id
stringlengths 14
15
| text
stringlengths 22
2.51k
| source
stringlengths 61
160
|
---|---|---|
2a945de6c212-6
|
Return VectorStore initialized from texts and embeddings.
async amax_marginal_relevance_search(query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[Document]¶
Return docs selected using the maximal marginal relevance.
async amax_marginal_relevance_search_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[Document]¶
Return docs selected using the maximal marginal relevance.
as_retriever(**kwargs: Any) → SingleStoreDBRetriever[source]¶
async asearch(query: str, search_type: str, **kwargs: Any) → List[Document]¶
Return docs most similar to query using specified search type.
async asimilarity_search(query: str, k: int = 4, **kwargs: Any) → List[Document]¶
Return docs most similar to query.
async asimilarity_search_by_vector(embedding: List[float], k: int = 4, **kwargs: Any) → List[Document]¶
Return docs most similar to embedding vector.
async asimilarity_search_with_relevance_scores(query: str, k: int = 4, **kwargs: Any) → List[Tuple[Document, float]]¶
Return docs most similar to query.
delete(ids: Optional[List[str]] = None, **kwargs: Any) → Optional[bool]¶
Delete by vector ID or other criteria.
Parameters
ids – List of ids to delete.
**kwargs – Other keyword arguments that subclasses might use.
Returns
True if deletion is successful,
False otherwise, None if not implemented.
Return type
Optional[bool]
|
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.singlestoredb.SingleStoreDB.html
|
2a945de6c212-7
|
False otherwise, None if not implemented.
Return type
Optional[bool]
classmethod from_documents(documents: List[Document], embedding: Embeddings, **kwargs: Any) → VST¶
Return VectorStore initialized from documents and embeddings.
classmethod from_texts(texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, distance_strategy: DistanceStrategy = DistanceStrategy.DOT_PRODUCT, table_name: str = 'embeddings', content_field: str = 'content', metadata_field: str = 'metadata', vector_field: str = 'vector', pool_size: int = 5, max_overflow: int = 10, timeout: float = 30, **kwargs: Any) → SingleStoreDB[source]¶
Create a SingleStoreDB vectorstore from raw documents.
This is a user-friendly interface that:
Embeds documents.
Creates a new table for the embeddings in SingleStoreDB.
Adds the documents to the newly created table.
This is intended to be a quick way to get started.
.. rubric:: Example
max_marginal_relevance_search(query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[Document]¶
Return docs selected using the maximal marginal relevance.
Maximal marginal relevance optimizes for similarity to query AND diversity
among selected documents.
Parameters
query – Text to look up documents similar to.
k – Number of Documents to return. Defaults to 4.
fetch_k – Number of Documents to fetch to pass to MMR algorithm.
lambda_mult – Number between 0 and 1 that determines the degree
of diversity among the results with 0 corresponding
to maximum diversity and 1 to minimum diversity.
Defaults to 0.5.
Returns
|
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.singlestoredb.SingleStoreDB.html
|
2a945de6c212-8
|
Defaults to 0.5.
Returns
List of Documents selected by maximal marginal relevance.
max_marginal_relevance_search_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[Document]¶
Return docs selected using the maximal marginal relevance.
Maximal marginal relevance optimizes for similarity to query AND diversity
among selected documents.
Parameters
embedding – Embedding to look up documents similar to.
k – Number of Documents to return. Defaults to 4.
fetch_k – Number of Documents to fetch to pass to MMR algorithm.
lambda_mult – Number between 0 and 1 that determines the degree
of diversity among the results with 0 corresponding
to maximum diversity and 1 to minimum diversity.
Defaults to 0.5.
Returns
List of Documents selected by maximal marginal relevance.
search(query: str, search_type: str, **kwargs: Any) → List[Document]¶
Return docs most similar to query using specified search type.
similarity_search(query: str, k: int = 4, filter: Optional[dict] = None, **kwargs: Any) → List[Document][source]¶
Returns the most similar indexed documents to the query text.
Uses cosine similarity.
Parameters
query (str) – The query text for which to find similar documents.
k (int) – The number of documents to return. Default is 4.
filter (dict) – A dictionary of metadata fields and values to filter by.
Returns
A list of documents that are most similar to the query text.
Return type
List[Document]
Examples
similarity_search_by_vector(embedding: List[float], k: int = 4, **kwargs: Any) → List[Document]¶
|
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.singlestoredb.SingleStoreDB.html
|
2a945de6c212-9
|
Return docs most similar to embedding vector.
Parameters
embedding – Embedding to look up documents similar to.
k – Number of Documents to return. Defaults to 4.
Returns
List of Documents most similar to the query vector.
similarity_search_with_relevance_scores(query: str, k: int = 4, **kwargs: Any) → List[Tuple[Document, float]]¶
Return docs and relevance scores in the range [0, 1].
0 is dissimilar, 1 is most similar.
Parameters
query – input text
k – Number of Documents to return. Defaults to 4.
**kwargs – kwargs to be passed to similarity search. Should include:
score_threshold: Optional, a floating point value between 0 to 1 to
filter the resulting set of retrieved docs
Returns
List of Tuples of (doc, similarity_score)
similarity_search_with_score(query: str, k: int = 4, filter: Optional[dict] = None) → List[Tuple[Document, float]][source]¶
Return docs most similar to query. Uses cosine similarity.
Parameters
query – Text to look up documents similar to.
k – Number of Documents to return. Defaults to 4.
filter – A dictionary of metadata fields and values to filter by.
Defaults to None.
Returns
List of Documents most similar to the query and score for each
connection_kwargs¶
Add program name and version to connection attributes.
property embeddings: langchain.embeddings.base.Embeddings¶
Access the query embedding object if available.
vector_field¶
Pass the rest of the kwargs to the connection.
Examples using SingleStoreDB¶
SingleStoreDB
|
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.singlestoredb.SingleStoreDB.html
|
8751c2d7886e-0
|
langchain.vectorstores.sklearn.SKLearnVectorStoreException¶
class langchain.vectorstores.sklearn.SKLearnVectorStoreException[source]¶
Bases: RuntimeError
Exception raised by SKLearnVectorStore.
add_note()¶
Exception.add_note(note) –
add a note to the exception
with_traceback()¶
Exception.with_traceback(tb) –
set self.__traceback__ to tb and return self.
args¶
|
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.sklearn.SKLearnVectorStoreException.html
|
3fa663cb368e-0
|
langchain.vectorstores.clickhouse.Clickhouse¶
class langchain.vectorstores.clickhouse.Clickhouse(embedding: Embeddings, config: Optional[ClickhouseSettings] = None, **kwargs: Any)[source]¶
Bases: VectorStore
Wrapper around ClickHouse vector database
You need a clickhouse-connect python package, and a valid account
to connect to ClickHouse.
ClickHouse can not only search with simple vector indexes,
it also supports complex query with multiple conditions,
constraints and even sub-queries.
For more information, please visit[ClickHouse official site](https://clickhouse.com/clickhouse)
ClickHouse Wrapper to LangChain
embedding_function (Embeddings):
config (ClickHouseSettings): Configuration to ClickHouse Client
Other keyword arguments will pass into
[clickhouse-connect](https://docs.clickhouse.com/)
Methods
__init__(embedding[, config])
ClickHouse Wrapper to LangChain
aadd_documents(documents, **kwargs)
Run more documents through the embeddings and add to the vectorstore.
aadd_texts(texts[, metadatas])
Run more texts through the embeddings and add to the vectorstore.
add_documents(documents, **kwargs)
Run more documents through the embeddings and add to the vectorstore.
add_texts(texts[, metadatas, batch_size, ids])
Insert more texts through the embeddings and add to the VectorStore.
afrom_documents(documents, embedding, **kwargs)
Return VectorStore initialized from documents and embeddings.
afrom_texts(texts, embedding[, metadatas])
Return VectorStore initialized from texts and embeddings.
amax_marginal_relevance_search(query[, k, ...])
Return docs selected using the maximal marginal relevance.
amax_marginal_relevance_search_by_vector(...)
Return docs selected using the maximal marginal relevance.
|
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.clickhouse.Clickhouse.html
|
3fa663cb368e-1
|
Return docs selected using the maximal marginal relevance.
as_retriever(**kwargs)
asearch(query, search_type, **kwargs)
Return docs most similar to query using specified search type.
asimilarity_search(query[, k])
Return docs most similar to query.
asimilarity_search_by_vector(embedding[, k])
Return docs most similar to embedding vector.
asimilarity_search_with_relevance_scores(query)
Return docs most similar to query.
delete([ids])
Delete by vector ID or other criteria.
drop()
Helper function: Drop data
escape_str(value)
from_documents(documents, embedding, **kwargs)
Return VectorStore initialized from documents and embeddings.
from_texts(texts, embedding[, metadatas, ...])
Create ClickHouse wrapper with existing texts
max_marginal_relevance_search(query[, k, ...])
Return docs selected using the maximal marginal relevance.
max_marginal_relevance_search_by_vector(...)
Return docs selected using the maximal marginal relevance.
search(query, search_type, **kwargs)
Return docs most similar to query using specified search type.
similarity_search(query[, k, where_str])
Perform a similarity search with ClickHouse
similarity_search_by_vector(embedding[, k, ...])
Perform a similarity search with ClickHouse by vectors
similarity_search_with_relevance_scores(query)
Perform a similarity search with ClickHouse
similarity_search_with_score(*args, **kwargs)
Run similarity search with distance.
Attributes
embeddings
Access the query embedding object if available.
metadata_column
async aadd_documents(documents: List[Document], **kwargs: Any) → List[str]¶
Run more documents through the embeddings and add to the vectorstore.
Parameters
|
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.clickhouse.Clickhouse.html
|
3fa663cb368e-2
|
Run more documents through the embeddings and add to the vectorstore.
Parameters
(List[Document] (documents) – Documents to add to the vectorstore.
Returns
List of IDs of the added texts.
Return type
List[str]
async aadd_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, **kwargs: Any) → List[str]¶
Run more texts through the embeddings and add to the vectorstore.
add_documents(documents: List[Document], **kwargs: Any) → List[str]¶
Run more documents through the embeddings and add to the vectorstore.
Parameters
(List[Document] (documents) – Documents to add to the vectorstore.
Returns
List of IDs of the added texts.
Return type
List[str]
add_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, batch_size: int = 32, ids: Optional[Iterable[str]] = None, **kwargs: Any) → List[str][source]¶
Insert more texts through the embeddings and add to the VectorStore.
Parameters
texts – Iterable of strings to add to the VectorStore.
ids – Optional list of ids to associate with the texts.
batch_size – Batch size of insertion
metadata – Optional column data to be inserted
Returns
List of ids from adding the texts into the VectorStore.
async classmethod afrom_documents(documents: List[Document], embedding: Embeddings, **kwargs: Any) → VST¶
Return VectorStore initialized from documents and embeddings.
async classmethod afrom_texts(texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, **kwargs: Any) → VST¶
Return VectorStore initialized from texts and embeddings.
|
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.clickhouse.Clickhouse.html
|
3fa663cb368e-3
|
Return VectorStore initialized from texts and embeddings.
async amax_marginal_relevance_search(query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[Document]¶
Return docs selected using the maximal marginal relevance.
async amax_marginal_relevance_search_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[Document]¶
Return docs selected using the maximal marginal relevance.
as_retriever(**kwargs: Any) → VectorStoreRetriever¶
async asearch(query: str, search_type: str, **kwargs: Any) → List[Document]¶
Return docs most similar to query using specified search type.
async asimilarity_search(query: str, k: int = 4, **kwargs: Any) → List[Document]¶
Return docs most similar to query.
async asimilarity_search_by_vector(embedding: List[float], k: int = 4, **kwargs: Any) → List[Document]¶
Return docs most similar to embedding vector.
async asimilarity_search_with_relevance_scores(query: str, k: int = 4, **kwargs: Any) → List[Tuple[Document, float]]¶
Return docs most similar to query.
delete(ids: Optional[List[str]] = None, **kwargs: Any) → Optional[bool]¶
Delete by vector ID or other criteria.
Parameters
ids – List of ids to delete.
**kwargs – Other keyword arguments that subclasses might use.
Returns
True if deletion is successful,
False otherwise, None if not implemented.
Return type
Optional[bool]
drop() → None[source]¶
|
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.clickhouse.Clickhouse.html
|
3fa663cb368e-4
|
Return type
Optional[bool]
drop() → None[source]¶
Helper function: Drop data
escape_str(value: str) → str[source]¶
classmethod from_documents(documents: List[Document], embedding: Embeddings, **kwargs: Any) → VST¶
Return VectorStore initialized from documents and embeddings.
classmethod from_texts(texts: List[str], embedding: Embeddings, metadatas: Optional[List[Dict[Any, Any]]] = None, config: Optional[ClickhouseSettings] = None, text_ids: Optional[Iterable[str]] = None, batch_size: int = 32, **kwargs: Any) → Clickhouse[source]¶
Create ClickHouse wrapper with existing texts
Parameters
embedding_function (Embeddings) – Function to extract text embedding
texts (Iterable[str]) – List or tuple of strings to be added
config (ClickHouseSettings, Optional) – ClickHouse configuration
text_ids (Optional[Iterable], optional) – IDs for the texts.
Defaults to None.
batch_size (int, optional) – Batchsize when transmitting data to ClickHouse.
Defaults to 32.
metadata (List[dict], optional) – metadata to texts. Defaults to None.
into (Other keyword arguments will pass) – [clickhouse-connect](https://clickhouse.com/docs/en/integrations/python#clickhouse-connect-driver-api)
Returns
ClickHouse Index
max_marginal_relevance_search(query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[Document]¶
Return docs selected using the maximal marginal relevance.
Maximal marginal relevance optimizes for similarity to query AND diversity
among selected documents.
Parameters
query – Text to look up documents similar to.
k – Number of Documents to return. Defaults to 4.
|
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.clickhouse.Clickhouse.html
|
3fa663cb368e-5
|
k – Number of Documents to return. Defaults to 4.
fetch_k – Number of Documents to fetch to pass to MMR algorithm.
lambda_mult – Number between 0 and 1 that determines the degree
of diversity among the results with 0 corresponding
to maximum diversity and 1 to minimum diversity.
Defaults to 0.5.
Returns
List of Documents selected by maximal marginal relevance.
max_marginal_relevance_search_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[Document]¶
Return docs selected using the maximal marginal relevance.
Maximal marginal relevance optimizes for similarity to query AND diversity
among selected documents.
Parameters
embedding – Embedding to look up documents similar to.
k – Number of Documents to return. Defaults to 4.
fetch_k – Number of Documents to fetch to pass to MMR algorithm.
lambda_mult – Number between 0 and 1 that determines the degree
of diversity among the results with 0 corresponding
to maximum diversity and 1 to minimum diversity.
Defaults to 0.5.
Returns
List of Documents selected by maximal marginal relevance.
search(query: str, search_type: str, **kwargs: Any) → List[Document]¶
Return docs most similar to query using specified search type.
similarity_search(query: str, k: int = 4, where_str: Optional[str] = None, **kwargs: Any) → List[Document][source]¶
Perform a similarity search with ClickHouse
Parameters
query (str) – query string
k (int, optional) – Top K neighbors to retrieve. Defaults to 4.
where_str (Optional[str], optional) – where condition string.
Defaults to None.
|
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.clickhouse.Clickhouse.html
|
3fa663cb368e-6
|
where_str (Optional[str], optional) – where condition string.
Defaults to None.
NOTE – Please do not let end-user to fill this and always be aware
of SQL injection. When dealing with metadatas, remember to
use {self.metadata_column}.attribute instead of attribute
alone. The default name for it is metadata.
Returns
List of Documents
Return type
List[Document]
similarity_search_by_vector(embedding: List[float], k: int = 4, where_str: Optional[str] = None, **kwargs: Any) → List[Document][source]¶
Perform a similarity search with ClickHouse by vectors
Parameters
query (str) – query string
k (int, optional) – Top K neighbors to retrieve. Defaults to 4.
where_str (Optional[str], optional) – where condition string.
Defaults to None.
NOTE – Please do not let end-user to fill this and always be aware
of SQL injection. When dealing with metadatas, remember to
use {self.metadata_column}.attribute instead of attribute
alone. The default name for it is metadata.
Returns
List of (Document, similarity)
Return type
List[Document]
similarity_search_with_relevance_scores(query: str, k: int = 4, where_str: Optional[str] = None, **kwargs: Any) → List[Tuple[Document, float]][source]¶
Perform a similarity search with ClickHouse
Parameters
query (str) – query string
k (int, optional) – Top K neighbors to retrieve. Defaults to 4.
where_str (Optional[str], optional) – where condition string.
Defaults to None.
