html
a3e4d4f461d9-1
asearch(query, search_type, **kwargs) Return docs most similar to query using specified search type. asimilarity_search(query[, k]) Return docs most similar to query. asimilarity_search_by_vector(embedding[, k]) Return docs most similar to embedding vector. asimilarity_search_with_relevance_scores(query) Return docs most similar to query. delete([ids]) Delete by vector ID or other criteria. from_documents(documents, embedding, **kwargs) Return VectorStore initialized from documents and embeddings. from_texts(texts, embedding[, metadatas, ...]) Return VectorStore initialized from texts and embeddings. max_marginal_relevance_search(query[, k, ...]) Return docs selected using the maximal marginal relevance. max_marginal_relevance_search_by_vector(...) Return docs selected using the maximal marginal relevance. search(query, search_type, **kwargs) Return docs most similar to query using specified search type. similarity_search(query[, k]) Return documents most similar to the query similarity_search_by_vector(embedding[, k]) Return docs most similar to embedding vector. similarity_search_with_relevance_scores(query) Return docs and relevance scores in the range [0, 1]. similarity_search_with_score(*args, **kwargs) Run similarity search with distance. Attributes embeddings Access the query embedding object if available. async aadd_documents(documents: List[Document], **kwargs: Any) → List[str]¶ Run more documents through the embeddings and add to the vectorstore. Parameters (List[Document] (documents) – Documents to add to the vectorstore. Returns List of IDs of the added texts. Return type List[str]
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.lancedb.LanceDB.html
a3e4d4f461d9-2
Returns List of IDs of the added texts. Return type List[str] async aadd_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, **kwargs: Any) → List[str]¶ Run more texts through the embeddings and add to the vectorstore. add_documents(documents: List[Document], **kwargs: Any) → List[str]¶ Run more documents through the embeddings and add to the vectorstore. Parameters (List[Document] (documents) – Documents to add to the vectorstore. Returns List of IDs of the added texts. Return type List[str] add_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, **kwargs: Any) → List[str][source]¶ Turn texts into embedding and add it to the database Parameters texts – Iterable of strings to add to the vectorstore. metadatas – Optional list of metadatas associated with the texts. ids – Optional list of ids to associate with the texts. Returns List of ids of the added texts. async classmethod afrom_documents(documents: List[Document], embedding: Embeddings, **kwargs: Any) → VST¶ Return VectorStore initialized from documents and embeddings. async classmethod afrom_texts(texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, **kwargs: Any) → VST¶ Return VectorStore initialized from texts and embeddings. async amax_marginal_relevance_search(query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[Document]¶ Return docs selected using the maximal marginal relevance.
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.lancedb.LanceDB.html
a3e4d4f461d9-3
Return docs selected using the maximal marginal relevance. async amax_marginal_relevance_search_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[Document]¶ Return docs selected using the maximal marginal relevance. as_retriever(**kwargs: Any) → VectorStoreRetriever¶ async asearch(query: str, search_type: str, **kwargs: Any) → List[Document]¶ Return docs most similar to query using specified search type. async asimilarity_search(query: str, k: int = 4, **kwargs: Any) → List[Document]¶ Return docs most similar to query. async asimilarity_search_by_vector(embedding: List[float], k: int = 4, **kwargs: Any) → List[Document]¶ Return docs most similar to embedding vector. async asimilarity_search_with_relevance_scores(query: str, k: int = 4, **kwargs: Any) → List[Tuple[Document, float]]¶ Return docs most similar to query. delete(ids: Optional[List[str]] = None, **kwargs: Any) → Optional[bool]¶ Delete by vector ID or other criteria. Parameters ids – List of ids to delete. **kwargs – Other keyword arguments that subclasses might use. Returns True if deletion is successful, False otherwise, None if not implemented. Return type Optional[bool] classmethod from_documents(documents: List[Document], embedding: Embeddings, **kwargs: Any) → VST¶ Return VectorStore initialized from documents and embeddings.
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.lancedb.LanceDB.html
a3e4d4f461d9-4
Return VectorStore initialized from documents and embeddings. classmethod from_texts(texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, connection: Any = None, vector_key: Optional[str] = 'vector', id_key: Optional[str] = 'id', text_key: Optional[str] = 'text', **kwargs: Any) → LanceDB[source]¶ Return VectorStore initialized from texts and embeddings. max_marginal_relevance_search(query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[Document]¶ Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Parameters query – Text to look up documents similar to. k – Number of Documents to return. Defaults to 4. fetch_k – Number of Documents to fetch to pass to MMR algorithm. lambda_mult – Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5. Returns List of Documents selected by maximal marginal relevance. max_marginal_relevance_search_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[Document]¶ Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Parameters embedding – Embedding to look up documents similar to. k – Number of Documents to return. Defaults to 4. fetch_k – Number of Documents to fetch to pass to MMR algorithm.