NOTE – Please do not let end-user to fill this and always be aware
of SQL injection. When dealing with metadatas, remember to
use {self.metadata_column}.attribute instead of attribute
|
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.clickhouse.Clickhouse.html
|
3fa663cb368e-7
|
use {self.metadata_column}.attribute instead of attribute
alone. The default name for it is metadata.
Returns
List of documents
Return type
List[Document]
similarity_search_with_score(*args: Any, **kwargs: Any) → List[Tuple[Document, float]]¶
Run similarity search with distance.
property embeddings: langchain.embeddings.base.Embeddings¶
Access the query embedding object if available.
property metadata_column: str¶
Examples using Clickhouse¶
ClickHouse Vector Search
|
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.clickhouse.Clickhouse.html
|
5376c07ae5c7-0
|
langchain.vectorstores.meilisearch.Meilisearch¶
class langchain.vectorstores.meilisearch.Meilisearch(embedding: Embeddings, client: Optional[Client] = None, url: Optional[str] = None, api_key: Optional[str] = None, index_name: str = 'langchain-demo', text_key: str = 'text', metadata_key: str = 'metadata')[source]¶
Bases: VectorStore
Initialize wrapper around Meilisearch vector database.
To use this, you need to have meilisearch python package installed,
and a running Meilisearch instance.
To learn more about Meilisearch Python, refer to the in-depth
Meilisearch Python documentation: https://meilisearch.github.io/meilisearch-python/.
See the following documentation for how to run a Meilisearch instance:
https://www.meilisearch.com/docs/learn/getting_started/quick_start.
Example
from langchain.vectorstores import Meilisearch
from langchain.embeddings.openai import OpenAIEmbeddings
import meilisearch
# api_key is optional; provide it if your meilisearch instance requires it
client = meilisearch.Client(url='http://127.0.0.1:7700', api_key='***')
embeddings = OpenAIEmbeddings()
vectorstore = Meilisearch(
embedding=embeddings,
client=client,
index_name='langchain_demo',
text_key='text')
Initialize with Meilisearch client.
Methods
__init__(embedding[, client, url, api_key, ...])
Initialize with Meilisearch client.
aadd_documents(documents, **kwargs)
Run more documents through the embeddings and add to the vectorstore.
|
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.meilisearch.Meilisearch.html
|
5376c07ae5c7-1
|
Run more documents through the embeddings and add to the vectorstore.
aadd_texts(texts[, metadatas])
Run more texts through the embeddings and add to the vectorstore.
add_documents(documents, **kwargs)
Run more documents through the embeddings and add to the vectorstore.
add_texts(texts[, metadatas, ids])
Run more texts through the embedding and add them to the vector store.
afrom_documents(documents, embedding, **kwargs)
Return VectorStore initialized from documents and embeddings.
afrom_texts(texts, embedding[, metadatas])
Return VectorStore initialized from texts and embeddings.
amax_marginal_relevance_search(query[, k, ...])
Return docs selected using the maximal marginal relevance.
amax_marginal_relevance_search_by_vector(...)
Return docs selected using the maximal marginal relevance.
as_retriever(**kwargs)
asearch(query, search_type, **kwargs)
Return docs most similar to query using specified search type.
asimilarity_search(query[, k])
Return docs most similar to query.
asimilarity_search_by_vector(embedding[, k])
Return docs most similar to embedding vector.
asimilarity_search_with_relevance_scores(query)
Return docs most similar to query.
delete([ids])
Delete by vector ID or other criteria.
from_documents(documents, embedding, **kwargs)
Return VectorStore initialized from documents and embeddings.
from_texts(texts, embedding[, metadatas, ...])
Construct Meilisearch wrapper from raw documents.
max_marginal_relevance_search(query[, k, ...])
Return docs selected using the maximal marginal relevance.
max_marginal_relevance_search_by_vector(...)
Return docs selected using the maximal marginal relevance.
|
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.meilisearch.Meilisearch.html
|
5376c07ae5c7-2
|
Return docs selected using the maximal marginal relevance.
search(query, search_type, **kwargs)
Return docs most similar to query using specified search type.
similarity_search(query[, k, filter])
Return meilisearch documents most similar to the query.
similarity_search_by_vector(embedding[, k, ...])
Return meilisearch documents most similar to embedding vector.
similarity_search_by_vector_with_scores(...)
Return meilisearch documents most similar to embedding vector.
similarity_search_with_relevance_scores(query)
Return docs and relevance scores in the range [0, 1].
similarity_search_with_score(query[, k, filter])
Return meilisearch documents most similar to the query, along with scores.
Attributes
embeddings
Access the query embedding object if available.
async aadd_documents(documents: List[Document], **kwargs: Any) → List[str]¶
Run more documents through the embeddings and add to the vectorstore.
Parameters
(List[Document] (documents) – Documents to add to the vectorstore.
Returns
List of IDs of the added texts.
Return type
List[str]
async aadd_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, **kwargs: Any) → List[str]¶
Run more texts through the embeddings and add to the vectorstore.
add_documents(documents: List[Document], **kwargs: Any) → List[str]¶
Run more documents through the embeddings and add to the vectorstore.
Parameters
(List[Document] (documents) – Documents to add to the vectorstore.
Returns
List of IDs of the added texts.
Return type
List[str]
|
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.meilisearch.Meilisearch.html
|
5376c07ae5c7-3
|
Returns
List of IDs of the added texts.
Return type
List[str]
add_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, **kwargs: Any) → List[str][source]¶
Run more texts through the embedding and add them to the vector store.
Parameters
texts (Iterable[str]) – Iterable of strings/text to add to the vectorstore.
metadatas (Optional[List[dict]]) – Optional list of metadata.
Defaults to None.
Optional[List[str]] (ids) – Optional list of IDs.
Defaults to None.
Returns
List of IDs of the texts added to the vectorstore.
Return type
List[str]
async classmethod afrom_documents(documents: List[Document], embedding: Embeddings, **kwargs: Any) → VST¶
Return VectorStore initialized from documents and embeddings.
async classmethod afrom_texts(texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, **kwargs: Any) → VST¶
Return VectorStore initialized from texts and embeddings.
async amax_marginal_relevance_search(query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[Document]¶
Return docs selected using the maximal marginal relevance.
async amax_marginal_relevance_search_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[Document]¶
Return docs selected using the maximal marginal relevance.
as_retriever(**kwargs: Any) → VectorStoreRetriever¶
|
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.meilisearch.Meilisearch.html
|
5376c07ae5c7-4
|
as_retriever(**kwargs: Any) → VectorStoreRetriever¶
async asearch(query: str, search_type: str, **kwargs: Any) → List[Document]¶
Return docs most similar to query using specified search type.
async asimilarity_search(query: str, k: int = 4, **kwargs: Any) → List[Document]¶
Return docs most similar to query.
async asimilarity_search_by_vector(embedding: List[float], k: int = 4, **kwargs: Any) → List[Document]¶
Return docs most similar to embedding vector.
async asimilarity_search_with_relevance_scores(query: str, k: int = 4, **kwargs: Any) → List[Tuple[Document, float]]¶
Return docs most similar to query.
delete(ids: Optional[List[str]] = None, **kwargs: Any) → Optional[bool]¶
Delete by vector ID or other criteria.
Parameters
ids – List of ids to delete.
**kwargs – Other keyword arguments that subclasses might use.
Returns
True if deletion is successful,
False otherwise, None if not implemented.
Return type
Optional[bool]
classmethod from_documents(documents: List[Document], embedding: Embeddings, **kwargs: Any) → VST¶
Return VectorStore initialized from documents and embeddings.
classmethod from_texts(texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, client: Optional[Client] = None, url: Optional[str] = None, api_key: Optional[str] = None, index_name: str = 'langchain-demo', ids: Optional[List[str]] = None, text_key: Optional[str] = 'text', metadata_key: Optional[str] = 'metadata', **kwargs: Any) → Meilisearch[source]¶
|
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.meilisearch.Meilisearch.html
|
5376c07ae5c7-5
|
Construct Meilisearch wrapper from raw documents.
This is a user-friendly interface that:
Embeds documents.
Adds the documents to a provided Meilisearch index.
This is intended to be a quick way to get started.
Example
from langchain import Meilisearch
from langchain.embeddings import OpenAIEmbeddings
import meilisearch
# The environment should be the one specified next to the API key
# in your Meilisearch console
client = meilisearch.Client(url='http://127.0.0.1:7700', api_key='***')
embeddings = OpenAIEmbeddings()
docsearch = Meilisearch.from_texts(
client=client,
embeddings=embeddings,
)
max_marginal_relevance_search(query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[Document]¶
Return docs selected using the maximal marginal relevance.
Maximal marginal relevance optimizes for similarity to query AND diversity
among selected documents.
Parameters
query – Text to look up documents similar to.
k – Number of Documents to return. Defaults to 4.
fetch_k – Number of Documents to fetch to pass to MMR algorithm.
lambda_mult – Number between 0 and 1 that determines the degree
of diversity among the results with 0 corresponding
to maximum diversity and 1 to minimum diversity.
Defaults to 0.5.
Returns
List of Documents selected by maximal marginal relevance.
max_marginal_relevance_search_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[Document]¶
|
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.meilisearch.Meilisearch.html
|
5376c07ae5c7-6
|
Return docs selected using the maximal marginal relevance.
Maximal marginal relevance optimizes for similarity to query AND diversity
among selected documents.
Parameters
embedding – Embedding to look up documents similar to.
k – Number of Documents to return. Defaults to 4.
fetch_k – Number of Documents to fetch to pass to MMR algorithm.
lambda_mult – Number between 0 and 1 that determines the degree
of diversity among the results with 0 corresponding
to maximum diversity and 1 to minimum diversity.
Defaults to 0.5.
Returns
List of Documents selected by maximal marginal relevance.
search(query: str, search_type: str, **kwargs: Any) → List[Document]¶
Return docs most similar to query using specified search type.
similarity_search(query: str, k: int = 4, filter: Optional[Dict[str, str]] = None, **kwargs: Any) → List[Document][source]¶
Return meilisearch documents most similar to the query.
Parameters
query (str) – Query text for which to find similar documents.
k (int) – Number of documents to return. Defaults to 4.
filter (Optional[Dict[str, str]]) – Filter by metadata.
Defaults to None.
Returns
List of Documents most similar to the query
text and score for each.
Return type
List[Document]
similarity_search_by_vector(embedding: List[float], k: int = 4, filter: Optional[Dict[str, str]] = None, **kwargs: Any) → List[Document][source]¶
Return meilisearch documents most similar to embedding vector.
Parameters
embedding (List[float]) – Embedding to look up similar documents.
k (int) – Number of documents to return. Defaults to 4.
|
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.meilisearch.Meilisearch.html
|
5376c07ae5c7-7
|
k (int) – Number of documents to return. Defaults to 4.
filter (Optional[Dict[str, str]]) – Filter by metadata.
Defaults to None.
Returns
List of Documents most similar to the queryvector and score for each.
Return type
List[Document]
similarity_search_by_vector_with_scores(embedding: List[float], k: int = 4, filter: Optional[Dict[str, Any]] = None, **kwargs: Any) → List[Tuple[Document, float]][source]¶
Return meilisearch documents most similar to embedding vector.
Parameters
embedding (List[float]) – Embedding to look up similar documents.
k (int) – Number of documents to return. Defaults to 4.
filter (Optional[Dict[str, str]]) – Filter by metadata.
Defaults to None.
Returns
List of Documents most similar to the queryvector and score for each.
Return type
List[Document]
similarity_search_with_relevance_scores(query: str, k: int = 4, **kwargs: Any) → List[Tuple[Document, float]]¶
Return docs and relevance scores in the range [0, 1].
0 is dissimilar, 1 is most similar.
Parameters
query – input text
k – Number of Documents to return. Defaults to 4.
**kwargs – kwargs to be passed to similarity search. Should include:
score_threshold: Optional, a floating point value between 0 to 1 to
filter the resulting set of retrieved docs
Returns
List of Tuples of (doc, similarity_score)
similarity_search_with_score(query: str, k: int = 4, filter: Optional[Dict[str, str]] = None, **kwargs: Any) → List[Tuple[Document, float]][source]¶
|
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.meilisearch.Meilisearch.html
|
5376c07ae5c7-8
|
Return meilisearch documents most similar to the query, along with scores.
Parameters
query (str) – Query text for which to find similar documents.
k (int) – Number of documents to return. Defaults to 4.
filter (Optional[Dict[str, str]]) – Filter by metadata.
Defaults to None.
Returns
List of Documents most similar to the query
text and score for each.
Return type
List[Document]
property embeddings: Optional[langchain.embeddings.base.Embeddings]¶
Access the query embedding object if available.
Examples using Meilisearch¶
Meilisearch
|
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.meilisearch.Meilisearch.html
|
ea008fb218a9-0
|
langchain.vectorstores.clarifai.Clarifai¶
class langchain.vectorstores.clarifai.Clarifai(user_id: Optional[str] = None, app_id: Optional[str] = None, pat: Optional[str] = None, number_of_docs: Optional[int] = None, api_base: Optional[str] = None)[source]¶
Bases: VectorStore
Wrapper around Clarifai AI platform’s vector store.
To use, you should have the clarifai python package installed.
Example
from langchain.vectorstores import Clarifai
from langchain.embeddings.openai import OpenAIEmbeddings
embeddings = OpenAIEmbeddings()
vectorstore = Clarifai("langchain_store", embeddings.embed_query)
Initialize with Clarifai client.
Parameters
user_id (Optional[str], optional) – User ID. Defaults to None.
app_id (Optional[str], optional) – App ID. Defaults to None.
pat (Optional[str], optional) – Personal access token. Defaults to None.
number_of_docs (Optional[int], optional) – Number of documents to return
None. (during vector search. Defaults to) –
api_base (Optional[str], optional) – API base. Defaults to None.
Raises
ValueError – If user ID, app ID or personal access token is not provided.
Methods
__init__([user_id, app_id, pat, ...])
Initialize with Clarifai client.
aadd_documents(documents, **kwargs)
Run more documents through the embeddings and add to the vectorstore.
aadd_texts(texts[, metadatas])
Run more texts through the embeddings and add to the vectorstore.
add_documents(documents, **kwargs)
Run more documents through the embeddings and add to the vectorstore.
|
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.clarifai.Clarifai.html
|
ea008fb218a9-1
|
Run more documents through the embeddings and add to the vectorstore.
add_texts(texts[, metadatas, ids])
Add texts to the Clarifai vectorstore.
afrom_documents(documents, embedding, **kwargs)
Return VectorStore initialized from documents and embeddings.
afrom_texts(texts, embedding[, metadatas])
Return VectorStore initialized from texts and embeddings.
amax_marginal_relevance_search(query[, k, ...])
Return docs selected using the maximal marginal relevance.
amax_marginal_relevance_search_by_vector(...)
Return docs selected using the maximal marginal relevance.
as_retriever(**kwargs)
asearch(query, search_type, **kwargs)
Return docs most similar to query using specified search type.
asimilarity_search(query[, k])
Return docs most similar to query.
asimilarity_search_by_vector(embedding[, k])
Return docs most similar to embedding vector.
asimilarity_search_with_relevance_scores(query)
Return docs most similar to query.
delete([ids])
Delete by vector ID or other criteria.
from_documents(documents[, embedding, ...])
Create a Clarifai vectorstore from a list of documents.
from_texts(texts[, embedding, metadatas, ...])
Create a Clarifai vectorstore from a list of texts.
max_marginal_relevance_search(query[, k, ...])
Return docs selected using the maximal marginal relevance.
max_marginal_relevance_search_by_vector(...)
Return docs selected using the maximal marginal relevance.
search(query, search_type, **kwargs)
Return docs most similar to query using specified search type.
similarity_search(query[, k])
Run similarity search using Clarifai.
similarity_search_by_vector(embedding[, k])
|
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.clarifai.Clarifai.html
|
ea008fb218a9-2
|
similarity_search_by_vector(embedding[, k])
Return docs most similar to embedding vector.
similarity_search_with_relevance_scores(query)
Return docs and relevance scores in the range [0, 1].
similarity_search_with_score(query[, k, ...])
Run similarity search with score using Clarifai.
Attributes
embeddings
Access the query embedding object if available.
async aadd_documents(documents: List[Document], **kwargs: Any) → List[str]¶
Run more documents through the embeddings and add to the vectorstore.
Parameters
(List[Document] (documents) – Documents to add to the vectorstore.
Returns
List of IDs of the added texts.
Return type
List[str]
async aadd_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, **kwargs: Any) → List[str]¶
Run more texts through the embeddings and add to the vectorstore.
add_documents(documents: List[Document], **kwargs: Any) → List[str]¶
Run more documents through the embeddings and add to the vectorstore.
Parameters
(List[Document] (documents) – Documents to add to the vectorstore.
Returns
List of IDs of the added texts.