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.lancedb.LanceDB.html
a3e4d4f461d9-5
fetch_k – Number of Documents to fetch to pass to MMR algorithm. lambda_mult – Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5. Returns List of Documents selected by maximal marginal relevance. search(query: str, search_type: str, **kwargs: Any) → List[Document]¶ Return docs most similar to query using specified search type. similarity_search(query: str, k: int = 4, **kwargs: Any) → List[Document][source]¶ Return documents most similar to the query Parameters query – String to query the vectorstore with. k – Number of documents to return. Returns List of documents most similar to the query. similarity_search_by_vector(embedding: List[float], k: int = 4, **kwargs: Any) → List[Document]¶ Return docs most similar to embedding vector. Parameters embedding – Embedding to look up documents similar to. k – Number of Documents to return. Defaults to 4. Returns List of Documents most similar to the query vector. similarity_search_with_relevance_scores(query: str, k: int = 4, **kwargs: Any) → List[Tuple[Document, float]]¶ Return docs and relevance scores in the range [0, 1]. 0 is dissimilar, 1 is most similar. Parameters query – input text k – Number of Documents to return. Defaults to 4. **kwargs – kwargs to be passed to similarity search. Should include: score_threshold: Optional, a floating point value between 0 to 1 to filter the resulting set of retrieved docs Returns List of Tuples of (doc, similarity_score)
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.lancedb.LanceDB.html
a3e4d4f461d9-6
Returns List of Tuples of (doc, similarity_score) similarity_search_with_score(*args: Any, **kwargs: Any) → List[Tuple[Document, float]]¶ Run similarity search with distance. property embeddings: langchain.embeddings.base.Embeddings¶ Access the query embedding object if available. Examples using LanceDB¶ LanceDB
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.lancedb.LanceDB.html
a19eed571985-0
langchain.vectorstores.azuresearch.AzureSearchVectorStoreRetriever¶ class langchain.vectorstores.azuresearch.AzureSearchVectorStoreRetriever(*, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, vectorstore: AzureSearch, search_type: str = 'hybrid', k: int = 4)[source]¶ Bases: BaseRetriever Retriever that uses Azure Search to find similar documents. Create a new model by parsing and validating input data from keyword arguments. Raises ValidationError if the input data cannot be parsed to form a valid model. param k: int = 4¶ Number of documents to return. param metadata: Optional[Dict[str, Any]] = None¶ Optional metadata associated with the retriever. Defaults to None This metadata will be associated with each call to this retriever, and passed as arguments to the handlers defined in callbacks. You can use these to eg identify a specific instance of a retriever with its use case. param search_type: str = 'hybrid'¶ Type of search to perform. Options are “similarity”, “hybrid”, “semantic_hybrid”. param tags: Optional[List[str]] = None¶ Optional list of tags associated with the retriever. Defaults to None These tags will be associated with each call to this retriever, and passed as arguments to the handlers defined in callbacks. You can use these to eg identify a specific instance of a retriever with its use case. param vectorstore: langchain.vectorstores.azuresearch.AzureSearch [Required]¶ Azure Search instance used to find similar documents.
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.azuresearch.AzureSearchVectorStoreRetriever.html
a19eed571985-1
Azure Search instance used to find similar documents. async aget_relevant_documents(query: str, *, callbacks: Callbacks = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → List[Document]¶ Asynchronously get documents relevant to a query. :param query: string to find relevant documents for :param callbacks: Callback manager or list of callbacks :param tags: Optional list of tags associated with the retriever. Defaults to None These tags will be associated with each call to this retriever, and passed as arguments to the handlers defined in callbacks. Parameters metadata – Optional metadata associated with the retriever. Defaults to None This metadata will be associated with each call to this retriever, and passed as arguments to the handlers defined in callbacks. Returns List of relevant documents async ainvoke(input: str, config: Optional[RunnableConfig] = None) → List[Document]¶ get_relevant_documents(query: str, *, callbacks: Callbacks = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → List[Document]¶ Retrieve documents relevant to a query. :param query: string to find relevant documents for :param callbacks: Callback manager or list of callbacks :param tags: Optional list of tags associated with the retriever. Defaults to None These tags will be associated with each call to this retriever, and passed as arguments to the handlers defined in callbacks. Parameters metadata – Optional metadata associated with the retriever. Defaults to None This metadata will be associated with each call to this retriever, and passed as arguments to the handlers defined in callbacks. Returns List of relevant documents invoke(input: str, config: Optional[RunnableConfig] = None) → List[Document]¶
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.azuresearch.AzureSearchVectorStoreRetriever.html
a19eed571985-2
to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶ to_json_not_implemented() → SerializedNotImplemented¶ validator validate_search_type  »  all fields[source]¶ Validate search type. property lc_attributes: Dict¶ Return a list of attribute names that should be included in the serialized kwargs. These attributes must be accepted by the constructor. property lc_namespace: List[str]¶ Return the namespace of the langchain object. eg. [“langchain”, “llms”, “openai”] property lc_secrets: Dict[str, str]¶ Return a map of constructor argument names to secret ids. eg. {“openai_api_key”: “OPENAI_API_KEY”} property lc_serializable: bool¶ Return whether or not the class is serializable. model Config[source]¶ Bases: object Configuration for this pydantic object. arbitrary_types_allowed = True¶
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.azuresearch.AzureSearchVectorStoreRetriever.html
bf073274f27b-0
langchain.vectorstores.pgvector.DistanceStrategy¶ class langchain.vectorstores.pgvector.DistanceStrategy(value, names=None, *, module=None, qualname=None, type=None, start=1, boundary=None)[source]¶ Bases: str, Enum Enumerator of the Distance strategies. Methods __init__(*args, **kwds) capitalize() Return a capitalized version of the string. casefold() Return a version of the string suitable for caseless comparisons. center(width[, fillchar]) Return a centered string of length width. count(sub[, start[, end]]) Return the number of non-overlapping occurrences of substring sub in string S[start:end]. encode([encoding, errors]) Encode the string using the codec registered for encoding. endswith(suffix[, start[, end]]) Return True if S ends with the specified suffix, False otherwise. expandtabs([tabsize]) Return a copy where all tab characters are expanded using spaces. find(sub[, start[, end]]) Return the lowest index in S where substring sub is found, such that sub is contained within S[start:end]. format(*args, **kwargs) Return a formatted version of S, using substitutions from args and kwargs. format_map(mapping) Return a formatted version of S, using substitutions from mapping. index(sub[, start[, end]]) Return the lowest index in S where substring sub is found, such that sub is contained within S[start:end]. isalnum() Return True if the string is an alpha-numeric string, False otherwise. isalpha() Return True if the string is an alphabetic string, False otherwise. isascii() Return True if all characters in the string are ASCII, False otherwise. isdecimal() Return True if the string is a decimal string, False otherwise. isdigit()
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.pgvector.DistanceStrategy.html
bf073274f27b-1
Return True if the string is a decimal string, False otherwise. isdigit() Return True if the string is a digit string, False otherwise. isidentifier() Return True if the string is a valid Python identifier, False otherwise. islower() Return True if the string is a lowercase string, False otherwise. isnumeric() Return True if the string is a numeric string, False otherwise. isprintable() Return True if the string is printable, False otherwise. isspace() Return True if the string is a whitespace string, False otherwise. istitle() Return True if the string is a title-cased string, False otherwise. isupper() Return True if the string is an uppercase string, False otherwise. join(iterable, /) Concatenate any number of strings. ljust(width[, fillchar]) Return a left-justified string of length width. lower() Return a copy of the string converted to lowercase. lstrip([chars]) Return a copy of the string with leading whitespace removed. maketrans Return a translation table usable for str.translate(). partition(sep, /) Partition the string into three parts using the given separator. removeprefix(prefix, /) Return a str with the given prefix string removed if present. removesuffix(suffix, /) Return a str with the given suffix string removed if present. replace(old, new[, count]) Return a copy with all occurrences of substring old replaced by new. rfind(sub[, start[, end]]) Return the highest index in S where substring sub is found, such that sub is contained within S[start:end]. rindex(sub[, start[, end]]) Return the highest index in S where substring sub is found, such that sub is contained within S[start:end].
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.pgvector.DistanceStrategy.html
bf073274f27b-2
rjust(width[, fillchar]) Return a right-justified string of length width. rpartition(sep, /) Partition the string into three parts using the given separator. rsplit([sep, maxsplit]) Return a list of the substrings in the string, using sep as the separator string. rstrip([chars]) Return a copy of the string with trailing whitespace removed. split([sep, maxsplit]) Return a list of the substrings in the string, using sep as the separator string. splitlines([keepends]) Return a list of the lines in the string, breaking at line boundaries. startswith(prefix[, start[, end]]) Return True if S starts with the specified prefix, False otherwise. strip([chars]) Return a copy of the string with leading and trailing whitespace removed. swapcase() Convert uppercase characters to lowercase and lowercase characters to uppercase. title() Return a version of the string where each word is titlecased. translate(table, /) Replace each character in the string using the given translation table. upper() Return a copy of the string converted to uppercase. zfill(width, /) Pad a numeric string with zeros on the left, to fill a field of the given width. Attributes EUCLIDEAN COSINE MAX_INNER_PRODUCT capitalize()¶ Return a capitalized version of the string. More specifically, make the first character have upper case and the rest lower case. casefold()¶ Return a version of the string suitable for caseless comparisons. center(width, fillchar=' ', /)¶ Return a centered string of length width. Padding is done using the specified fill character (default is a space). count(sub[, start[, end]]) → int¶ Return the number of non-overlapping occurrences of substring sub in
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.pgvector.DistanceStrategy.html
bf073274f27b-3
Return the number of non-overlapping occurrences of substring sub in string S[start:end]. Optional arguments start and end are interpreted as in slice notation. encode(encoding='utf-8', errors='strict')¶ Encode the string using the codec registered for encoding. encodingThe encoding in which to encode the string. errorsThe error handling scheme to use for encoding errors. The default is ‘strict’ meaning that encoding errors raise a UnicodeEncodeError. Other possible values are ‘ignore’, ‘replace’ and ‘xmlcharrefreplace’ as well as any other name registered with codecs.register_error that can handle UnicodeEncodeErrors. endswith(suffix[, start[, end]]) → bool¶ Return True if S ends with the specified suffix, False otherwise. With optional start, test S beginning at that position. With optional end, stop comparing S at that position. suffix can also be a tuple of strings to try. expandtabs(tabsize=8)¶ Return a copy where all tab characters are expanded using spaces. If tabsize is not given, a tab size of 8 characters is assumed. find(sub[, start[, end]]) → int¶ Return the lowest index in S where substring sub is found, such that sub is contained within S[start:end]. Optional arguments start and end are interpreted as in slice notation. Return -1 on failure. format(*args, **kwargs) → str¶ Return a formatted version of S, using substitutions from args and kwargs. The substitutions are identified by braces (‘{’ and ‘}’). format_map(mapping) → str¶ Return a formatted version of S, using substitutions from mapping. The substitutions are identified by braces (‘{’ and ‘}’). index(sub[, start[, end]]) → int¶ Return the lowest index in S where substring sub is found,
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.pgvector.DistanceStrategy.html
bf073274f27b-4
Return the lowest index in S where substring sub is found, such that sub is contained within S[start:end]. Optional arguments start and end are interpreted as in slice notation. Raises ValueError when the substring is not found. isalnum()¶ Return True if the string is an alpha-numeric string, False otherwise. A string is alpha-numeric if all characters in the string are alpha-numeric and there is at least one character in the string. isalpha()¶ Return True if the string is an alphabetic string, False otherwise. A string is alphabetic if all characters in the string are alphabetic and there is at least one character in the string. isascii()¶ Return True if all characters in the string are ASCII, False otherwise. ASCII characters have code points in the range U+0000-U+007F. Empty string is ASCII too. isdecimal()¶ Return True if the string is a decimal string, False otherwise. A string is a decimal string if all characters in the string are decimal and there is at least one character in the string. isdigit()¶ Return True if the string is a digit string, False otherwise. A string is a digit string if all characters in the string are digits and there is at least one character in the string. isidentifier()¶ Return True if the string is a valid Python identifier, False otherwise. Call keyword.iskeyword(s) to test whether string s is a reserved identifier, such as “def” or “class”. islower()¶ Return True if the string is a lowercase string, False otherwise. A string is lowercase if all cased characters in the string are lowercase and there is at least one cased character in the string. isnumeric()¶ Return True if the string is a numeric string, False otherwise.