Return type
List[str]
add_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, **kwargs: Any) → List[str][source]¶
Add texts to the Clarifai vectorstore. This will push the text
to a Clarifai application.
Application use base workflow that create and store embedding for each text.
Make sure you are using a base workflow that is compatible with text
(such as Language Understanding).
Parameters
texts (Iterable[str]) – Texts to add to the vectorstore.
|
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.clarifai.Clarifai.html
|
ea008fb218a9-3
|
Parameters
texts (Iterable[str]) – Texts to add to the vectorstore.
metadatas (Optional[List[dict]], optional) – Optional list of metadatas.
ids (Optional[List[str]], optional) – Optional list of IDs.
Returns
List of IDs of the added texts.
Return type
List[str]
async classmethod afrom_documents(documents: List[Document], embedding: Embeddings, **kwargs: Any) → VST¶
Return VectorStore initialized from documents and embeddings.
async classmethod afrom_texts(texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, **kwargs: Any) → VST¶
Return VectorStore initialized from texts and embeddings.
async amax_marginal_relevance_search(query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[Document]¶
Return docs selected using the maximal marginal relevance.
async amax_marginal_relevance_search_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[Document]¶
Return docs selected using the maximal marginal relevance.
as_retriever(**kwargs: Any) → VectorStoreRetriever¶
async asearch(query: str, search_type: str, **kwargs: Any) → List[Document]¶
Return docs most similar to query using specified search type.
async asimilarity_search(query: str, k: int = 4, **kwargs: Any) → List[Document]¶
Return docs most similar to query.
|
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.clarifai.Clarifai.html
|
ea008fb218a9-4
|
Return docs most similar to query.
async asimilarity_search_by_vector(embedding: List[float], k: int = 4, **kwargs: Any) → List[Document]¶
Return docs most similar to embedding vector.
async asimilarity_search_with_relevance_scores(query: str, k: int = 4, **kwargs: Any) → List[Tuple[Document, float]]¶
Return docs most similar to query.
delete(ids: Optional[List[str]] = None, **kwargs: Any) → Optional[bool]¶
Delete by vector ID or other criteria.
Parameters
ids – List of ids to delete.
**kwargs – Other keyword arguments that subclasses might use.
Returns
True if deletion is successful,
False otherwise, None if not implemented.
Return type
Optional[bool]
classmethod from_documents(documents: List[Document], embedding: Optional[Embeddings] = None, user_id: Optional[str] = None, app_id: Optional[str] = None, pat: Optional[str] = None, number_of_docs: Optional[int] = None, api_base: Optional[str] = None, **kwargs: Any) → Clarifai[source]¶
Create a Clarifai vectorstore from a list of documents.
Parameters
user_id (str) – User ID.
app_id (str) – App ID.
documents (List[Document]) – List of documents to add.
pat (Optional[str]) – Personal access token. Defaults to None.
number_of_docs (Optional[int]) – Number of documents to return
None. (during vector search. Defaults to) –
api_base (Optional[str]) – API base. Defaults to None.
Returns
Clarifai vectorstore.
Return type
Clarifai
|
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.clarifai.Clarifai.html
|
ea008fb218a9-5
|
Returns
Clarifai vectorstore.
Return type
Clarifai
classmethod from_texts(texts: List[str], embedding: Optional[Embeddings] = None, metadatas: Optional[List[dict]] = None, user_id: Optional[str] = None, app_id: Optional[str] = None, pat: Optional[str] = None, number_of_docs: Optional[int] = None, api_base: Optional[str] = None, **kwargs: Any) → Clarifai[source]¶
Create a Clarifai vectorstore from a list of texts.
Parameters
user_id (str) – User ID.
app_id (str) – App ID.
texts (List[str]) – List of texts to add.
pat (Optional[str]) – Personal access token. Defaults to None.
number_of_docs (Optional[int]) – Number of documents to return
None. (Defaults to) –
api_base (Optional[str]) – API base. Defaults to None.
metadatas (Optional[List[dict]]) – Optional list of metadatas.
None. –
Returns
Clarifai vectorstore.
Return type
Clarifai
max_marginal_relevance_search(query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[Document]¶
Return docs selected using the maximal marginal relevance.
Maximal marginal relevance optimizes for similarity to query AND diversity
among selected documents.
Parameters
query – Text to look up documents similar to.
k – Number of Documents to return. Defaults to 4.
fetch_k – Number of Documents to fetch to pass to MMR algorithm.
lambda_mult – Number between 0 and 1 that determines the degree
of diversity among the results with 0 corresponding
|
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.clarifai.Clarifai.html
|
ea008fb218a9-6
|
of diversity among the results with 0 corresponding
to maximum diversity and 1 to minimum diversity.
Defaults to 0.5.
Returns
List of Documents selected by maximal marginal relevance.
max_marginal_relevance_search_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[Document]¶
Return docs selected using the maximal marginal relevance.
Maximal marginal relevance optimizes for similarity to query AND diversity
among selected documents.
Parameters
embedding – Embedding to look up documents similar to.
k – Number of Documents to return. Defaults to 4.
fetch_k – Number of Documents to fetch to pass to MMR algorithm.
lambda_mult – Number between 0 and 1 that determines the degree
of diversity among the results with 0 corresponding
to maximum diversity and 1 to minimum diversity.
Defaults to 0.5.
Returns
List of Documents selected by maximal marginal relevance.
search(query: str, search_type: str, **kwargs: Any) → List[Document]¶
Return docs most similar to query using specified search type.
similarity_search(query: str, k: int = 4, **kwargs: Any) → List[Document][source]¶
Run similarity search using Clarifai.
Parameters
query – Text to look up documents similar to.
k – Number of Documents to return. Defaults to 4.
Returns
List of Documents most similar to the query and score for each
similarity_search_by_vector(embedding: List[float], k: int = 4, **kwargs: Any) → List[Document]¶
Return docs most similar to embedding vector.
Parameters
embedding – Embedding to look up documents similar to.
|
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.clarifai.Clarifai.html
|
ea008fb218a9-7
|
Parameters
embedding – Embedding to look up documents similar to.
k – Number of Documents to return. Defaults to 4.
Returns
List of Documents most similar to the query vector.
similarity_search_with_relevance_scores(query: str, k: int = 4, **kwargs: Any) → List[Tuple[Document, float]]¶
Return docs and relevance scores in the range [0, 1].
0 is dissimilar, 1 is most similar.
Parameters
query – input text
k – Number of Documents to return. Defaults to 4.
**kwargs – kwargs to be passed to similarity search. Should include:
score_threshold: Optional, a floating point value between 0 to 1 to
filter the resulting set of retrieved docs
Returns
List of Tuples of (doc, similarity_score)
similarity_search_with_score(query: str, k: int = 4, filter: Optional[dict] = None, namespace: Optional[str] = None, **kwargs: Any) → List[Tuple[Document, float]][source]¶
Run similarity search with score using Clarifai.
Parameters
query (str) – Query text to search for.
k (int) – Number of results to return. Defaults to 4.
filter (Optional[Dict[str, str]]) – Filter by metadata.
None. (Defaults to) –
Returns
List of documents most similar to the query text.
Return type
List[Document]
property embeddings: Optional[langchain.embeddings.base.Embeddings]¶
Access the query embedding object if available.
Examples using Clarifai¶
Clarifai
|
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.clarifai.Clarifai.html
|
5e6ba4900b82-0
|
langchain.vectorstores.utils.maximal_marginal_relevance¶
langchain.vectorstores.utils.maximal_marginal_relevance(query_embedding: ndarray, embedding_list: list, lambda_mult: float = 0.5, k: int = 4) → List[int][source]¶
Calculate maximal marginal relevance.
|
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.utils.maximal_marginal_relevance.html
|
d2abd0725fd3-0
|
langchain.vectorstores.typesense.Typesense¶
class langchain.vectorstores.typesense.Typesense(typesense_client: Client, embedding: Embeddings, *, typesense_collection_name: Optional[str] = None, text_key: str = 'text')[source]¶
Bases: VectorStore
Wrapper around Typesense vector search.
To use, you should have the typesense python package installed.
Example
from langchain.embedding.openai import OpenAIEmbeddings
from langchain.vectorstores import Typesense
import typesense
node = {
"host": "localhost", # For Typesense Cloud use xxx.a1.typesense.net
"port": "8108", # For Typesense Cloud use 443
"protocol": "http" # For Typesense Cloud use https
}
typesense_client = typesense.Client(
{
"nodes": [node],
"api_key": "<API_KEY>",
"connection_timeout_seconds": 2
}
)
typesense_collection_name = "langchain-memory"
embedding = OpenAIEmbeddings()
vectorstore = Typesense(
typesense_client=typesense_client,
embedding=embedding,
typesense_collection_name=typesense_collection_name,
text_key="text",
)
Initialize with Typesense client.
Methods
__init__(typesense_client, embedding, *[, ...])
Initialize with Typesense client.
aadd_documents(documents, **kwargs)
Run more documents through the embeddings and add to the vectorstore.
aadd_texts(texts[, metadatas])
Run more texts through the embeddings and add to the vectorstore.
add_documents(documents, **kwargs)
Run more documents through the embeddings and add to the vectorstore.
add_texts(texts[, metadatas, ids])
|
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.typesense.Typesense.html
|
d2abd0725fd3-1
|
add_texts(texts[, metadatas, ids])
Run more texts through the embedding and add to the vectorstore.
afrom_documents(documents, embedding, **kwargs)
Return VectorStore initialized from documents and embeddings.
afrom_texts(texts, embedding[, metadatas])
Return VectorStore initialized from texts and embeddings.
amax_marginal_relevance_search(query[, k, ...])
Return docs selected using the maximal marginal relevance.
amax_marginal_relevance_search_by_vector(...)
Return docs selected using the maximal marginal relevance.
as_retriever(**kwargs)
asearch(query, search_type, **kwargs)
Return docs most similar to query using specified search type.
asimilarity_search(query[, k])
Return docs most similar to query.
asimilarity_search_by_vector(embedding[, k])
Return docs most similar to embedding vector.
asimilarity_search_with_relevance_scores(query)
Return docs most similar to query.
delete([ids])
Delete by vector ID or other criteria.
from_client_params(embedding, *[, host, ...])
Initialize Typesense directly from client parameters.
from_documents(documents, embedding, **kwargs)
Return VectorStore initialized from documents and embeddings.
from_texts(texts, embedding[, metadatas, ...])
Construct Typesense wrapper from raw text.
max_marginal_relevance_search(query[, k, ...])
Return docs selected using the maximal marginal relevance.
max_marginal_relevance_search_by_vector(...)
Return docs selected using the maximal marginal relevance.
search(query, search_type, **kwargs)
Return docs most similar to query using specified search type.
similarity_search(query[, k, filter])
Return typesense documents most similar to query.
|
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.typesense.Typesense.html
|
d2abd0725fd3-2
|
Return typesense documents most similar to query.
similarity_search_by_vector(embedding[, k])
Return docs most similar to embedding vector.
similarity_search_with_relevance_scores(query)
Return docs and relevance scores in the range [0, 1].
similarity_search_with_score(query[, k, filter])
Return typesense documents most similar to query, along with scores.
Attributes
embeddings
Access the query embedding object if available.
async aadd_documents(documents: List[Document], **kwargs: Any) → List[str]¶
Run more documents through the embeddings and add to the vectorstore.
Parameters
(List[Document] (documents) – Documents to add to the vectorstore.
Returns
List of IDs of the added texts.
Return type
List[str]
async aadd_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, **kwargs: Any) → List[str]¶
Run more texts through the embeddings and add to the vectorstore.
add_documents(documents: List[Document], **kwargs: Any) → List[str]¶
Run more documents through the embeddings and add to the vectorstore.
Parameters
(List[Document] (documents) – Documents to add to the vectorstore.
Returns
List of IDs of the added texts.
Return type
List[str]
add_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, **kwargs: Any) → List[str][source]¶
Run more texts through the embedding and add to the vectorstore.
Parameters
texts – Iterable of strings to add to the vectorstore.
metadatas – Optional list of metadatas associated with the texts.
ids – Optional list of ids to associate with the texts.
Returns
|
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.typesense.Typesense.html
|
d2abd0725fd3-3
|
ids – Optional list of ids to associate with the texts.
Returns
List of ids from adding the texts into the vectorstore.
async classmethod afrom_documents(documents: List[Document], embedding: Embeddings, **kwargs: Any) → VST¶
Return VectorStore initialized from documents and embeddings.
async classmethod afrom_texts(texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, **kwargs: Any) → VST¶
Return VectorStore initialized from texts and embeddings.
async amax_marginal_relevance_search(query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[Document]¶
Return docs selected using the maximal marginal relevance.
async amax_marginal_relevance_search_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[Document]¶
Return docs selected using the maximal marginal relevance.
as_retriever(**kwargs: Any) → VectorStoreRetriever¶
async asearch(query: str, search_type: str, **kwargs: Any) → List[Document]¶
Return docs most similar to query using specified search type.
async asimilarity_search(query: str, k: int = 4, **kwargs: Any) → List[Document]¶
Return docs most similar to query.
async asimilarity_search_by_vector(embedding: List[float], k: int = 4, **kwargs: Any) → List[Document]¶
Return docs most similar to embedding vector.
|
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.typesense.Typesense.html
|
d2abd0725fd3-4
|
Return docs most similar to embedding vector.
async asimilarity_search_with_relevance_scores(query: str, k: int = 4, **kwargs: Any) → List[Tuple[Document, float]]¶
Return docs most similar to query.
delete(ids: Optional[List[str]] = None, **kwargs: Any) → Optional[bool]¶
Delete by vector ID or other criteria.
Parameters
ids – List of ids to delete.
**kwargs – Other keyword arguments that subclasses might use.
Returns
True if deletion is successful,
False otherwise, None if not implemented.
Return type
Optional[bool]
classmethod from_client_params(embedding: Embeddings, *, host: str = 'localhost', port: Union[str, int] = '8108', protocol: str = 'http', typesense_api_key: Optional[str] = None, connection_timeout_seconds: int = 2, **kwargs: Any) → Typesense[source]¶
Initialize Typesense directly from client parameters.
Example
from langchain.embedding.openai import OpenAIEmbeddings
from langchain.vectorstores import Typesense
# Pass in typesense_api_key as kwarg or set env var "TYPESENSE_API_KEY".
vectorstore = Typesense(
OpenAIEmbeddings(),
host="localhost",
port="8108",
protocol="http",
typesense_collection_name="langchain-memory",
)
classmethod from_documents(documents: List[Document], embedding: Embeddings, **kwargs: Any) → VST¶
Return VectorStore initialized from documents and embeddings.
|
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.typesense.Typesense.html
|
d2abd0725fd3-5
|
Return VectorStore initialized from documents and embeddings.
classmethod from_texts(texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, typesense_client: Optional[Client] = None, typesense_client_params: Optional[dict] = None, typesense_collection_name: Optional[str] = None, text_key: str = 'text', **kwargs: Any) → Typesense[source]¶
Construct Typesense wrapper from raw text.
max_marginal_relevance_search(query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[Document]¶
Return docs selected using the maximal marginal relevance.
Maximal marginal relevance optimizes for similarity to query AND diversity
among selected documents.
Parameters
query – Text to look up documents similar to.
k – Number of Documents to return. Defaults to 4.
fetch_k – Number of Documents to fetch to pass to MMR algorithm.
lambda_mult – Number between 0 and 1 that determines the degree
of diversity among the results with 0 corresponding
to maximum diversity and 1 to minimum diversity.
Defaults to 0.5.
Returns
List of Documents selected by maximal marginal relevance.
max_marginal_relevance_search_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[Document]¶
Return docs selected using the maximal marginal relevance.
Maximal marginal relevance optimizes for similarity to query AND diversity
among selected documents.
Parameters
embedding – Embedding to look up documents similar to.
k – Number of Documents to return. Defaults to 4.
|
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.typesense.Typesense.html
|
d2abd0725fd3-6
|
k – Number of Documents to return. Defaults to 4.
fetch_k – Number of Documents to fetch to pass to MMR algorithm.
lambda_mult – Number between 0 and 1 that determines the degree
of diversity among the results with 0 corresponding
to maximum diversity and 1 to minimum diversity.
Defaults to 0.5.
Returns
List of Documents selected by maximal marginal relevance.
search(query: str, search_type: str, **kwargs: Any) → List[Document]¶
Return docs most similar to query using specified search type.
similarity_search(query: str, k: int = 10, filter: Optional[str] = '', **kwargs: Any) → List[Document][source]¶
Return typesense documents most similar to query.
Parameters
query – Text to look up documents similar to.
k – Number of Documents to return. Defaults to 10.