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.pgvector.DistanceStrategy.html
bf073274f27b-5
isnumeric()¶ Return True if the string is a numeric string, False otherwise. A string is numeric if all characters in the string are numeric and there is at least one character in the string. isprintable()¶ Return True if the string is printable, False otherwise. A string is printable if all of its characters are considered printable in repr() or if it is empty. isspace()¶ Return True if the string is a whitespace string, False otherwise. A string is whitespace if all characters in the string are whitespace and there is at least one character in the string. istitle()¶ Return True if the string is a title-cased string, False otherwise. In a title-cased string, upper- and title-case characters may only follow uncased characters and lowercase characters only cased ones. isupper()¶ Return True if the string is an uppercase string, False otherwise. A string is uppercase if all cased characters in the string are uppercase and there is at least one cased character in the string. join(iterable, /)¶ Concatenate any number of strings. The string whose method is called is inserted in between each given string. The result is returned as a new string. Example: ‘.’.join([‘ab’, ‘pq’, ‘rs’]) -> ‘ab.pq.rs’ ljust(width, fillchar=' ', /)¶ Return a left-justified string of length width. Padding is done using the specified fill character (default is a space). lower()¶ Return a copy of the string converted to lowercase. lstrip(chars=None, /)¶ Return a copy of the string with leading whitespace removed. If chars is given and not None, remove characters in chars instead. static maketrans()¶ Return a translation table usable for str.translate().
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.pgvector.DistanceStrategy.html
bf073274f27b-6
static maketrans()¶ Return a translation table usable for str.translate(). If there is only one argument, it must be a dictionary mapping Unicode ordinals (integers) or characters to Unicode ordinals, strings or None. Character keys will be then converted to ordinals. If there are two arguments, they must be strings of equal length, and in the resulting dictionary, each character in x will be mapped to the character at the same position in y. If there is a third argument, it must be a string, whose characters will be mapped to None in the result. partition(sep, /)¶ Partition the string into three parts using the given separator. This will search for the separator in the string. If the separator is found, returns a 3-tuple containing the part before the separator, the separator itself, and the part after it. If the separator is not found, returns a 3-tuple containing the original string and two empty strings. removeprefix(prefix, /)¶ Return a str with the given prefix string removed if present. If the string starts with the prefix string, return string[len(prefix):]. Otherwise, return a copy of the original string. removesuffix(suffix, /)¶ Return a str with the given suffix string removed if present. If the string ends with the suffix string and that suffix is not empty, return string[:-len(suffix)]. Otherwise, return a copy of the original string. replace(old, new, count=- 1, /)¶ Return a copy with all occurrences of substring old replaced by new. countMaximum number of occurrences to replace. -1 (the default value) means replace all occurrences. If the optional argument count is given, only the first count occurrences are replaced. rfind(sub[, start[, end]]) → int¶
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.pgvector.DistanceStrategy.html
bf073274f27b-7
replaced. rfind(sub[, start[, end]]) → int¶ Return the highest index in S where substring sub is found, such that sub is contained within S[start:end]. Optional arguments start and end are interpreted as in slice notation. Return -1 on failure. rindex(sub[, start[, end]]) → int¶ Return the highest index in S where substring sub is found, such that sub is contained within S[start:end]. Optional arguments start and end are interpreted as in slice notation. Raises ValueError when the substring is not found. rjust(width, fillchar=' ', /)¶ Return a right-justified string of length width. Padding is done using the specified fill character (default is a space). rpartition(sep, /)¶ Partition the string into three parts using the given separator. This will search for the separator in the string, starting at the end. If the separator is found, returns a 3-tuple containing the part before the separator, the separator itself, and the part after it. If the separator is not found, returns a 3-tuple containing two empty strings and the original string. rsplit(sep=None, maxsplit=- 1)¶ Return a list of the substrings in the string, using sep as the separator string. sepThe separator used to split the string. When set to None (the default value), will split on any whitespace character (including \n \r \t \f and spaces) and will discard empty strings from the result. maxsplitMaximum number of splits (starting from the left). -1 (the default value) means no limit. Splitting starts at the end of the string and works to the front. rstrip(chars=None, /)¶ Return a copy of the string with trailing whitespace removed.