Minimum 10 results would be returned.
filter – typesense filter_by expression to filter documents on
Returns
List of Documents most similar to the query and score for each
similarity_search_by_vector(embedding: List[float], k: int = 4, **kwargs: Any) → List[Document]¶
Return docs most similar to embedding vector.
Parameters
embedding – Embedding to look up documents similar to.
k – Number of Documents to return. Defaults to 4.
Returns
List of Documents most similar to the query vector.
similarity_search_with_relevance_scores(query: str, k: int = 4, **kwargs: Any) → List[Tuple[Document, float]]¶
Return docs and relevance scores in the range [0, 1].
0 is dissimilar, 1 is most similar.
Parameters
query – input text
k – Number of Documents to return. Defaults to 4.
|
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.typesense.Typesense.html
|
d2abd0725fd3-7
|
query – input text
k – Number of Documents to return. Defaults to 4.
**kwargs – kwargs to be passed to similarity search. Should include:
score_threshold: Optional, a floating point value between 0 to 1 to
filter the resulting set of retrieved docs
Returns
List of Tuples of (doc, similarity_score)
similarity_search_with_score(query: str, k: int = 10, filter: Optional[str] = '') → List[Tuple[Document, float]][source]¶
Return typesense documents most similar to query, along with scores.
Parameters
query – Text to look up documents similar to.
k – Number of Documents to return. Defaults to 10.
Minimum 10 results would be returned.
filter – typesense filter_by expression to filter documents on
Returns
List of Documents most similar to the query and score for each
property embeddings: langchain.embeddings.base.Embeddings¶
Access the query embedding object if available.
Examples using Typesense¶
Typesense
|
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.typesense.Typesense.html
|
56206a78c513-0
|
langchain.vectorstores.singlestoredb.SingleStoreDBRetriever¶
class langchain.vectorstores.singlestoredb.SingleStoreDBRetriever(*, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, vectorstore: SingleStoreDB, search_type: str = 'similarity', search_kwargs: dict = None, k: int = 4)[source]¶
Bases: VectorStoreRetriever
Retriever for SingleStoreDB vector stores.
Create a new model by parsing and validating input data from keyword arguments.
Raises ValidationError if the input data cannot be parsed to form a valid model.
param k: int = 4¶
param metadata: Optional[Dict[str, Any]] = None¶
Optional metadata associated with the retriever. Defaults to None
This metadata will be associated with each call to this retriever,
and passed as arguments to the handlers defined in callbacks.
You can use these to eg identify a specific instance of a retriever with its
use case.
param search_kwargs: dict [Optional]¶
Keyword arguments to pass to the search function.
param search_type: str = 'similarity'¶
Type of search to perform. Defaults to “similarity”.
param tags: Optional[List[str]] = None¶
Optional list of tags associated with the retriever. Defaults to None
These tags will be associated with each call to this retriever,
and passed as arguments to the handlers defined in callbacks.
You can use these to eg identify a specific instance of a retriever with its
use case.
param vectorstore: SingleStoreDB [Required]¶
VectorStore to use for retrieval.
async aadd_documents(documents: List[Document], **kwargs: Any) → List[str]¶
Add documents to vectorstore.
|
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.singlestoredb.SingleStoreDBRetriever.html
|
56206a78c513-1
|
Add documents to vectorstore.
add_documents(documents: List[Document], **kwargs: Any) → List[str]¶
Add documents to vectorstore.
async aget_relevant_documents(query: str, *, callbacks: Callbacks = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → List[Document]¶
Asynchronously get documents relevant to a query.
:param query: string to find relevant documents for
:param callbacks: Callback manager or list of callbacks
:param tags: Optional list of tags associated with the retriever. Defaults to None
These tags will be associated with each call to this retriever,
and passed as arguments to the handlers defined in callbacks.
Parameters
metadata – Optional metadata associated with the retriever. Defaults to None
This metadata will be associated with each call to this retriever,
and passed as arguments to the handlers defined in callbacks.
Returns
List of relevant documents
async ainvoke(input: str, config: Optional[RunnableConfig] = None) → List[Document]¶
get_relevant_documents(query: str, *, callbacks: Callbacks = None, tags: Optional[List[str]] = None, metadata: Optional[Dict[str, Any]] = None, **kwargs: Any) → List[Document]¶
Retrieve documents relevant to a query.
:param query: string to find relevant documents for
:param callbacks: Callback manager or list of callbacks
:param tags: Optional list of tags associated with the retriever. Defaults to None
These tags will be associated with each call to this retriever,
and passed as arguments to the handlers defined in callbacks.
Parameters
metadata – Optional metadata associated with the retriever. Defaults to None
This metadata will be associated with each call to this retriever,
and passed as arguments to the handlers defined in callbacks.
Returns
List of relevant documents
|
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.singlestoredb.SingleStoreDBRetriever.html
|
56206a78c513-2
|
and passed as arguments to the handlers defined in callbacks.
Returns
List of relevant documents
invoke(input: str, config: Optional[RunnableConfig] = None) → List[Document]¶
to_json() → Union[SerializedConstructor, SerializedNotImplemented]¶
to_json_not_implemented() → SerializedNotImplemented¶
validator validate_search_type » all fields¶
Validate search type.
allowed_search_types: ClassVar[Collection[str]] = ('similarity',)¶
property lc_attributes: Dict¶
Return a list of attribute names that should be included in the
serialized kwargs. These attributes must be accepted by the
constructor.
property lc_namespace: List[str]¶
Return the namespace of the langchain object.
eg. [“langchain”, “llms”, “openai”]
property lc_secrets: Dict[str, str]¶
Return a map of constructor argument names to secret ids.
eg. {“openai_api_key”: “OPENAI_API_KEY”}
property lc_serializable: bool¶
Return whether or not the class is serializable.
model Config¶
Bases: object
Configuration for this pydantic object.
arbitrary_types_allowed = True¶
|
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.singlestoredb.SingleStoreDBRetriever.html
|
0a2f54684f59-0
|
langchain.vectorstores.tigris.Tigris¶
class langchain.vectorstores.tigris.Tigris(client: TigrisClient, embeddings: Embeddings, index_name: str)[source]¶
Bases: VectorStore
Initialize Tigris vector store
Methods
__init__(client, embeddings, index_name)
Initialize Tigris vector store
aadd_documents(documents, **kwargs)
Run more documents through the embeddings and add to the vectorstore.
aadd_texts(texts[, metadatas])
Run more texts through the embeddings and add to the vectorstore.
add_documents(documents, **kwargs)
Run more documents through the embeddings and add to the vectorstore.
add_texts(texts[, metadatas, ids])
Run more texts through the embeddings and add to the vectorstore.
afrom_documents(documents, embedding, **kwargs)
Return VectorStore initialized from documents and embeddings.
afrom_texts(texts, embedding[, metadatas])
Return VectorStore initialized from texts and embeddings.
amax_marginal_relevance_search(query[, k, ...])
Return docs selected using the maximal marginal relevance.
amax_marginal_relevance_search_by_vector(...)
Return docs selected using the maximal marginal relevance.
as_retriever(**kwargs)
asearch(query, search_type, **kwargs)
Return docs most similar to query using specified search type.
asimilarity_search(query[, k])
Return docs most similar to query.
asimilarity_search_by_vector(embedding[, k])
Return docs most similar to embedding vector.
asimilarity_search_with_relevance_scores(query)
Return docs most similar to query.
delete([ids])
Delete by vector ID or other criteria.
from_documents(documents, embedding, **kwargs)
|
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.tigris.Tigris.html
|
0a2f54684f59-1
|
from_documents(documents, embedding, **kwargs)
Return VectorStore initialized from documents and embeddings.
from_texts(texts, embedding[, metadatas, ...])
Return VectorStore initialized from texts and embeddings.
max_marginal_relevance_search(query[, k, ...])
Return docs selected using the maximal marginal relevance.
max_marginal_relevance_search_by_vector(...)
Return docs selected using the maximal marginal relevance.
search(query, search_type, **kwargs)
Return docs most similar to query using specified search type.
similarity_search(query[, k, filter])
Return docs most similar to query.
similarity_search_by_vector(embedding[, k])
Return docs most similar to embedding vector.
similarity_search_with_relevance_scores(query)
Return docs and relevance scores in the range [0, 1].
similarity_search_with_score(query[, k, filter])
Run similarity search with Chroma with distance.
Attributes
embeddings
Access the query embedding object if available.
search_index
async aadd_documents(documents: List[Document], **kwargs: Any) → List[str]¶
Run more documents through the embeddings and add to the vectorstore.
Parameters
(List[Document] (documents) – Documents to add to the vectorstore.
Returns
List of IDs of the added texts.
Return type
List[str]
async aadd_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, **kwargs: Any) → List[str]¶
Run more texts through the embeddings and add to the vectorstore.
add_documents(documents: List[Document], **kwargs: Any) → List[str]¶
Run more documents through the embeddings and add to the vectorstore.
Parameters
|
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.tigris.Tigris.html
|
0a2f54684f59-2
|
Run more documents through the embeddings and add to the vectorstore.
Parameters
(List[Document] (documents) – Documents to add to the vectorstore.
Returns
List of IDs of the added texts.
Return type
List[str]
add_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, **kwargs: Any) → List[str][source]¶
Run more texts through the embeddings and add to the vectorstore.
Parameters
texts – Iterable of strings to add to the vectorstore.
metadatas – Optional list of metadatas associated with the texts.
ids – Optional list of ids for documents.
Ids will be autogenerated if not provided.
kwargs – vectorstore specific parameters
Returns
List of ids from adding the texts into the vectorstore.
async classmethod afrom_documents(documents: List[Document], embedding: Embeddings, **kwargs: Any) → VST¶
Return VectorStore initialized from documents and embeddings.
async classmethod afrom_texts(texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, **kwargs: Any) → VST¶
Return VectorStore initialized from texts and embeddings.
async amax_marginal_relevance_search(query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[Document]¶
Return docs selected using the maximal marginal relevance.
async amax_marginal_relevance_search_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[Document]¶
Return docs selected using the maximal marginal relevance.
|
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.tigris.Tigris.html
|
0a2f54684f59-3
|
Return docs selected using the maximal marginal relevance.
as_retriever(**kwargs: Any) → VectorStoreRetriever¶
async asearch(query: str, search_type: str, **kwargs: Any) → List[Document]¶
Return docs most similar to query using specified search type.
async asimilarity_search(query: str, k: int = 4, **kwargs: Any) → List[Document]¶
Return docs most similar to query.
async asimilarity_search_by_vector(embedding: List[float], k: int = 4, **kwargs: Any) → List[Document]¶
Return docs most similar to embedding vector.
async asimilarity_search_with_relevance_scores(query: str, k: int = 4, **kwargs: Any) → List[Tuple[Document, float]]¶
Return docs most similar to query.
delete(ids: Optional[List[str]] = None, **kwargs: Any) → Optional[bool]¶
Delete by vector ID or other criteria.
Parameters
ids – List of ids to delete.
**kwargs – Other keyword arguments that subclasses might use.
Returns
True if deletion is successful,
False otherwise, None if not implemented.
Return type
Optional[bool]
classmethod from_documents(documents: List[Document], embedding: Embeddings, **kwargs: Any) → VST¶
Return VectorStore initialized from documents and embeddings.
classmethod from_texts(texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, client: Optional[TigrisClient] = None, index_name: Optional[str] = None, **kwargs: Any) → Tigris[source]¶
Return VectorStore initialized from texts and embeddings.
|
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.tigris.Tigris.html
|
0a2f54684f59-4
|
Return VectorStore initialized from texts and embeddings.
max_marginal_relevance_search(query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[Document]¶
Return docs selected using the maximal marginal relevance.
Maximal marginal relevance optimizes for similarity to query AND diversity
among selected documents.
Parameters
query – Text to look up documents similar to.
k – Number of Documents to return. Defaults to 4.
fetch_k – Number of Documents to fetch to pass to MMR algorithm.
lambda_mult – Number between 0 and 1 that determines the degree
of diversity among the results with 0 corresponding
to maximum diversity and 1 to minimum diversity.
Defaults to 0.5.
Returns
List of Documents selected by maximal marginal relevance.
max_marginal_relevance_search_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[Document]¶
Return docs selected using the maximal marginal relevance.
Maximal marginal relevance optimizes for similarity to query AND diversity
among selected documents.
Parameters
embedding – Embedding to look up documents similar to.
k – Number of Documents to return. Defaults to 4.
fetch_k – Number of Documents to fetch to pass to MMR algorithm.
lambda_mult – Number between 0 and 1 that determines the degree
of diversity among the results with 0 corresponding
to maximum diversity and 1 to minimum diversity.
Defaults to 0.5.
Returns
List of Documents selected by maximal marginal relevance.
search(query: str, search_type: str, **kwargs: Any) → List[Document]¶
Return docs most similar to query using specified search type.
|
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.tigris.Tigris.html
|
0a2f54684f59-5
|
Return docs most similar to query using specified search type.
similarity_search(query: str, k: int = 4, filter: Optional[TigrisFilter] = None, **kwargs: Any) → List[Document][source]¶
Return docs most similar to query.
similarity_search_by_vector(embedding: List[float], k: int = 4, **kwargs: Any) → List[Document]¶
Return docs most similar to embedding vector.
Parameters
embedding – Embedding to look up documents similar to.
k – Number of Documents to return. Defaults to 4.
Returns
List of Documents most similar to the query vector.
similarity_search_with_relevance_scores(query: str, k: int = 4, **kwargs: Any) → List[Tuple[Document, float]]¶
Return docs and relevance scores in the range [0, 1].
0 is dissimilar, 1 is most similar.
Parameters
query – input text
k – Number of Documents to return. Defaults to 4.
**kwargs – kwargs to be passed to similarity search. Should include:
score_threshold: Optional, a floating point value between 0 to 1 to
filter the resulting set of retrieved docs
Returns
List of Tuples of (doc, similarity_score)
similarity_search_with_score(query: str, k: int = 4, filter: Optional[TigrisFilter] = None) → List[Tuple[Document, float]][source]¶
Run similarity search with Chroma with distance.
Parameters
query (str) – Query text to search for.
k (int) – Number of results to return. Defaults to 4.
filter (Optional[TigrisFilter]) – Filter by metadata. Defaults to None.
Returns
List of documents most similar to the querytext with distance in float.
Return type
|
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.tigris.Tigris.html
|
0a2f54684f59-6
|
Returns
List of documents most similar to the querytext with distance in float.
Return type
List[Tuple[Document, float]]
property embeddings: langchain.embeddings.base.Embeddings¶
Access the query embedding object if available.
property search_index: TigrisVectorStore¶
Examples using Tigris¶
Tigris
|
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.tigris.Tigris.html
|
79084f97b600-0
|
langchain.vectorstores.cassandra.Cassandra¶
class langchain.vectorstores.cassandra.Cassandra(embedding: Embeddings, session: Session, keyspace: str, table_name: str, ttl_seconds: Optional[int] = None)[source]¶
Bases: VectorStore
Wrapper around Cassandra embeddings platform.
There is no notion of a default table name, since each embedding
function implies its own vector dimension, which is part of the schema.
Example
from langchain.vectorstores import Cassandra
from langchain.embeddings.openai import OpenAIEmbeddings
embeddings = OpenAIEmbeddings()
session = ...
keyspace = 'my_keyspace'
vectorstore = Cassandra(embeddings, session, keyspace, 'my_doc_archive')
Methods
__init__(embedding, session, keyspace, ...)
aadd_documents(documents, **kwargs)
Run more documents through the embeddings and add to the vectorstore.
aadd_texts(texts[, metadatas])
Run more texts through the embeddings and add to the vectorstore.
add_documents(documents, **kwargs)
Run more documents through the embeddings and add to the vectorstore.
add_texts(texts[, metadatas, ids, ...])
Run more texts through the embeddings and add to the vectorstore.
afrom_documents(documents, embedding, **kwargs)
Return VectorStore initialized from documents and embeddings.
afrom_texts(texts, embedding[, metadatas])
Return VectorStore initialized from texts and embeddings.
amax_marginal_relevance_search(query[, k, ...])
Return docs selected using the maximal marginal relevance.
amax_marginal_relevance_search_by_vector(...)
Return docs selected using the maximal marginal relevance.
as_retriever(**kwargs)
asearch(query, search_type, **kwargs)
|
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.cassandra.Cassandra.html
|
79084f97b600-1
|
asearch(query, search_type, **kwargs)
Return docs most similar to query using specified search type.
asimilarity_search(query[, k])
Return docs most similar to query.
asimilarity_search_by_vector(embedding[, k])
Return docs most similar to embedding vector.
asimilarity_search_with_relevance_scores(query)
Return docs most similar to query.
clear()
Empty the collection.
delete([ids])
Delete by vector IDs.
delete_by_document_id(document_id)
delete_collection()
Just an alias for clear (to better align with other VectorStore implementations).
from_documents(documents, embedding[, ...])