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.pgvector.DistanceStrategy.html
bf073274f27b-8
rstrip(chars=None, /)¶ Return a copy of the string with trailing whitespace removed. If chars is given and not None, remove characters in chars instead. split(sep=None, maxsplit=- 1)¶ Return a list of the substrings in the string, using sep as the separator string. sepThe separator used to split the string. When set to None (the default value), will split on any whitespace character (including \n \r \t \f and spaces) and will discard empty strings from the result. maxsplitMaximum number of splits (starting from the left). -1 (the default value) means no limit. Note, str.split() is mainly useful for data that has been intentionally delimited. With natural text that includes punctuation, consider using the regular expression module. splitlines(keepends=False)¶ Return a list of the lines in the string, breaking at line boundaries. Line breaks are not included in the resulting list unless keepends is given and true. startswith(prefix[, start[, end]]) → bool¶ Return True if S starts with the specified prefix, False otherwise. With optional start, test S beginning at that position. With optional end, stop comparing S at that position. prefix can also be a tuple of strings to try. strip(chars=None, /)¶ Return a copy of the string with leading and trailing whitespace removed. If chars is given and not None, remove characters in chars instead. swapcase()¶ Convert uppercase characters to lowercase and lowercase characters to uppercase. title()¶ Return a version of the string where each word is titlecased. More specifically, words start with uppercased characters and all remaining cased characters have lower case. translate(table, /)¶ Replace each character in the string using the given translation table.
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.pgvector.DistanceStrategy.html
bf073274f27b-9
translate(table, /)¶ Replace each character in the string using the given translation table. tableTranslation table, which must be a mapping of Unicode ordinals to Unicode ordinals, strings, or None. The table must implement lookup/indexing via __getitem__, for instance a dictionary or list. If this operation raises LookupError, the character is left untouched. Characters mapped to None are deleted. upper()¶ Return a copy of the string converted to uppercase. zfill(width, /)¶ Pad a numeric string with zeros on the left, to fill a field of the given width. The string is never truncated. COSINE = 'cosine'¶ EUCLIDEAN = 'l2'¶ MAX_INNER_PRODUCT = 'inner'¶
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.pgvector.DistanceStrategy.html
a21896fd57af-0
langchain.vectorstores.analyticdb.AnalyticDB¶ class langchain.vectorstores.analyticdb.AnalyticDB(connection_string: str, embedding_function: Embeddings, embedding_dimension: int = 1536, collection_name: str = 'langchain_document', pre_delete_collection: bool = False, logger: Optional[Logger] = None, engine_args: Optional[dict] = None)[source]¶ Bases: VectorStore VectorStore implementation using AnalyticDB. AnalyticDB is a distributed full postgresql syntax cloud-native database. - connection_string is a postgres connection string. - embedding_function any embedding function implementing langchain.embeddings.base.Embeddings interface. collection_name is the name of the collection to use. (default: langchain) NOTE: This is not the name of the table, but the name of the collection.The tables will be created when initializing the store (if not exists) So, make sure the user has the right permissions to create tables. pre_delete_collection if True, will delete the collection if it exists.(default: False) - Useful for testing. Methods __init__(connection_string, embedding_function) aadd_documents(documents, **kwargs) Run more documents through the embeddings and add to the vectorstore. aadd_texts(texts[, metadatas]) Run more texts through the embeddings and add to the vectorstore. add_documents(documents, **kwargs) Run more documents through the embeddings and add to the vectorstore. add_texts(texts[, metadatas, ids, batch_size]) Run more texts through the embeddings and add to the vectorstore. afrom_documents(documents, embedding, **kwargs) Return VectorStore initialized from documents and embeddings. afrom_texts(texts, embedding[, metadatas])
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.analyticdb.AnalyticDB.html
a21896fd57af-1
afrom_texts(texts, embedding[, metadatas]) Return VectorStore initialized from texts and embeddings. amax_marginal_relevance_search(query[, k, ...]) Return docs selected using the maximal marginal relevance. amax_marginal_relevance_search_by_vector(...) Return docs selected using the maximal marginal relevance. as_retriever(**kwargs) asearch(query, search_type, **kwargs) Return docs most similar to query using specified search type. asimilarity_search(query[, k]) Return docs most similar to query. asimilarity_search_by_vector(embedding[, k]) Return docs most similar to embedding vector. asimilarity_search_with_relevance_scores(query) Return docs most similar to query. connection_string_from_db_params(driver, ...) Return connection string from database parameters. create_collection() create_table_if_not_exists() delete([ids]) Delete by vector IDs. delete_collection() from_documents(documents, embedding[, ...]) Return VectorStore initialized from documents and embeddings. from_texts(texts, embedding[, metadatas, ...]) Return VectorStore initialized from texts and embeddings. get_connection_string(kwargs) max_marginal_relevance_search(query[, k, ...]) Return docs selected using the maximal marginal relevance. max_marginal_relevance_search_by_vector(...) Return docs selected using the maximal marginal relevance. search(query, search_type, **kwargs) Return docs most similar to query using specified search type. similarity_search(query[, k, filter]) Run similarity search with AnalyticDB with distance. similarity_search_by_vector(embedding[, k, ...]) Return docs most similar to embedding vector. similarity_search_with_relevance_scores(query)
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.analyticdb.AnalyticDB.html
a21896fd57af-2
Return docs most similar to embedding vector. similarity_search_with_relevance_scores(query) Return docs and relevance scores in the range [0, 1]. similarity_search_with_score(query[, k, filter]) Return docs most similar to query. similarity_search_with_score_by_vector(embedding) Attributes embeddings Access the query embedding object if available. async aadd_documents(documents: List[Document], **kwargs: Any) → List[str]¶ Run more documents through the embeddings and add to the vectorstore. Parameters (List[Document] (documents) – Documents to add to the vectorstore. Returns List of IDs of the added texts. Return type List[str] async aadd_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, **kwargs: Any) → List[str]¶ Run more texts through the embeddings and add to the vectorstore. add_documents(documents: List[Document], **kwargs: Any) → List[str]¶ Run more documents through the embeddings and add to the vectorstore. Parameters (List[Document] (documents) – Documents to add to the vectorstore. Returns List of IDs of the added texts. Return type List[str] add_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, batch_size: int = 500, **kwargs: Any) → List[str][source]¶ Run more texts through the embeddings and add to the vectorstore. Parameters texts – Iterable of strings to add to the vectorstore. metadatas – Optional list of metadatas associated with the texts. kwargs – vectorstore specific parameters Returns List of ids from adding the texts into the vectorstore.
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.analyticdb.AnalyticDB.html
a21896fd57af-3
Returns List of ids from adding the texts into the vectorstore. async classmethod afrom_documents(documents: List[Document], embedding: Embeddings, **kwargs: Any) → VST¶ Return VectorStore initialized from documents and embeddings. async classmethod afrom_texts(texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, **kwargs: Any) → VST¶ Return VectorStore initialized from texts and embeddings. async amax_marginal_relevance_search(query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[Document]¶ Return docs selected using the maximal marginal relevance. async amax_marginal_relevance_search_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[Document]¶ Return docs selected using the maximal marginal relevance. as_retriever(**kwargs: Any) → VectorStoreRetriever¶ async asearch(query: str, search_type: str, **kwargs: Any) → List[Document]¶ Return docs most similar to query using specified search type. async asimilarity_search(query: str, k: int = 4, **kwargs: Any) → List[Document]¶ Return docs most similar to query. async asimilarity_search_by_vector(embedding: List[float], k: int = 4, **kwargs: Any) → List[Document]¶ Return docs most similar to embedding vector. async asimilarity_search_with_relevance_scores(query: str, k: int = 4, **kwargs: Any) → List[Tuple[Document, float]]¶ Return docs most similar to query.
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.analyticdb.AnalyticDB.html
a21896fd57af-4
Return docs most similar to query. classmethod connection_string_from_db_params(driver: str, host: str, port: int, database: str, user: str, password: str) → str[source]¶ Return connection string from database parameters. create_collection() → None[source]¶ create_table_if_not_exists() → None[source]¶ delete(ids: Optional[List[str]] = None, **kwargs: Any) → Optional[bool][source]¶ Delete by vector IDs. Parameters ids – List of ids to delete. delete_collection() → None[source]¶ classmethod from_documents(documents: List[Document], embedding: Embeddings, embedding_dimension: int = 1536, collection_name: str = 'langchain_document', ids: Optional[List[str]] = None, pre_delete_collection: bool = False, engine_args: Optional[dict] = None, **kwargs: Any) → AnalyticDB[source]¶ Return VectorStore initialized from documents and embeddings. Postgres Connection string is required Either pass it as a parameter or set the PG_CONNECTION_STRING environment variable. classmethod from_texts(texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, embedding_dimension: int = 1536, collection_name: str = 'langchain_document', ids: Optional[List[str]] = None, pre_delete_collection: bool = False, engine_args: Optional[dict] = None, **kwargs: Any) → AnalyticDB[source]¶ Return VectorStore initialized from texts and embeddings. Postgres Connection string is required Either pass it as a parameter or set the PG_CONNECTION_STRING environment variable. classmethod get_connection_string(kwargs: Dict[str, Any]) → str[source]¶
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.analyticdb.AnalyticDB.html
a21896fd57af-5
classmethod get_connection_string(kwargs: Dict[str, Any]) → str[source]¶ max_marginal_relevance_search(query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[Document]¶ Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Parameters query – Text to look up documents similar to. k – Number of Documents to return. Defaults to 4. fetch_k – Number of Documents to fetch to pass to MMR algorithm. lambda_mult – Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5. Returns List of Documents selected by maximal marginal relevance. max_marginal_relevance_search_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[Document]¶ Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Parameters embedding – Embedding to look up documents similar to. k – Number of Documents to return. Defaults to 4. fetch_k – Number of Documents to fetch to pass to MMR algorithm. lambda_mult – Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5. Returns List of Documents selected by maximal marginal relevance. search(query: str, search_type: str, **kwargs: Any) → List[Document]¶
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.analyticdb.AnalyticDB.html
a21896fd57af-6
Return docs most similar to query using specified search type. similarity_search(query: str, k: int = 4, filter: Optional[dict] = None, **kwargs: Any) → List[Document][source]¶ Run similarity search with AnalyticDB with distance. Parameters query (str) – Query text to search for. k (int) – Number of results to return. Defaults to 4. filter (Optional[Dict[str, str]]) – Filter by metadata. Defaults to None. Returns List of Documents most similar to the query. similarity_search_by_vector(embedding: List[float], k: int = 4, filter: Optional[dict] = None, **kwargs: Any) → List[Document][source]¶ Return docs most similar to embedding vector. Parameters embedding – Embedding to look up documents similar to. k – Number of Documents to return. Defaults to 4. filter (Optional[Dict[str, str]]) – Filter by metadata. Defaults to None. Returns List of Documents most similar to the query vector. similarity_search_with_relevance_scores(query: str, k: int = 4, **kwargs: Any) → List[Tuple[Document, float]]¶ Return docs and relevance scores in the range [0, 1]. 0 is dissimilar, 1 is most similar. Parameters query – input text k – Number of Documents to return. Defaults to 4. **kwargs – kwargs to be passed to similarity search. Should include: score_threshold: Optional, a floating point value between 0 to 1 to filter the resulting set of retrieved docs Returns List of Tuples of (doc, similarity_score)
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.analyticdb.AnalyticDB.html
a21896fd57af-7
Returns List of Tuples of (doc, similarity_score) similarity_search_with_score(query: str, k: int = 4, filter: Optional[dict] = None) → List[Tuple[Document, float]][source]¶ Return docs most similar to query. Parameters query – Text to look up documents similar to. k – Number of Documents to return. Defaults to 4. filter (Optional[Dict[str, str]]) – Filter by metadata. Defaults to None. Returns List of Documents most similar to the query and score for each similarity_search_with_score_by_vector(embedding: List[float], k: int = 4, filter: Optional[dict] = None) → List[Tuple[Document, float]][source]¶ property embeddings: langchain.embeddings.base.Embeddings¶ Access the query embedding object if available. Examples using AnalyticDB¶ AnalyticDB
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.analyticdb.AnalyticDB.html
f6084d2a9af3-0
langchain.vectorstores.myscale.has_mul_sub_str¶ langchain.vectorstores.myscale.has_mul_sub_str(s: str, *args: Any) → bool[source]¶ Check if a string contains multiple substrings. :param s: string to check. :param *args: substrings to check. Returns True if all substrings are in the string, False otherwise.