Create a Cassandra vectorstore from a document list.
from_texts(texts, embedding[, metadatas, ...])
Create a Cassandra vectorstore from raw texts.
max_marginal_relevance_search(query[, k, ...])
Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. :param query: Text to look up documents similar to. :param k: Number of Documents to return. :param fetch_k: Number of Documents to fetch to pass to MMR algorithm. :param lambda_mult: Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Optional.
max_marginal_relevance_search_by_vector(...)
|
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.cassandra.Cassandra.html
|
79084f97b600-2
|
max_marginal_relevance_search_by_vector(...)
Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. :param embedding: Embedding to look up documents similar to. :param k: Number of Documents to return. :param fetch_k: Number of Documents to fetch to pass to MMR algorithm. :param lambda_mult: Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity.
search(query, search_type, **kwargs)
Return docs most similar to query using specified search type.
similarity_search(query[, k])
Return docs most similar to query.
similarity_search_by_vector(embedding[, k])
Return docs most similar to embedding vector.
similarity_search_with_relevance_scores(query)
Return docs and relevance scores in the range [0, 1].
similarity_search_with_score(query[, k])
Run similarity search with distance.
similarity_search_with_score_by_vector(embedding)
Return docs most similar to embedding vector.
similarity_search_with_score_id(query[, k])
similarity_search_with_score_id_by_vector(...)
Return docs most similar to embedding vector.
Attributes
embeddings
Access the query embedding object if available.
async aadd_documents(documents: List[Document], **kwargs: Any) → List[str]¶
Run more documents through the embeddings and add to the vectorstore.
Parameters
(List[Document] (documents) – Documents to add to the vectorstore.
Returns
List of IDs of the added texts.
Return type
List[str]
async aadd_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, **kwargs: Any) → List[str]¶
|
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.cassandra.Cassandra.html
|
79084f97b600-3
|
Run more texts through the embeddings and add to the vectorstore.
add_documents(documents: List[Document], **kwargs: Any) → List[str]¶
Run more documents through the embeddings and add to the vectorstore.
Parameters
(List[Document] (documents) – Documents to add to the vectorstore.
Returns
List of IDs of the added texts.
Return type
List[str]
add_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, batch_size: int = 16, ttl_seconds: Optional[int] = None, **kwargs: Any) → List[str][source]¶
Run more texts through the embeddings and add to the vectorstore.
Parameters
texts (Iterable[str]) – Texts to add to the vectorstore.
metadatas (Optional[List[dict]], optional) – Optional list of metadatas.
ids (Optional[List[str]], optional) – Optional list of IDs.
batch_size (int) – Number of concurrent requests to send to the server.
ttl_seconds (Optional[int], optional) – Optional time-to-live
for the added texts.
Returns
List of IDs of the added texts.
Return type
List[str]
async classmethod afrom_documents(documents: List[Document], embedding: Embeddings, **kwargs: Any) → VST¶
Return VectorStore initialized from documents and embeddings.
async classmethod afrom_texts(texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, **kwargs: Any) → VST¶
Return VectorStore initialized from texts and embeddings.
|
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.cassandra.Cassandra.html
|
79084f97b600-4
|
Return VectorStore initialized from texts and embeddings.
async amax_marginal_relevance_search(query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[Document]¶
Return docs selected using the maximal marginal relevance.
async amax_marginal_relevance_search_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[Document]¶
Return docs selected using the maximal marginal relevance.
as_retriever(**kwargs: Any) → VectorStoreRetriever¶
async asearch(query: str, search_type: str, **kwargs: Any) → List[Document]¶
Return docs most similar to query using specified search type.
async asimilarity_search(query: str, k: int = 4, **kwargs: Any) → List[Document]¶
Return docs most similar to query.
async asimilarity_search_by_vector(embedding: List[float], k: int = 4, **kwargs: Any) → List[Document]¶
Return docs most similar to embedding vector.
async asimilarity_search_with_relevance_scores(query: str, k: int = 4, **kwargs: Any) → List[Tuple[Document, float]]¶
Return docs most similar to query.
clear() → None[source]¶
Empty the collection.
delete(ids: Optional[List[str]] = None, **kwargs: Any) → Optional[bool][source]¶
Delete by vector IDs.
Parameters
ids – List of ids to delete.
Returns
True if deletion is successful,
False otherwise, None if not implemented.
Return type
Optional[bool]
|
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.cassandra.Cassandra.html
|
79084f97b600-5
|
False otherwise, None if not implemented.
Return type
Optional[bool]
delete_by_document_id(document_id: str) → None[source]¶
delete_collection() → None[source]¶
Just an alias for clear
(to better align with other VectorStore implementations).
classmethod from_documents(documents: List[Document], embedding: Embeddings, batch_size: int = 16, **kwargs: Any) → CVST[source]¶
Create a Cassandra vectorstore from a document list.
No support for specifying text IDs
Returns
a Cassandra vectorstore.
classmethod from_texts(texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, batch_size: int = 16, **kwargs: Any) → CVST[source]¶
Create a Cassandra vectorstore from raw texts.
No support for specifying text IDs
Returns
a Cassandra vectorstore.
max_marginal_relevance_search(query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[Document][source]¶
Return docs selected using the maximal marginal relevance.
Maximal marginal relevance optimizes for similarity to query AND diversity
among selected documents.
:param query: Text to look up documents similar to.
:param k: Number of Documents to return.
:param fetch_k: Number of Documents to fetch to pass to MMR algorithm.
:param lambda_mult: Number between 0 and 1 that determines the degree
of diversity among the results with 0 corresponding
to maximum diversity and 1 to minimum diversity.
Optional.
Returns
List of Documents selected by maximal marginal relevance.
|
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.cassandra.Cassandra.html
|
79084f97b600-6
|
Optional.
Returns
List of Documents selected by maximal marginal relevance.
max_marginal_relevance_search_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[Document][source]¶
Return docs selected using the maximal marginal relevance.
Maximal marginal relevance optimizes for similarity to query AND diversity
among selected documents.
:param embedding: Embedding to look up documents similar to.
:param k: Number of Documents to return.
:param fetch_k: Number of Documents to fetch to pass to MMR algorithm.
:param lambda_mult: Number between 0 and 1 that determines the degree
of diversity among the results with 0 corresponding
to maximum diversity and 1 to minimum diversity.
Returns
List of Documents selected by maximal marginal relevance.
search(query: str, search_type: str, **kwargs: Any) → List[Document]¶
Return docs most similar to query using specified search type.
similarity_search(query: str, k: int = 4, **kwargs: Any) → List[Document][source]¶
Return docs most similar to query.
similarity_search_by_vector(embedding: List[float], k: int = 4, **kwargs: Any) → List[Document][source]¶
Return docs most similar to embedding vector.
Parameters
embedding – Embedding to look up documents similar to.
k – Number of Documents to return. Defaults to 4.
Returns
List of Documents most similar to the query vector.
similarity_search_with_relevance_scores(query: str, k: int = 4, **kwargs: Any) → List[Tuple[Document, float]]¶
Return docs and relevance scores in the range [0, 1].
0 is dissimilar, 1 is most similar.
|
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.cassandra.Cassandra.html
|
79084f97b600-7
|
0 is dissimilar, 1 is most similar.
Parameters
query – input text
k – Number of Documents to return. Defaults to 4.
**kwargs – kwargs to be passed to similarity search. Should include:
score_threshold: Optional, a floating point value between 0 to 1 to
filter the resulting set of retrieved docs
Returns
List of Tuples of (doc, similarity_score)
similarity_search_with_score(query: str, k: int = 4) → List[Tuple[Document, float]][source]¶
Run similarity search with distance.
similarity_search_with_score_by_vector(embedding: List[float], k: int = 4) → List[Tuple[Document, float]][source]¶
Return docs most similar to embedding vector.
No support for filter query (on metadata) along with vector search.
Parameters
embedding (str) – Embedding to look up documents similar to.
k (int) – Number of Documents to return. Defaults to 4.
Returns
List of (Document, score), the most similar to the query vector.
similarity_search_with_score_id(query: str, k: int = 4) → List[Tuple[Document, float, str]][source]¶
similarity_search_with_score_id_by_vector(embedding: List[float], k: int = 4) → List[Tuple[Document, float, str]][source]¶
Return docs most similar to embedding vector.
No support for filter query (on metadata) along with vector search.
Parameters
embedding (str) – Embedding to look up documents similar to.
k (int) – Number of Documents to return. Defaults to 4.
Returns
List of (Document, score, id), the most similar to the query vector.
property embeddings: langchain.embeddings.base.Embeddings¶
Access the query embedding object if available.
|
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.cassandra.Cassandra.html
|
79084f97b600-8
|
Access the query embedding object if available.
Examples using Cassandra¶
Cassandra
|
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.cassandra.Cassandra.html
|
d2b2444e52cd-0
|
langchain.vectorstores.redis.Redis¶
class langchain.vectorstores.redis.Redis(redis_url: str, index_name: str, embedding_function: Callable, content_key: str = 'content', metadata_key: str = 'metadata', vector_key: str = 'content_vector', relevance_score_fn: Optional[Callable[[float], float]] = None, distance_metric: Literal['COSINE', 'IP', 'L2'] = 'COSINE', **kwargs: Any)[source]¶
Bases: VectorStore
Wrapper around Redis vector database.
To use, you should have the redis python package installed.
Example
from langchain.vectorstores import Redis
from langchain.embeddings import OpenAIEmbeddings
embeddings = OpenAIEmbeddings()
vectorstore = Redis(
redis_url="redis://username:password@localhost:6379"
index_name="my-index",
embedding_function=embeddings.embed_query,
)
To use a redis replication setup with multiple redis server and redis sentinels
set “redis_url” to “redis+sentinel://” scheme. With this url format a path is
needed holding the name of the redis service within the sentinels to get the
correct redis server connection. The default service name is “mymaster”.
An optional username or password is used for booth connections to the rediserver
and the sentinel, different passwords for server and sentinel are not supported.
And as another constraint only one sentinel instance can be given:
Example
vectorstore = Redis(
redis_url="redis+sentinel://username:password@sentinelhost:26379/mymaster/0"
index_name="my-index",
embedding_function=embeddings.embed_query,
)
Initialize with necessary components.
Methods
__init__(redis_url, index_name, ...[, ...])
Initialize with necessary components.
|
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.redis.Redis.html
|
d2b2444e52cd-1
|
Initialize with necessary components.
aadd_documents(documents, **kwargs)
Run more documents through the embeddings and add to the vectorstore.
aadd_texts(texts[, metadatas])
Run more texts through the embeddings and add to the vectorstore.
add_documents(documents, **kwargs)
Run more documents through the embeddings and add to the vectorstore.
add_texts(texts[, metadatas, embeddings, ...])
Add more texts to the vectorstore.
afrom_documents(documents, embedding, **kwargs)
Return VectorStore initialized from documents and embeddings.
afrom_texts(texts, embedding[, metadatas])
Return VectorStore initialized from texts and embeddings.
amax_marginal_relevance_search(query[, k, ...])
Return docs selected using the maximal marginal relevance.
amax_marginal_relevance_search_by_vector(...)
Return docs selected using the maximal marginal relevance.
as_retriever(**kwargs)
asearch(query, search_type, **kwargs)
Return docs most similar to query using specified search type.
asimilarity_search(query[, k])
Return docs most similar to query.
asimilarity_search_by_vector(embedding[, k])
Return docs most similar to embedding vector.
asimilarity_search_with_relevance_scores(query)
Return docs most similar to query.
delete([ids])
Delete a Redis entry.
drop_index(index_name, delete_documents, ...)
Drop a Redis search index.
from_documents(documents, embedding, **kwargs)
Return VectorStore initialized from documents and embeddings.
from_existing_index(embedding, index_name[, ...])
Connect to an existing Redis index.
from_texts(texts, embedding[, metadatas, ...])
Create a Redis vectorstore from raw documents.
|
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.redis.Redis.html
|
d2b2444e52cd-2
|
Create a Redis vectorstore from raw documents.
from_texts_return_keys(texts, embedding[, ...])
Create a Redis vectorstore from raw documents.
max_marginal_relevance_search(query[, k, ...])
Return docs selected using the maximal marginal relevance.
max_marginal_relevance_search_by_vector(...)
Return docs selected using the maximal marginal relevance.
search(query, search_type, **kwargs)
Return docs most similar to query using specified search type.
similarity_search(query[, k])
Returns the most similar indexed documents to the query text.
similarity_search_by_vector(embedding[, k])
Return docs most similar to embedding vector.
similarity_search_limit_score(query[, k, ...])
Returns the most similar indexed documents to the query text within the score_threshold range.
similarity_search_with_relevance_scores(query)
Return docs and relevance scores in the range [0, 1].
similarity_search_with_score(query[, k])
Return docs most similar to query.
Attributes
embeddings
Access the query embedding object if available.
async aadd_documents(documents: List[Document], **kwargs: Any) → List[str]¶
Run more documents through the embeddings and add to the vectorstore.
Parameters
(List[Document] (documents) – Documents to add to the vectorstore.
Returns
List of IDs of the added texts.
Return type
List[str]
async aadd_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, **kwargs: Any) → List[str]¶
Run more texts through the embeddings and add to the vectorstore.
add_documents(documents: List[Document], **kwargs: Any) → List[str]¶
Run more documents through the embeddings and add to the vectorstore.
Parameters
|
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.redis.Redis.html
|
d2b2444e52cd-3
|
Run more documents through the embeddings and add to the vectorstore.
Parameters
(List[Document] (documents) – Documents to add to the vectorstore.
Returns
List of IDs of the added texts.
Return type
List[str]
add_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, embeddings: Optional[List[List[float]]] = None, batch_size: int = 1000, **kwargs: Any) → List[str][source]¶
Add more texts to the vectorstore.
Parameters
texts (Iterable[str]) – Iterable of strings/text to add to the vectorstore.
metadatas (Optional[List[dict]], optional) – Optional list of metadatas.
Defaults to None.
embeddings (Optional[List[List[float]]], optional) – Optional pre-generated
embeddings. Defaults to None.
keys (List[str]) or ids (List[str]) – Identifiers of entries.
Defaults to None.
batch_size (int, optional) – Batch size to use for writes. Defaults to 1000.
Returns
List of ids added to the vectorstore
Return type
List[str]
async classmethod afrom_documents(documents: List[Document], embedding: Embeddings, **kwargs: Any) → VST¶
Return VectorStore initialized from documents and embeddings.
async classmethod afrom_texts(texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, **kwargs: Any) → VST¶
Return VectorStore initialized from texts and embeddings.
async amax_marginal_relevance_search(query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[Document]¶
Return docs selected using the maximal marginal relevance.
|
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.redis.Redis.html
|
d2b2444e52cd-4
|
Return docs selected using the maximal marginal relevance.
async amax_marginal_relevance_search_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[Document]¶
Return docs selected using the maximal marginal relevance.
as_retriever(**kwargs: Any) → RedisVectorStoreRetriever[source]¶
async asearch(query: str, search_type: str, **kwargs: Any) → List[Document]¶
Return docs most similar to query using specified search type.
async asimilarity_search(query: str, k: int = 4, **kwargs: Any) → List[Document]¶
Return docs most similar to query.
async asimilarity_search_by_vector(embedding: List[float], k: int = 4, **kwargs: Any) → List[Document]¶
Return docs most similar to embedding vector.
async asimilarity_search_with_relevance_scores(query: str, k: int = 4, **kwargs: Any) → List[Tuple[Document, float]]¶
Return docs most similar to query.
static delete(ids: Optional[List[str]] = None, **kwargs: Any) → bool[source]¶
Delete a Redis entry.
Parameters
ids – List of ids (keys) to delete.
Returns
Whether or not the deletions were successful.
Return type
bool
static drop_index(index_name: str, delete_documents: bool, **kwargs: Any) → bool[source]¶
Drop a Redis search index.
Parameters
index_name (str) – Name of the index to drop.
delete_documents (bool) – Whether to drop the associated documents.
Returns
Whether or not the drop was successful.
Return type
bool
|
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.redis.Redis.html
|
d2b2444e52cd-5
|
Returns
Whether or not the drop was successful.
Return type
bool
classmethod from_documents(documents: List[Document], embedding: Embeddings, **kwargs: Any) → VST¶
Return VectorStore initialized from documents and embeddings.
classmethod from_existing_index(embedding: Embeddings, index_name: str, content_key: str = 'content', metadata_key: str = 'metadata', vector_key: str = 'content_vector', **kwargs: Any) → Redis[source]¶
Connect to an existing Redis index.
classmethod from_texts(texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, index_name: Optional[str] = None, content_key: str = 'content', metadata_key: str = 'metadata', vector_key: str = 'content_vector', **kwargs: Any) → Redis[source]¶
Create a Redis vectorstore from raw documents.