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.myscale.has_mul_sub_str.html
ffc237e83342-0
langchain.vectorstores.opensearch_vector_search.OpenSearchVectorSearch¶ class langchain.vectorstores.opensearch_vector_search.OpenSearchVectorSearch(opensearch_url: str, index_name: str, embedding_function: Embeddings, is_aoss: bool, **kwargs: Any)[source]¶ Bases: VectorStore Wrapper around OpenSearch as a vector database. Example from langchain import OpenSearchVectorSearch opensearch_vector_search = OpenSearchVectorSearch( "http://localhost:9200", "embeddings", embedding_function ) Initialize with necessary components. Methods __init__(opensearch_url, index_name, ...) Initialize with necessary components. aadd_documents(documents, **kwargs) Run more documents through the embeddings and add to the vectorstore. aadd_texts(texts[, metadatas]) Run more texts through the embeddings and add to the vectorstore. add_documents(documents, **kwargs) Run more documents through the embeddings and add to the vectorstore. add_texts(texts[, metadatas, ids, bulk_size]) Run more texts through the embeddings and add to the vectorstore. afrom_documents(documents, embedding, **kwargs) Return VectorStore initialized from documents and embeddings. afrom_texts(texts, embedding[, metadatas]) Return VectorStore initialized from texts and embeddings. amax_marginal_relevance_search(query[, k, ...]) Return docs selected using the maximal marginal relevance. amax_marginal_relevance_search_by_vector(...) Return docs selected using the maximal marginal relevance. as_retriever(**kwargs) asearch(query, search_type, **kwargs) Return docs most similar to query using specified search type. asimilarity_search(query[, k])
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.opensearch_vector_search.OpenSearchVectorSearch.html
ffc237e83342-1
asimilarity_search(query[, k]) Return docs most similar to query. asimilarity_search_by_vector(embedding[, k]) Return docs most similar to embedding vector. asimilarity_search_with_relevance_scores(query) Return docs most similar to query. delete([ids]) Delete by vector ID or other criteria. from_documents(documents, embedding, **kwargs) Return VectorStore initialized from documents and embeddings. from_texts(texts, embedding[, metadatas, ...]) Construct OpenSearchVectorSearch wrapper from raw documents. max_marginal_relevance_search(query[, k, ...]) Return docs selected using the maximal marginal relevance. max_marginal_relevance_search_by_vector(...) Return docs selected using the maximal marginal relevance. search(query, search_type, **kwargs) Return docs most similar to query using specified search type. similarity_search(query[, k]) Return docs most similar to query. similarity_search_by_vector(embedding[, k]) Return docs most similar to embedding vector. similarity_search_with_relevance_scores(query) Return docs and relevance scores in the range [0, 1]. similarity_search_with_score(query[, k]) Return docs and it's scores most similar to query. Attributes embeddings Access the query embedding object if available. async aadd_documents(documents: List[Document], **kwargs: Any) → List[str]¶ Run more documents through the embeddings and add to the vectorstore. Parameters (List[Document] (documents) – Documents to add to the vectorstore. Returns List of IDs of the added texts. Return type List[str]
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.opensearch_vector_search.OpenSearchVectorSearch.html
ffc237e83342-2
Returns List of IDs of the added texts. Return type List[str] async aadd_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, **kwargs: Any) → List[str]¶ Run more texts through the embeddings and add to the vectorstore. add_documents(documents: List[Document], **kwargs: Any) → List[str]¶ Run more documents through the embeddings and add to the vectorstore. Parameters (List[Document] (documents) – Documents to add to the vectorstore. Returns List of IDs of the added texts. Return type List[str] add_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, bulk_size: int = 500, **kwargs: Any) → List[str][source]¶ Run more texts through the embeddings and add to the vectorstore. Parameters texts – Iterable of strings to add to the vectorstore. metadatas – Optional list of metadatas associated with the texts. ids – Optional list of ids to associate with the texts. bulk_size – Bulk API request count; Default: 500 Returns List of ids from adding the texts into the vectorstore. Optional Args:vector_field: Document field embeddings are stored in. Defaults to “vector_field”. text_field: Document field the text of the document is stored in. Defaults to “text”. async classmethod afrom_documents(documents: List[Document], embedding: Embeddings, **kwargs: Any) → VST¶ Return VectorStore initialized from documents and embeddings. async classmethod afrom_texts(texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, **kwargs: Any) → VST¶
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.opensearch_vector_search.OpenSearchVectorSearch.html
ffc237e83342-3
Return VectorStore initialized from texts and embeddings. async amax_marginal_relevance_search(query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[Document]¶ Return docs selected using the maximal marginal relevance. async amax_marginal_relevance_search_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[Document]¶ Return docs selected using the maximal marginal relevance. as_retriever(**kwargs: Any) → VectorStoreRetriever¶ async asearch(query: str, search_type: str, **kwargs: Any) → List[Document]¶ Return docs most similar to query using specified search type. async asimilarity_search(query: str, k: int = 4, **kwargs: Any) → List[Document]¶ Return docs most similar to query. async asimilarity_search_by_vector(embedding: List[float], k: int = 4, **kwargs: Any) → List[Document]¶ Return docs most similar to embedding vector. async asimilarity_search_with_relevance_scores(query: str, k: int = 4, **kwargs: Any) → List[Tuple[Document, float]]¶ Return docs most similar to query. delete(ids: Optional[List[str]] = None, **kwargs: Any) → Optional[bool]¶ Delete by vector ID or other criteria. Parameters ids – List of ids to delete. **kwargs – Other keyword arguments that subclasses might use. Returns True if deletion is successful, False otherwise, None if not implemented. Return type Optional[bool]
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.opensearch_vector_search.OpenSearchVectorSearch.html
ffc237e83342-4
False otherwise, None if not implemented. Return type Optional[bool] classmethod from_documents(documents: List[Document], embedding: Embeddings, **kwargs: Any) → VST¶ Return VectorStore initialized from documents and embeddings. classmethod from_texts(texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, bulk_size: int = 500, **kwargs: Any) → OpenSearchVectorSearch[source]¶ Construct OpenSearchVectorSearch wrapper from raw documents. Example from langchain import OpenSearchVectorSearch from langchain.embeddings import OpenAIEmbeddings embeddings = OpenAIEmbeddings() opensearch_vector_search = OpenSearchVectorSearch.from_texts( texts, embeddings, opensearch_url="http://localhost:9200" ) OpenSearch by default supports Approximate Search powered by nmslib, faiss and lucene engines recommended for large datasets. Also supports brute force search through Script Scoring and Painless Scripting. Optional Args:vector_field: Document field embeddings are stored in. Defaults to “vector_field”. text_field: Document field the text of the document is stored in. Defaults to “text”. Optional Keyword Args for Approximate Search:engine: “nmslib”, “faiss”, “lucene”; default: “nmslib” space_type: “l2”, “l1”, “cosinesimil”, “linf”, “innerproduct”; default: “l2” ef_search: Size of the dynamic list used during k-NN searches. Higher values lead to more accurate but slower searches; default: 512 ef_construction: Size of the dynamic list used during k-NN graph creation. Higher values lead to more accurate graph but slower indexing speed; default: 512
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.opensearch_vector_search.OpenSearchVectorSearch.html
ffc237e83342-5
Higher values lead to more accurate graph but slower indexing speed; default: 512 m: Number of bidirectional links created for each new element. Large impact on memory consumption. Between 2 and 100; default: 16 Keyword Args for Script Scoring or Painless Scripting:is_appx_search: False max_marginal_relevance_search(query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → list[langchain.schema.document.Document][source]¶ Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Parameters query – Text to look up documents similar to. k – Number of Documents to return. Defaults to 4. fetch_k – Number of Documents to fetch to pass to MMR algorithm. Defaults to 20. lambda_mult – Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5. Returns List of Documents selected by maximal marginal relevance. max_marginal_relevance_search_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[Document]¶ Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. Parameters embedding – Embedding to look up documents similar to. k – Number of Documents to return. Defaults to 4. fetch_k – Number of Documents to fetch to pass to MMR algorithm. lambda_mult – Number between 0 and 1 that determines the degree
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.opensearch_vector_search.OpenSearchVectorSearch.html
ffc237e83342-6
lambda_mult – Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5. Returns List of Documents selected by maximal marginal relevance. search(query: str, search_type: str, **kwargs: Any) → List[Document]¶ Return docs most similar to query using specified search type. similarity_search(query: str, k: int = 4, **kwargs: Any) → List[Document][source]¶ Return docs most similar to query. By default, supports Approximate Search. Also supports Script Scoring and Painless Scripting. Parameters query – Text to look up documents similar to. k – Number of Documents to return. Defaults to 4. Returns List of Documents most similar to the query. Optional Args:vector_field: Document field embeddings are stored in. Defaults to “vector_field”. text_field: Document field the text of the document is stored in. Defaults to “text”. metadata_field: Document field that metadata is stored in. Defaults to “metadata”. Can be set to a special value “*” to include the entire document. Optional Args for Approximate Search:search_type: “approximate_search”; default: “approximate_search” boolean_filter: A Boolean filter is a post filter consists of a Boolean query that contains a k-NN query and a filter. subquery_clause: Query clause on the knn vector field; default: “must” lucene_filter: the Lucene algorithm decides whether to perform an exact k-NN search with pre-filtering or an approximate search with modified post-filtering. (deprecated, use efficient_filter) efficient_filter: the Lucene Engine or Faiss Engine decides whether to
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.opensearch_vector_search.OpenSearchVectorSearch.html