This is a user-friendly interface that:
1. Embeds documents.
2. Creates a new index for the embeddings in Redis.
3. Adds the documents to the newly created Redis index.
This is intended to be a quick way to get started.
Example
from langchain.vectorstores import Redis
from langchain.embeddings import OpenAIEmbeddings
embeddings = OpenAIEmbeddings()
redisearch = RediSearch.from_texts(
texts,
embeddings,
redis_url="redis://username:password@localhost:6379"
)
|
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.redis.Redis.html
|
d2b2444e52cd-6
|
redis_url="redis://username:password@localhost:6379"
)
classmethod from_texts_return_keys(texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, index_name: Optional[str] = None, content_key: str = 'content', metadata_key: str = 'metadata', vector_key: str = 'content_vector', distance_metric: Literal['COSINE', 'IP', 'L2'] = 'COSINE', **kwargs: Any) → Tuple[Redis, List[str]][source]¶
Create a Redis vectorstore from raw documents.
This is a user-friendly interface that:
1. Embeds documents.
2. Creates a new index for the embeddings in Redis.
3. Adds the documents to the newly created Redis index.
4. Returns the keys of the newly created documents.
This is intended to be a quick way to get started.
Example
from langchain.vectorstores import Redis
from langchain.embeddings import OpenAIEmbeddings
embeddings = OpenAIEmbeddings()
redisearch, keys = RediSearch.from_texts_return_keys(
texts,
embeddings,
redis_url="redis://username:password@localhost:6379"
)
max_marginal_relevance_search(query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[Document]¶
Return docs selected using the maximal marginal relevance.
Maximal marginal relevance optimizes for similarity to query AND diversity
among selected documents.
Parameters
query – Text to look up documents similar to.
k – Number of Documents to return. Defaults to 4.
fetch_k – Number of Documents to fetch to pass to MMR algorithm.
lambda_mult – Number between 0 and 1 that determines the degree
|
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.redis.Redis.html
|
d2b2444e52cd-7
|
lambda_mult – Number between 0 and 1 that determines the degree
of diversity among the results with 0 corresponding
to maximum diversity and 1 to minimum diversity.
Defaults to 0.5.
Returns
List of Documents selected by maximal marginal relevance.
max_marginal_relevance_search_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[Document]¶
Return docs selected using the maximal marginal relevance.
Maximal marginal relevance optimizes for similarity to query AND diversity
among selected documents.
Parameters
embedding – Embedding to look up documents similar to.
k – Number of Documents to return. Defaults to 4.
fetch_k – Number of Documents to fetch to pass to MMR algorithm.
lambda_mult – Number between 0 and 1 that determines the degree
of diversity among the results with 0 corresponding
to maximum diversity and 1 to minimum diversity.
Defaults to 0.5.
Returns
List of Documents selected by maximal marginal relevance.
search(query: str, search_type: str, **kwargs: Any) → List[Document]¶
Return docs most similar to query using specified search type.
similarity_search(query: str, k: int = 4, **kwargs: Any) → List[Document][source]¶
Returns the most similar indexed documents to the query text.
Parameters
query (str) – The query text for which to find similar documents.
k (int) – The number of documents to return. Default is 4.
Returns
A list of documents that are most similar to the query text.
Return type
List[Document]
similarity_search_by_vector(embedding: List[float], k: int = 4, **kwargs: Any) → List[Document]¶
|
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.redis.Redis.html
|
d2b2444e52cd-8
|
Return docs most similar to embedding vector.
Parameters
embedding – Embedding to look up documents similar to.
k – Number of Documents to return. Defaults to 4.
Returns
List of Documents most similar to the query vector.
similarity_search_limit_score(query: str, k: int = 4, score_threshold: float = 0.2, **kwargs: Any) → List[Document][source]¶
Returns the most similar indexed documents to the query text within the
score_threshold range.
Parameters
query (str) – The query text for which to find similar documents.
k (int) – The number of documents to return. Default is 4.
score_threshold (float) – The minimum matching score required for a document
to be considered a match. Defaults to 0.2.
Because the similarity calculation algorithm is based on cosine
similarity, the smaller the angle, the higher the similarity.
Returns
A list of documents that are most similar to the query text,including the match score for each document.
Return type
List[Document]
Note
If there are no documents that satisfy the score_threshold value,
an empty list is returned.
similarity_search_with_relevance_scores(query: str, k: int = 4, **kwargs: Any) → List[Tuple[Document, float]]¶
Return docs and relevance scores in the range [0, 1].
0 is dissimilar, 1 is most similar.
Parameters
query – input text
k – Number of Documents to return. Defaults to 4.
**kwargs – kwargs to be passed to similarity search. Should include:
score_threshold: Optional, a floating point value between 0 to 1 to
filter the resulting set of retrieved docs
Returns
List of Tuples of (doc, similarity_score)
|
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.redis.Redis.html
|
d2b2444e52cd-9
|
Returns
List of Tuples of (doc, similarity_score)
similarity_search_with_score(query: str, k: int = 4) → List[Tuple[Document, float]][source]¶
Return docs most similar to query.
Parameters
query – Text to look up documents similar to.
k – Number of Documents to return. Defaults to 4.
Returns
List of Documents most similar to the query and score for each
property embeddings: Optional[langchain.embeddings.base.Embeddings]¶
Access the query embedding object if available.
Examples using Redis¶
Redis
|
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.redis.Redis.html
|
81c9ab4a61a6-0
|
langchain.vectorstores.zilliz.Zilliz¶
class langchain.vectorstores.zilliz.Zilliz(embedding_function: Embeddings, collection_name: str = 'LangChainCollection', connection_args: Optional[dict[str, Any]] = None, consistency_level: str = 'Session', index_params: Optional[dict] = None, search_params: Optional[dict] = None, drop_old: Optional[bool] = False)[source]¶
Bases: Milvus
Initialize wrapper around the Zilliz vector database.
In order to use this you need to have pymilvus installed and a
running Zilliz database.
See the following documentation for how to run a Zilliz instance:
https://docs.zilliz.com/docs/create-cluster
IF USING L2/IP metric IT IS HIGHLY SUGGESTED TO NORMALIZE YOUR DATA.
Parameters
embedding_function (Embeddings) – Function used to embed the text.
collection_name (str) – Which Zilliz collection to use. Defaults to
“LangChainCollection”.
connection_args (Optional[dict[str, any]]) – The connection args used for
this class comes in the form of a dict.
consistency_level (str) – The consistency level to use for a collection.
Defaults to “Session”.
index_params (Optional[dict]) – Which index params to use. Defaults to
HNSW/AUTOINDEX depending on service.
search_params (Optional[dict]) – Which search params to use. Defaults to
default of index.
drop_old (Optional[bool]) – Whether to drop the current collection. Defaults
to False.
The connection args used for this class comes in the form of a dict,
here are a few of the options:
address (str): The actual address of Zillizinstance. Example address: “localhost:19530”
|
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.zilliz.Zilliz.html
|
81c9ab4a61a6-1
|
uri (str): The uri of Zilliz instance. Example uri:“https://in03-ba4234asae.api.gcp-us-west1.zillizcloud.com”,
host (str): The host of Zilliz instance. Default at “localhost”,PyMilvus will fill in the default host if only port is provided.
port (str/int): The port of Zilliz instance. Default at 19530, PyMilvuswill fill in the default port if only host is provided.
user (str): Use which user to connect to Zilliz instance. If user andpassword are provided, we will add related header in every RPC call.
password (str): Required when user is provided. The passwordcorresponding to the user.
token (str): API key, for serverless clusters which can be used asreplacements for user and password.
secure (bool): Default is false. If set to true, tls will be enabled.
client_key_path (str): If use tls two-way authentication, need to
write the client.key path.
client_pem_path (str): If use tls two-way authentication, need towrite the client.pem path.
ca_pem_path (str): If use tls two-way authentication, need to writethe ca.pem path.
server_pem_path (str): If use tls one-way authentication, need towrite the server.pem path.
server_name (str): If use tls, need to write the common name.
Example
from langchain import Zilliz
from langchain.embeddings import OpenAIEmbeddings
embedding = OpenAIEmbeddings()
# Connect to a Zilliz instance
milvus_store = Milvus(
embedding_function = embedding,
collection_name = “LangChainCollection”,
connection_args = {
|
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.zilliz.Zilliz.html
|
81c9ab4a61a6-2
|
embedding_function = embedding,
collection_name = “LangChainCollection”,
connection_args = {
“uri”: “https://in03-ba4234asae.api.gcp-us-west1.zillizcloud.com”,
“user”: “temp”,
“password”: “temp”,
“token”: “temp”, # API key as replacements for user and password
“secure”: True
}
drop_old: True,
)
Raises
ValueError – If the pymilvus python package is not installed.
Initialize the Milvus vector store.
Methods
__init__(embedding_function[, ...])
Initialize the Milvus vector store.
aadd_documents(documents, **kwargs)
Run more documents through the embeddings and add to the vectorstore.
aadd_texts(texts[, metadatas])
Run more texts through the embeddings and add to the vectorstore.
add_documents(documents, **kwargs)
Run more documents through the embeddings and add to the vectorstore.
add_texts(texts[, metadatas, timeout, ...])
Insert text data into Milvus.
afrom_documents(documents, embedding, **kwargs)
Return VectorStore initialized from documents and embeddings.
afrom_texts(texts, embedding[, metadatas])
Return VectorStore initialized from texts and embeddings.
amax_marginal_relevance_search(query[, k, ...])
Return docs selected using the maximal marginal relevance.
amax_marginal_relevance_search_by_vector(...)
Return docs selected using the maximal marginal relevance.
as_retriever(**kwargs)
asearch(query, search_type, **kwargs)
Return docs most similar to query using specified search type.
asimilarity_search(query[, k])
Return docs most similar to query.
|
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.zilliz.Zilliz.html
|
81c9ab4a61a6-3
|
asimilarity_search(query[, k])
Return docs most similar to query.
asimilarity_search_by_vector(embedding[, k])
Return docs most similar to embedding vector.
asimilarity_search_with_relevance_scores(query)
Return docs most similar to query.
delete([ids])
Delete by vector ID or other criteria.
from_documents(documents, embedding, **kwargs)
Return VectorStore initialized from documents and embeddings.
from_texts(texts, embedding[, metadatas, ...])
Create a Zilliz collection, indexes it with HNSW, and insert data.
max_marginal_relevance_search(query[, k, ...])
Perform a search and return results that are reordered by MMR.
max_marginal_relevance_search_by_vector(...)
Perform a search and return results that are reordered by MMR.
search(query, search_type, **kwargs)
Return docs most similar to query using specified search type.
similarity_search(query[, k, param, expr, ...])
Perform a similarity search against the query string.
similarity_search_by_vector(embedding[, k, ...])
Perform a similarity search against the query string.
similarity_search_with_relevance_scores(query)
Return docs and relevance scores in the range [0, 1].
similarity_search_with_score(query[, k, ...])
Perform a search on a query string and return results with score.
similarity_search_with_score_by_vector(embedding)
Perform a search on a query string and return results with score.
Attributes
embeddings
Access the query embedding object if available.
async aadd_documents(documents: List[Document], **kwargs: Any) → List[str]¶
Run more documents through the embeddings and add to the vectorstore.
Parameters
|
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.zilliz.Zilliz.html
|
81c9ab4a61a6-4
|
Run more documents through the embeddings and add to the vectorstore.
Parameters
(List[Document] (documents) – Documents to add to the vectorstore.
Returns
List of IDs of the added texts.
Return type
List[str]
async aadd_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, **kwargs: Any) → List[str]¶
Run more texts through the embeddings and add to the vectorstore.
add_documents(documents: List[Document], **kwargs: Any) → List[str]¶
Run more documents through the embeddings and add to the vectorstore.
Parameters
(List[Document] (documents) – Documents to add to the vectorstore.
Returns
List of IDs of the added texts.
Return type
List[str]
add_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, timeout: Optional[int] = None, batch_size: int = 1000, **kwargs: Any) → List[str]¶
Insert text data into Milvus.
Inserting data when the collection has not be made yet will result
in creating a new Collection. The data of the first entity decides
the schema of the new collection, the dim is extracted from the first
embedding and the columns are decided by the first metadata dict.
Metada keys will need to be present for all inserted values. At
the moment there is no None equivalent in Milvus.
Parameters
texts (Iterable[str]) – The texts to embed, it is assumed
that they all fit in memory.
metadatas (Optional[List[dict]]) – Metadata dicts attached to each of
the texts. Defaults to None.
timeout (Optional[int]) – Timeout for each batch insert. Defaults
to None.
batch_size (int, optional) – Batch size to use for insertion.
|
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.zilliz.Zilliz.html
|
81c9ab4a61a6-5
|
to None.
batch_size (int, optional) – Batch size to use for insertion.
Defaults to 1000.
Raises
MilvusException – Failure to add texts
Returns
The resulting keys for each inserted element.
Return type
List[str]
async classmethod afrom_documents(documents: List[Document], embedding: Embeddings, **kwargs: Any) → VST¶
Return VectorStore initialized from documents and embeddings.
async classmethod afrom_texts(texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, **kwargs: Any) → VST¶
Return VectorStore initialized from texts and embeddings.
async amax_marginal_relevance_search(query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[Document]¶
Return docs selected using the maximal marginal relevance.
async amax_marginal_relevance_search_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[Document]¶
Return docs selected using the maximal marginal relevance.
as_retriever(**kwargs: Any) → VectorStoreRetriever¶
async asearch(query: str, search_type: str, **kwargs: Any) → List[Document]¶
Return docs most similar to query using specified search type.
async asimilarity_search(query: str, k: int = 4, **kwargs: Any) → List[Document]¶
Return docs most similar to query.
async asimilarity_search_by_vector(embedding: List[float], k: int = 4, **kwargs: Any) → List[Document]¶
Return docs most similar to embedding vector.
|
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.zilliz.Zilliz.html
|
81c9ab4a61a6-6
|
Return docs most similar to embedding vector.
async asimilarity_search_with_relevance_scores(query: str, k: int = 4, **kwargs: Any) → List[Tuple[Document, float]]¶
Return docs most similar to query.
delete(ids: Optional[List[str]] = None, **kwargs: Any) → Optional[bool]¶
Delete by vector ID or other criteria.
Parameters
ids – List of ids to delete.
**kwargs – Other keyword arguments that subclasses might use.
Returns
True if deletion is successful,
False otherwise, None if not implemented.
Return type
Optional[bool]
classmethod from_documents(documents: List[Document], embedding: Embeddings, **kwargs: Any) → VST¶
Return VectorStore initialized from documents and embeddings.
classmethod from_texts(texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, collection_name: str = 'LangChainCollection', connection_args: dict[str, Any] = {}, consistency_level: str = 'Session', index_params: Optional[dict] = None, search_params: Optional[dict] = None, drop_old: bool = False, **kwargs: Any) → Zilliz[source]¶
Create a Zilliz collection, indexes it with HNSW, and insert data.
Parameters
texts (List[str]) – Text data.
embedding (Embeddings) – Embedding function.
metadatas (Optional[List[dict]]) – Metadata for each text if it exists.
Defaults to None.
collection_name (str, optional) – Collection name to use. Defaults to
“LangChainCollection”.
connection_args (dict[str, Any], optional) – Connection args to use. Defaults
to DEFAULT_MILVUS_CONNECTION.
consistency_level (str, optional) – Which consistency level to use. Defaults
to “Session”.
|
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.zilliz.Zilliz.html
|
81c9ab4a61a6-7
|
to “Session”.
index_params (Optional[dict], optional) – Which index_params to use.
Defaults to None.
search_params (Optional[dict], optional) – Which search params to use.
Defaults to None.
drop_old (Optional[bool], optional) – Whether to drop the collection with
that name if it exists. Defaults to False.
Returns
Zilliz Vector Store
Return type
Zilliz
max_marginal_relevance_search(query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, param: Optional[dict] = None, expr: Optional[str] = None, timeout: Optional[int] = None, **kwargs: Any) → List[Document]¶
Perform a search and return results that are reordered by MMR.
Parameters
query (str) – The text being searched.
k (int, optional) – How many results to give. Defaults to 4.
fetch_k (int, optional) – Total results to select k from.
Defaults to 20.
lambda_mult – Number between 0 and 1 that determines the degree
of diversity among the results with 0 corresponding
to maximum diversity and 1 to minimum diversity.
Defaults to 0.5
param (dict, optional) – The search params for the specified index.
Defaults to None.
expr (str, optional) – Filtering expression. Defaults to None.
timeout (int, optional) – How long to wait before timeout error.
Defaults to None.
kwargs – Collection.search() keyword arguments.
Returns
Document results for search.
Return type
List[Document]
|
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.zilliz.Zilliz.html
|
81c9ab4a61a6-8
|
Returns
Document results for search.
Return type
List[Document]
max_marginal_relevance_search_by_vector(embedding: list[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, param: Optional[dict] = None, expr: Optional[str] = None, timeout: Optional[int] = None, **kwargs: Any) → List[Document]¶
Perform a search and return results that are reordered by MMR.
Parameters
embedding (str) – The embedding vector being searched.
k (int, optional) – How many results to give. Defaults to 4.
fetch_k (int, optional) – Total results to select k from.
Defaults to 20.
lambda_mult – Number between 0 and 1 that determines the degree
of diversity among the results with 0 corresponding
to maximum diversity and 1 to minimum diversity.
Defaults to 0.5
param (dict, optional) – The search params for the specified index.
Defaults to None.
expr (str, optional) – Filtering expression. Defaults to None.
timeout (int, optional) – How long to wait before timeout error.
Defaults to None.
kwargs – Collection.search() keyword arguments.
Returns
Document results for search.
Return type
List[Document]
search(query: str, search_type: str, **kwargs: Any) → List[Document]¶
Return docs most similar to query using specified search type.
similarity_search(query: str, k: int = 4, param: Optional[dict] = None, expr: Optional[str] = None, timeout: Optional[int] = None, **kwargs: Any) → List[Document]¶
Perform a similarity search against the query string.
Parameters
query (str) – The text to search.
|
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.zilliz.Zilliz.html
|
81c9ab4a61a6-9
|
Parameters
query (str) – The text to search.
k (int, optional) – How many results to return. Defaults to 4.
param (dict, optional) – The search params for the index type.
Defaults to None.
expr (str, optional) – Filtering expression. Defaults to None.
timeout (int, optional) – How long to wait before timeout error.
Defaults to None.
kwargs – Collection.search() keyword arguments.
Returns
Document results for search.
Return type
List[Document]
similarity_search_by_vector(embedding: List[float], k: int = 4, param: Optional[dict] = None, expr: Optional[str] = None, timeout: Optional[int] = None, **kwargs: Any) → List[Document]¶
Perform a similarity search against the query string.
Parameters
embedding (List[float]) – The embedding vector to search.
k (int, optional) – How many results to return. Defaults to 4.
param (dict, optional) – The search params for the index type.
Defaults to None.
expr (str, optional) – Filtering expression. Defaults to None.
timeout (int, optional) – How long to wait before timeout error.
Defaults to None.
kwargs – Collection.search() keyword arguments.
Returns
Document results for search.
Return type
List[Document]
similarity_search_with_relevance_scores(query: str, k: int = 4, **kwargs: Any) → List[Tuple[Document, float]]¶
Return docs and relevance scores in the range [0, 1].
0 is dissimilar, 1 is most similar.
Parameters
query – input text
k – Number of Documents to return. Defaults to 4.
**kwargs – kwargs to be passed to similarity search. Should include:
|
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.zilliz.Zilliz.html
|
81c9ab4a61a6-10
|
**kwargs – kwargs to be passed to similarity search. Should include:
score_threshold: Optional, a floating point value between 0 to 1 to
filter the resulting set of retrieved docs
Returns
List of Tuples of (doc, similarity_score)
similarity_search_with_score(query: str, k: int = 4, param: Optional[dict] = None, expr: Optional[str] = None, timeout: Optional[int] = None, **kwargs: Any) → List[Tuple[Document, float]]¶
Perform a search on a query string and return results with score.
For more information about the search parameters, take a look at the pymilvus
documentation found here:
https://milvus.io/api-reference/pymilvus/v2.2.6/Collection/search().md
Parameters
query (str) – The text being searched.
k (int, optional) – The amount of results to return. Defaults to 4.
param (dict) – The search params for the specified index.
Defaults to None.
expr (str, optional) – Filtering expression. Defaults to None.
timeout (int, optional) – How long to wait before timeout error.
Defaults to None.
kwargs – Collection.search() keyword arguments.
Return type
List[float], List[Tuple[Document, any, any]]
similarity_search_with_score_by_vector(embedding: List[float], k: int = 4, param: Optional[dict] = None, expr: Optional[str] = None, timeout: Optional[int] = None, **kwargs: Any) → List[Tuple[Document, float]]¶
Perform a search on a query string and return results with score.
For more information about the search parameters, take a look at the pymilvus
documentation found here:
|
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.zilliz.Zilliz.html
|
81c9ab4a61a6-11
|
documentation found here:
https://milvus.io/api-reference/pymilvus/v2.2.6/Collection/search().md
Parameters
embedding (List[float]) – The embedding vector being searched.
k (int, optional) – The amount of results to return. Defaults to 4.
param (dict) – The search params for the specified index.
Defaults to None.
expr (str, optional) – Filtering expression. Defaults to None.
timeout (int, optional) – How long to wait before timeout error.
Defaults to None.
kwargs – Collection.search() keyword arguments.
Returns
Result doc and score.
Return type
List[Tuple[Document, float]]
property embeddings: langchain.embeddings.base.Embeddings¶
Access the query embedding object if available.
|
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.zilliz.Zilliz.html
|
5bdb0a59cdea-0
|
langchain.vectorstores.marqo.Marqo¶
class langchain.vectorstores.marqo.Marqo(client: marqo.Client, index_name: str, add_documents_settings: Optional[Dict[str, Any]] = None, searchable_attributes: Optional[List[str]] = None, page_content_builder: Optional[Callable[[Dict[str, Any]], str]] = None)[source]¶
Bases: VectorStore
Wrapper around Marqo database.
Marqo indexes have their own models associated with them to generate your
embeddings. This means that you can selected from a range of different models
and also use CLIP models to create multimodal indexes
with images and text together.
Marqo also supports more advanced queries with multiple weighted terms, see See
https://docs.marqo.ai/latest/#searching-using-weights-in-queries.
This class can flexibly take strings or dictionaries for weighted queries
in its similarity search methods.
To use, you should have the marqo python package installed, you can do this with
pip install marqo.
Example
import marqo
from langchain.vectorstores import Marqo
client = marqo.Client(url=os.environ["MARQO_URL"], ...)
vectorstore = Marqo(client, index_name)
Initialize with Marqo client.
Methods
__init__(client, index_name[, ...])
Initialize with Marqo client.
aadd_documents(documents, **kwargs)
Run more documents through the embeddings and add to the vectorstore.
aadd_texts(texts[, metadatas])
Run more texts through the embeddings and add to the vectorstore.
add_documents(documents, **kwargs)
Run more documents through the embeddings and add to the vectorstore.
add_texts(texts[, metadatas])
|
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.marqo.Marqo.html
|
5bdb0a59cdea-1
|
add_texts(texts[, metadatas])
Upload texts with metadata (properties) to Marqo.
afrom_documents(documents, embedding, **kwargs)
Return VectorStore initialized from documents and embeddings.
afrom_texts(texts, embedding[, metadatas])
Return VectorStore initialized from texts and embeddings.
amax_marginal_relevance_search(query[, k, ...])
Return docs selected using the maximal marginal relevance.
amax_marginal_relevance_search_by_vector(...)
Return docs selected using the maximal marginal relevance.
as_retriever(**kwargs)
asearch(query, search_type, **kwargs)
Return docs most similar to query using specified search type.
asimilarity_search(query[, k])
Return docs most similar to query.
asimilarity_search_by_vector(embedding[, k])
Return docs most similar to embedding vector.
asimilarity_search_with_relevance_scores(query)
Return docs most similar to query.
bulk_similarity_search(queries[, k])
Search the marqo index for the most similar documents in bulk with multiple queries.
bulk_similarity_search_with_score(queries[, k])
Return documents from Marqo that are similar to the query as well as their scores using a batch of queries.
delete([ids])
Delete by vector ID or other criteria.
from_documents(documents[, embedding])
Return VectorStore initialized from documents.
from_texts(texts[, embedding, metadatas, ...])
Return Marqo initialized from texts.
get_indexes()
Helper to see your available indexes in marqo, useful if the from_texts method was used without an index name specified
get_number_of_documents()
Helper to see the number of documents in the index
marqo_bulk_similarity_search(queries[, k])
|
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.marqo.Marqo.html
|
5bdb0a59cdea-2
|
marqo_bulk_similarity_search(queries[, k])
Return documents from Marqo using a bulk search, exposes Marqo's output directly
marqo_similarity_search(query[, k])
Return documents from Marqo exposing Marqo's output directly
max_marginal_relevance_search(query[, k, ...])
Return docs selected using the maximal marginal relevance.
max_marginal_relevance_search_by_vector(...)
Return docs selected using the maximal marginal relevance.
search(query, search_type, **kwargs)
Return docs most similar to query using specified search type.
similarity_search(query[, k])
Search the marqo index for the most similar documents.
similarity_search_by_vector(embedding[, k])
Return docs most similar to embedding vector.
similarity_search_with_relevance_scores(query)
Return docs and relevance scores in the range [0, 1].
similarity_search_with_score(query[, k])
Return documents from Marqo that are similar to the query as well as their scores.
Attributes
embeddings
Access the query embedding object if available.
async aadd_documents(documents: List[Document], **kwargs: Any) → List[str]¶
Run more documents through the embeddings and add to the vectorstore.
Parameters
(List[Document] (documents) – Documents to add to the vectorstore.
Returns
List of IDs of the added texts.
Return type
List[str]
async aadd_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, **kwargs: Any) → List[str]¶
Run more texts through the embeddings and add to the vectorstore.
add_documents(documents: List[Document], **kwargs: Any) → List[str]¶
Run more documents through the embeddings and add to the vectorstore.
Parameters
|
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.marqo.Marqo.html
|
5bdb0a59cdea-3
|
Run more documents through the embeddings and add to the vectorstore.
Parameters
(List[Document] (documents) – Documents to add to the vectorstore.
Returns
List of IDs of the added texts.
Return type
List[str]
add_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, **kwargs: Any) → List[str][source]¶
Upload texts with metadata (properties) to Marqo.
You can either have marqo generate ids for each document or you can provide
your own by including a “_id” field in the metadata objects.
Parameters
texts (Iterable[str]) – am iterator of texts - assumed to preserve an
metadatas. (order that matches the) –
metadatas (Optional[List[dict]], optional) – a list of metadatas.
Raises
ValueError – if metadatas is provided and the number of metadatas differs
from the number of texts. –
Returns
The list of ids that were added.
Return type
List[str]
async classmethod afrom_documents(documents: List[Document], embedding: Embeddings, **kwargs: Any) → VST¶
Return VectorStore initialized from documents and embeddings.
async classmethod afrom_texts(texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, **kwargs: Any) → VST¶
Return VectorStore initialized from texts and embeddings.
async amax_marginal_relevance_search(query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[Document]¶
Return docs selected using the maximal marginal relevance.
|
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.marqo.Marqo.html
|
5bdb0a59cdea-4
|
Return docs selected using the maximal marginal relevance.
async amax_marginal_relevance_search_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[Document]¶
Return docs selected using the maximal marginal relevance.
as_retriever(**kwargs: Any) → VectorStoreRetriever¶
async asearch(query: str, search_type: str, **kwargs: Any) → List[Document]¶
Return docs most similar to query using specified search type.
async asimilarity_search(query: str, k: int = 4, **kwargs: Any) → List[Document]¶
Return docs most similar to query.
async asimilarity_search_by_vector(embedding: List[float], k: int = 4, **kwargs: Any) → List[Document]¶
Return docs most similar to embedding vector.
async asimilarity_search_with_relevance_scores(query: str, k: int = 4, **kwargs: Any) → List[Tuple[Document, float]]¶
Return docs most similar to query.
bulk_similarity_search(queries: Iterable[Union[str, Dict[str, float]]], k: int = 4, **kwargs: Any) → List[List[Document]][source]¶
Search the marqo index for the most similar documents in bulk with multiple
queries.
Parameters
queries (Iterable[Union[str, Dict[str, float]]]) – An iterable of queries to
bulk (execute in) –
of (queries in the list can be strings or dictionaries) –
queries. (weighted) –
k (int, optional) – The number of documents to return for each query.
4. (Defaults to) –
Returns
A list of results for each query.
Return type
|
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.marqo.Marqo.html
|
5bdb0a59cdea-5
|
Returns
A list of results for each query.
Return type
List[List[Document]]
bulk_similarity_search_with_score(queries: Iterable[Union[str, Dict[str, float]]], k: int = 4, **kwargs: Any) → List[List[Tuple[Document, float]]][source]¶
Return documents from Marqo that are similar to the query as well as
their scores using a batch of queries.
Parameters
query (Iterable[Union[str, Dict[str, float]]]) – An iterable of queries
bulk (to execute in) –
dictionaries (queries in the list can be strings or) –
queries. (of weighted) –
k (int, optional) – The number of documents to return. Defaults to 4.
Returns
A list of lists of the matching
documents and their scores for each query
Return type
List[Tuple[Document, float]]
delete(ids: Optional[List[str]] = None, **kwargs: Any) → Optional[bool]¶
Delete by vector ID or other criteria.
Parameters
ids – List of ids to delete.
**kwargs – Other keyword arguments that subclasses might use.
Returns
True if deletion is successful,
False otherwise, None if not implemented.
Return type
Optional[bool]
classmethod from_documents(documents: List[Document], embedding: Optional[Embeddings] = None, **kwargs: Any) → Marqo[source]¶
Return VectorStore initialized from documents. Note that Marqo does not
need embeddings, we retain the parameter to adhere to the Liskov substitution
principle.
Parameters
documents (List[Document]) – Input documents
embedding (Any, optional) – Embeddings (not required). Defaults to None.
Returns
A Marqo vectorstore
Return type
VectorStore
|
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.marqo.Marqo.html
|
5bdb0a59cdea-6
|
Returns
A Marqo vectorstore
Return type
VectorStore
classmethod from_texts(texts: List[str], embedding: Any = None, metadatas: Optional[List[dict]] = None, index_name: str = '', url: str = 'http://localhost:8882', api_key: str = '', add_documents_settings: Optional[Dict[str, Any]] = {}, searchable_attributes: Optional[List[str]] = None, page_content_builder: Optional[Callable[[Dict[str, str]], str]] = None, index_settings: Optional[Dict[str, Any]] = {}, verbose: bool = True, **kwargs: Any) → Marqo[source]¶
Return Marqo initialized from texts. Note that Marqo does not need
embeddings, we retain the parameter to adhere to the Liskov
substitution principle.
This is a quick way to get started with marqo - simply provide your texts and
metadatas and this will create an instance of the data store and index the
provided data.
To know the ids of your documents with this approach you will need to include
them in under the key “_id” in your metadatas for each text
Example:
.. code-block:: python
from langchain.vectorstores import Marqo
datastore = Marqo(texts=[‘text’], index_name=’my-first-index’,
url=’http://localhost:8882’)
Parameters
texts (List[str]) – A list of texts to index into marqo upon creation.
embedding (Any, optional) – Embeddings (not required). Defaults to None.
index_name (str, optional) – The name of the index to use, if none is
None. (accompany the texts. Defaults to) –
url (str, optional) – The URL for Marqo. Defaults to “http://localhost:8882”.
|
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.marqo.Marqo.html
|
5bdb0a59cdea-7
|
api_key (str, optional) – The API key for Marqo. Defaults to “”.
metadatas (Optional[List[dict]], optional) – A list of metadatas, to
None. –
Can (this is only used when a new index is being created. Defaults to "cpu".) –
"cuda". (be "cpu" or) –
add_documents_settings (Optional[Dict[str, Any]], optional) – Settings
documents (for adding) –
see –
https – //docs.marqo.ai/0.0.16/API-Reference/documents/#query-parameters.
{}. (Defaults to) –
index_settings (Optional[Dict[str, Any]], optional) – Index settings if
exist (the index doesn't) –
see –
https – //docs.marqo.ai/0.0.16/API-Reference/indexes/#index-defaults-object.
{}. –
Returns
An instance of the Marqo vector store
Return type
Marqo
get_indexes() → List[Dict[str, str]][source]¶
Helper to see your available indexes in marqo, useful if the
from_texts method was used without an index name specified
Returns
The list of indexes
Return type
List[Dict[str, str]]
get_number_of_documents() → int[source]¶
Helper to see the number of documents in the index
Returns
The number of documents
Return type
int
marqo_bulk_similarity_search(queries: Iterable[Union[str, Dict[str, float]]], k: int = 4) → Dict[str, List[Dict[str, List[Dict[str, str]]]]][source]¶
Return documents from Marqo using a bulk search, exposes Marqo’s
output directly
Parameters
|
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.marqo.Marqo.html
|
5bdb0a59cdea-8
|
output directly
Parameters
queries (Iterable[Union[str, Dict[str, float]]]) – A list of queries.
k (int, optional) – The number of documents to return for each query.
4. (Defaults to) –
Returns
A bulk search results
object
Return type
Dict[str, Dict[List[Dict[str, Dict[str, Any]]]]]
marqo_similarity_search(query: Union[str, Dict[str, float]], k: int = 4) → Dict[str, List[Dict[str, str]]][source]¶
Return documents from Marqo exposing Marqo’s output directly
Parameters
query (str) – The query to search with.
k (int, optional) – The number of documents to return. Defaults to 4.
Returns
This hits from marqo.
Return type
List[Dict[str, Any]]
max_marginal_relevance_search(query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[Document]¶
Return docs selected using the maximal marginal relevance.
Maximal marginal relevance optimizes for similarity to query AND diversity
among selected documents.
Parameters
query – Text to look up documents similar to.
k – Number of Documents to return. Defaults to 4.
fetch_k – Number of Documents to fetch to pass to MMR algorithm.
lambda_mult – Number between 0 and 1 that determines the degree
of diversity among the results with 0 corresponding
to maximum diversity and 1 to minimum diversity.
Defaults to 0.5.
Returns
List of Documents selected by maximal marginal relevance.
|
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.marqo.Marqo.html
|
5bdb0a59cdea-9
|
Defaults to 0.5.
Returns
List of Documents selected by maximal marginal relevance.
max_marginal_relevance_search_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[Document]¶
Return docs selected using the maximal marginal relevance.
Maximal marginal relevance optimizes for similarity to query AND diversity
among selected documents.
Parameters
embedding – Embedding to look up documents similar to.
k – Number of Documents to return. Defaults to 4.
fetch_k – Number of Documents to fetch to pass to MMR algorithm.
lambda_mult – Number between 0 and 1 that determines the degree
of diversity among the results with 0 corresponding
to maximum diversity and 1 to minimum diversity.
Defaults to 0.5.
Returns
List of Documents selected by maximal marginal relevance.
search(query: str, search_type: str, **kwargs: Any) → List[Document]¶
Return docs most similar to query using specified search type.
similarity_search(query: Union[str, Dict[str, float]], k: int = 4, **kwargs: Any) → List[Document][source]¶
Search the marqo index for the most similar documents.
Parameters
query (Union[str, Dict[str, float]]) – The query for the search, either
query. (as a string or a weighted) –
k (int, optional) – The number of documents to return. Defaults to 4.
Returns
k documents ordered from best to worst match.
Return type
List[Document]
similarity_search_by_vector(embedding: List[float], k: int = 4, **kwargs: Any) → List[Document]¶
Return docs most similar to embedding vector.
Parameters
|
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.marqo.Marqo.html
|
5bdb0a59cdea-10
|
Return docs most similar to embedding vector.
Parameters
embedding – Embedding to look up documents similar to.
k – Number of Documents to return. Defaults to 4.
Returns
List of Documents most similar to the query vector.
similarity_search_with_relevance_scores(query: str, k: int = 4, **kwargs: Any) → List[Tuple[Document, float]]¶
Return docs and relevance scores in the range [0, 1].
0 is dissimilar, 1 is most similar.
Parameters
query – input text
k – Number of Documents to return. Defaults to 4.
**kwargs – kwargs to be passed to similarity search. Should include:
score_threshold: Optional, a floating point value between 0 to 1 to
filter the resulting set of retrieved docs
Returns
List of Tuples of (doc, similarity_score)
similarity_search_with_score(query: Union[str, Dict[str, float]], k: int = 4) → List[Tuple[Document, float]][source]¶
Return documents from Marqo that are similar to the query as well
as their scores.
Parameters
query (str) – The query to search with, either as a string or a weighted
query. –
k (int, optional) – The number of documents to return. Defaults to 4.
Returns
The matching documents and their scores,
ordered by descending score.
Return type
List[Tuple[Document, float]]
property embeddings: Optional[langchain.embeddings.base.Embeddings]¶
Access the query embedding object if available.
Examples using Marqo¶
Marqo
|
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.marqo.Marqo.html
|
0231b8e9831d-0
|
langchain.vectorstores.sklearn.SKLearnVectorStore¶
class langchain.vectorstores.sklearn.SKLearnVectorStore(embedding: Embeddings, *, persist_path: Optional[str] = None, serializer: Literal['json', 'bson', 'parquet'] = 'json', metric: str = 'cosine', **kwargs: Any)[source]¶
Bases: VectorStore
A simple in-memory vector store based on the scikit-learn library
NearestNeighbors implementation.
Methods
__init__(embedding, *[, persist_path, ...])
aadd_documents(documents, **kwargs)
Run more documents through the embeddings and add to the vectorstore.
aadd_texts(texts[, metadatas])
Run more texts through the embeddings and add to the vectorstore.
add_documents(documents, **kwargs)
Run more documents through the embeddings and add to the vectorstore.
add_texts(texts[, metadatas, ids])
Run more texts through the embeddings and add to the vectorstore.
afrom_documents(documents, embedding, **kwargs)
Return VectorStore initialized from documents and embeddings.
afrom_texts(texts, embedding[, metadatas])
Return VectorStore initialized from texts and embeddings.
amax_marginal_relevance_search(query[, k, ...])
Return docs selected using the maximal marginal relevance.
amax_marginal_relevance_search_by_vector(...)
Return docs selected using the maximal marginal relevance.
as_retriever(**kwargs)
asearch(query, search_type, **kwargs)
Return docs most similar to query using specified search type.
asimilarity_search(query[, k])
Return docs most similar to query.
asimilarity_search_by_vector(embedding[, k])
Return docs most similar to embedding vector.
asimilarity_search_with_relevance_scores(query)
|
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.sklearn.SKLearnVectorStore.html
|
0231b8e9831d-1
|
Return docs most similar to embedding vector.
asimilarity_search_with_relevance_scores(query)
Return docs most similar to query.
delete([ids])
Delete by vector ID or other criteria.
from_documents(documents, embedding, **kwargs)
Return VectorStore initialized from documents and embeddings.
from_texts(texts, embedding[, metadatas, ...])
Return VectorStore initialized from texts and embeddings.
max_marginal_relevance_search(query[, k, ...])
Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. :param query: Text to look up documents similar to. :param k: Number of Documents to return. Defaults to 4. :param fetch_k: Number of Documents to fetch to pass to MMR algorithm. :param lambda_mult: Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5.
max_marginal_relevance_search_by_vector(...)
Return docs selected using the maximal marginal relevance. Maximal marginal relevance optimizes for similarity to query AND diversity among selected documents. :param embedding: Embedding to look up documents similar to. :param k: Number of Documents to return. Defaults to 4. :param fetch_k: Number of Documents to fetch to pass to MMR algorithm. :param lambda_mult: Number between 0 and 1 that determines the degree of diversity among the results with 0 corresponding to maximum diversity and 1 to minimum diversity. Defaults to 0.5.
persist()
search(query, search_type, **kwargs)
Return docs most similar to query using specified search type.
similarity_search(query[, k])
Return docs most similar to query.
|
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.sklearn.SKLearnVectorStore.html
|
0231b8e9831d-2
|
similarity_search(query[, k])
Return docs most similar to query.
similarity_search_by_vector(embedding[, k])
Return docs most similar to embedding vector.
similarity_search_with_relevance_scores(query)
Return docs and relevance scores in the range [0, 1].
similarity_search_with_score(query, *[, k])
Run similarity search with distance.
Attributes
embeddings
Access the query embedding object if available.
async aadd_documents(documents: List[Document], **kwargs: Any) → List[str]¶
Run more documents through the embeddings and add to the vectorstore.
Parameters
(List[Document] (documents) – Documents to add to the vectorstore.
Returns
List of IDs of the added texts.
Return type
List[str]
async aadd_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, **kwargs: Any) → List[str]¶
Run more texts through the embeddings and add to the vectorstore.
add_documents(documents: List[Document], **kwargs: Any) → List[str]¶
Run more documents through the embeddings and add to the vectorstore.
Parameters
(List[Document] (documents) – Documents to add to the vectorstore.
Returns
List of IDs of the added texts.
Return type
List[str]
add_texts(texts: Iterable[str], metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, **kwargs: Any) → List[str][source]¶
Run more texts through the embeddings and add to the vectorstore.
Parameters
texts – Iterable of strings to add to the vectorstore.
metadatas – Optional list of metadatas associated with the texts.
kwargs – vectorstore specific parameters
Returns
List of ids from adding the texts into the vectorstore.
|
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.sklearn.SKLearnVectorStore.html
|
0231b8e9831d-3
|
Returns
List of ids from adding the texts into the vectorstore.
async classmethod afrom_documents(documents: List[Document], embedding: Embeddings, **kwargs: Any) → VST¶
Return VectorStore initialized from documents and embeddings.
async classmethod afrom_texts(texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, **kwargs: Any) → VST¶
Return VectorStore initialized from texts and embeddings.
async amax_marginal_relevance_search(query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[Document]¶
Return docs selected using the maximal marginal relevance.
async amax_marginal_relevance_search_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[Document]¶
Return docs selected using the maximal marginal relevance.
as_retriever(**kwargs: Any) → VectorStoreRetriever¶
async asearch(query: str, search_type: str, **kwargs: Any) → List[Document]¶
Return docs most similar to query using specified search type.
async asimilarity_search(query: str, k: int = 4, **kwargs: Any) → List[Document]¶
Return docs most similar to query.
async asimilarity_search_by_vector(embedding: List[float], k: int = 4, **kwargs: Any) → List[Document]¶
Return docs most similar to embedding vector.
async asimilarity_search_with_relevance_scores(query: str, k: int = 4, **kwargs: Any) → List[Tuple[Document, float]]¶
Return docs most similar to query.
|
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.sklearn.SKLearnVectorStore.html
|
0231b8e9831d-4
|
Return docs most similar to query.
delete(ids: Optional[List[str]] = None, **kwargs: Any) → Optional[bool]¶
Delete by vector ID or other criteria.
Parameters
ids – List of ids to delete.
**kwargs – Other keyword arguments that subclasses might use.
Returns
True if deletion is successful,
False otherwise, None if not implemented.
Return type
Optional[bool]
classmethod from_documents(documents: List[Document], embedding: Embeddings, **kwargs: Any) → VST¶
Return VectorStore initialized from documents and embeddings.
classmethod from_texts(texts: List[str], embedding: Embeddings, metadatas: Optional[List[dict]] = None, ids: Optional[List[str]] = None, persist_path: Optional[str] = None, **kwargs: Any) → SKLearnVectorStore[source]¶
Return VectorStore initialized from texts and embeddings.
max_marginal_relevance_search(query: str, k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[Document][source]¶
Return docs selected using the maximal marginal relevance.
Maximal marginal relevance optimizes for similarity to query AND diversity
among selected documents.
:param query: Text to look up documents similar to.
:param k: Number of Documents to return. Defaults to 4.
:param fetch_k: Number of Documents to fetch to pass to MMR algorithm.
:param lambda_mult: Number between 0 and 1 that determines the degree
of diversity among the results with 0 corresponding
to maximum diversity and 1 to minimum diversity.
Defaults to 0.5.
Returns
List of Documents selected by maximal marginal relevance.
|
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.sklearn.SKLearnVectorStore.html
|
0231b8e9831d-5
|
Defaults to 0.5.
Returns
List of Documents selected by maximal marginal relevance.
max_marginal_relevance_search_by_vector(embedding: List[float], k: int = 4, fetch_k: int = 20, lambda_mult: float = 0.5, **kwargs: Any) → List[Document][source]¶
Return docs selected using the maximal marginal relevance.
Maximal marginal relevance optimizes for similarity to query AND diversity
among selected documents.
:param embedding: Embedding to look up documents similar to.
:param k: Number of Documents to return. Defaults to 4.
:param fetch_k: Number of Documents to fetch to pass to MMR algorithm.
:param lambda_mult: Number between 0 and 1 that determines the degree
of diversity among the results with 0 corresponding
to maximum diversity and 1 to minimum diversity.
Defaults to 0.5.
Returns
List of Documents selected by maximal marginal relevance.
persist() → None[source]¶
search(query: str, search_type: str, **kwargs: Any) → List[Document]¶
Return docs most similar to query using specified search type.
similarity_search(query: str, k: int = 4, **kwargs: Any) → List[Document][source]¶
Return docs most similar to query.
similarity_search_by_vector(embedding: List[float], k: int = 4, **kwargs: Any) → List[Document]¶
Return docs most similar to embedding vector.
Parameters
embedding – Embedding to look up documents similar to.
k – Number of Documents to return. Defaults to 4.
Returns
List of Documents most similar to the query vector.
similarity_search_with_relevance_scores(query: str, k: int = 4, **kwargs: Any) → List[Tuple[Document, float]]¶
|
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.sklearn.SKLearnVectorStore.html
|
0231b8e9831d-6
|
Return docs and relevance scores in the range [0, 1].
0 is dissimilar, 1 is most similar.
Parameters
query – input text
k – Number of Documents to return. Defaults to 4.
**kwargs – kwargs to be passed to similarity search. Should include:
score_threshold: Optional, a floating point value between 0 to 1 to
filter the resulting set of retrieved docs
Returns
List of Tuples of (doc, similarity_score)
similarity_search_with_score(query: str, *, k: int = 4, **kwargs: Any) → List[Tuple[Document, float]][source]¶
Run similarity search with distance.
property embeddings: langchain.embeddings.base.Embeddings¶
Access the query embedding object if available.
Examples using SKLearnVectorStore¶
scikit-learn
|
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.sklearn.SKLearnVectorStore.html
|
04b3a182bd3a-0
|
langchain.vectorstores.weaviate.Weaviate¶
class langchain.vectorstores.weaviate.Weaviate(client: ~typing.Any, index_name: str, text_key: str, embedding: ~typing.Optional[~langchain.embeddings.base.Embeddings] = None, attributes: ~typing.Optional[~typing.List[str]] = None, relevance_score_fn: ~typing.Optional[~typing.Callable[[float], float]] = <function _default_score_normalizer>, by_text: bool = True)[source]¶
Bases: VectorStore
Wrapper around Weaviate vector database.
To use, you should have the weaviate-client python package installed.
Example
import weaviate
from langchain.vectorstores import Weaviate
client = weaviate.Client(url=os.environ["WEAVIATE_URL"], ...)
weaviate = Weaviate(client, index_name, text_key)
Initialize with Weaviate client.
Methods
__init__(client, index_name, text_key[, ...])
Initialize with Weaviate client.
aadd_documents(documents, **kwargs)
Run more documents through the embeddings and add to the vectorstore.
aadd_texts(texts[, metadatas])
Run more texts through the embeddings and add to the vectorstore.
add_documents(documents, **kwargs)
Run more documents through the embeddings and add to the vectorstore.
add_texts(texts[, metadatas])
Upload texts with metadata (properties) to Weaviate.
afrom_documents(documents, embedding, **kwargs)
Return VectorStore initialized from documents and embeddings.
afrom_texts(texts, embedding[, metadatas])
Return VectorStore initialized from texts and embeddings.
amax_marginal_relevance_search(query[, k, ...])
Return docs selected using the maximal marginal relevance.
|
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.weaviate.Weaviate.html
|
04b3a182bd3a-1
|
Return docs selected using the maximal marginal relevance.
amax_marginal_relevance_search_by_vector(...)
Return docs selected using the maximal marginal relevance.
as_retriever(**kwargs)
asearch(query, search_type, **kwargs)
Return docs most similar to query using specified search type.
asimilarity_search(query[, k])
Return docs most similar to query.
asimilarity_search_by_vector(embedding[, k])
Return docs most similar to embedding vector.
asimilarity_search_with_relevance_scores(query)
Return docs most similar to query.
delete([ids])
Delete by vector IDs.
from_documents(documents, embedding, **kwargs)
Return VectorStore initialized from documents and embeddings.
from_texts(texts, embedding[, metadatas])
Construct Weaviate wrapper from raw documents.
max_marginal_relevance_search(query[, k, ...])
Return docs selected using the maximal marginal relevance.
max_marginal_relevance_search_by_vector(...)
Return docs selected using the maximal marginal relevance.
search(query, search_type, **kwargs)
Return docs most similar to query using specified search type.
similarity_search(query[, k])
Return docs most similar to query.
similarity_search_by_text(query[, k])
Return docs most similar to query.
similarity_search_by_vector(embedding[, k])
Look up similar documents by embedding vector in Weaviate.
similarity_search_with_relevance_scores(query)
Return docs and relevance scores in the range [0, 1].
similarity_search_with_score(query[, k])
Return list of documents most similar to the query text and cosine distance in float for each.
Attributes
embeddings
Access the query embedding object if available.
|
https://api.python.langchain.com/en/latest/vectorstores/langchain.vectorstores.weaviate.Weaviate.html
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.